
Research(Workshop(of(the(
Israel(Science(Foundation

(((((((((

(

Proceedings of the 5th Workshop on

Planning and Learning
(PAL-15)

Edited By:

Alan Fern, Hanna Kurniawati, Scott Sanner, Nan Ye

Jerusalem, Israel 8/6/2015

Organizing Commitee

Alan Fern
Oregon State University, USA

Hanna Kurniawati
University of Queensland, Australia

Scott Sanner
Oregon State University, USA

Nan Ye
Queensland University of Technology, Australia

Program committee

Alan Fern, Oregon State University, USA
Hanna Kurniawati, University of Queensland, Australia
Scott Sanner, Oregon State University, USA
Nan Ye, Queensland University of Technology, Australia

((

Foreword

Learning and planning are two capabilities required for an intelligent agent and yet while they are
distinct, it is often beneficial to consider them together, e.g., the interaction of learning and planning
in uncertain models, learning heuristics to guide planning, using planning to solve the exploration-
exploitation problem in Bayesian reinforcement learning, and adaptive Monte Carlo planning as
online learning of search guidance. This workshop aims to provide a stimulating forum for researchers
from both the learning community and the planning community to discuss recent advances, and
potential developments on these exciting topics at the intersection of learning and planning. It
continues the lineage of four previous planning and learning workshops on planning and learning in
2007, 2009, 2011, 2013. The proceedings of this workshop present some interesting papers falling
into the interaction of learning and planning.

Alan, Hanna, Scott and Nan
Workshop Organizers
May 2015

(((

Table of Contents

Value Iteration with Options and State Aggregation
 Kamil Ciosek and David Silver . 1

Path Finding under Uncertainty through Probabilistic Inference
 David Tolpin, Brooks Paige, Jan Willem van de Meent and Frank Wood 9

Automatic Generation of HTNs from PDDL
 Anders Jonsson and Dimir Lotinac . 15

(

Value Iteration with Options and State Aggregation

Kamil Ciosek David Silver
k.ciosek@cs.ucl.ac.uk d.silver@cs.ucl.ac.uk

Centre for Computational Statistics and Machine Learning
University College London

Abstract

This paper presents a way of solving Markov Decision
Processes that combines state abstraction and temporal
abstraction. Specifically, we combine state aggregation
with the options framework and demonstrate that they
work well together and indeed it is only after one com-
bines the two that the full benefit of each is realized. We
introduce a hierarchical value iteration algorithm where
we first coarsely solve subgoals and then use these
approximate solutions to exactly solve the MDP. This
algorithm solved several problems faster than vanilla
value iteration.

Introduction
Finding solutions to discrete discounted Markov Decision
Processes (MDPs) is an important problem in Reinforce-
ment Learning. The basic problem is to obtain the optimal
policy of the MDP so that the overall discounted reward
obtained as we follow this policy within the MDP is maxi-
mized.1 In this work, we do not work with the optimal policy
directly but compute the optimal value function instead.

The approach we take in this paper is to modify the well-
known value iteration (VI) algorithm (Bellman 1957). The
basic idea of VI is to keep iterating the Bellman optimal-
ity equation. This is well-known to converge to the optimal
value function. Our framework is conceptually based on a
natural extension of the Bellman optimality equation where
matrix models take the place of vector value functions.

In order to solve large problems, table-lookup algorithms
are not practical because of the sheer number of states,
which VI must loop over. Hence the need for state abstrac-
tion. For this work, we chose aggregation (Bertsekas 2012),
which can be nicely integrated into our framework of the
modified Bellman optimality equation. Algorithms based on
single-step models of primitive actions are impractical, be-
cause long solution paths require many iterations of VI.
Hence the need for temporal abstraction.2 We solve this

1Our framework works for the discount factor � < 1 as well
as for those cases with � = 1 where standard value termination
converges (for example if there is a ‘sink’ state).

2Note that there is some evidence (Ribas-Fernandes et al. 2011)
that subgoal-based hierarchical RL is similar to the processes actu-
ally taking place in the human brain.

problem via the use of options (Sutton, Precup, and Singh
1999; Precup, Sutton, and Singh 1998) — we construct op-
tion models which can be used interchangeably with the
models we have for primitive actions.

To our knowledge, this is the first paper where an al-
gorithm using options and value iteration efficiently solves
medium-sized MDPs (our 8-puzzle domain has 181441
states). Unlike prior work (Silver and Ciosek 2012), we
demonstrate a modest improvement in runtime performance
as well as a significant reduction in the number of iterations.
Also, we have the first convergent VI-style algorithm where
options (temporal abstraction) are combined with a frame-
work for state abstraction, yielding far better results than the
use of either idea alone. Furthermore, our algorithm is based
on a principled extension of the Bellman equation. We em-
phasise that our algorithm converges to the optimal value
function — although we find approximate solutions to the
subgoals, these solutions are then used as inputs to solve the
original MDP exactly, regardless of the choice of subgoals.

Background and Prior Work
State Aggregation
Consider3 (Bertsekas 2012) an MDP with |A| actions; for
an action a the probability transition matrix is Pa, defined
by Pa(i, j) = �Pr(it+1 = j|it = i, at = a) and the
vector of expected rewards for each state is Ra, where the
element corresponding to state i is defined by Ra(i) =

E [rt|it = i, at = a]. There are m aggregate states. We intro-
duce the aggregation (Bertsekas 2012) matrix � and the dis-
aggregation (Bertsekas 2012) matrix D of dimensions n⇥m
and m⇥n respectively. Under the state aggregation approx-
imation (Bertsekas 2012), solving the original MDP may be
replaced by solving a much smaller aggregate MDP, by com-
puting ˜Pa = DPa� and ˜Ra = DRa. The solution can then
be computed by any known algorithm. VI is convergent be-
cause the matrices ˜Pa and ˜Ra define a valid MDP. This gives
us a value function in terms of the aggregate states.

Options and Matrix Models
An option (Sutton 1995; Sutton, Precup, and Singh 1999;
Precup, Sutton, and Singh 1998) is a tuple hµ,�i, consist-

3We refer the reader to the more elaborate introductory section
in the appendix

1

ing of a policy µ, mapping states to actions, as well as a
binary termination condition �, where �(i) tells us whether
the option terminates in state i. We will now discuss models
(Sutton, Precup, and Singh 1999; Sutton 1995) for options
and for primitive actions. A model consists of a transition
matrix P and a vector of expected rewards R. For a primi-
tive action a, we defined Pa and Ra in section . For options
they have an analogous meaning. R(i) is the expected total
discounted reward given the option was executed from state
i, R(i) = E[

P⌧
t=0 �

trt|i0 = i] where ⌧ is the (random)
duration of the option and i0 is the starting state. The ele-
ment P (i, i0), is the probability of the option terminating in
state i0, given we started in state i, considering the discount-
ing: P (i, i0) =

P1
⌧=1 �

⌧Pr(⌧, i⌧ = i0|i0 = i). Denote by
i0 the starting state of trajectory and by i⌧ the final state. It
is convenient (Sutton 1995) to arrange P and R in a block

matrix of size (n + 1) ⇥ (n + 1), in this way:

1 0

R P

�
.

Now model composition corresponds to matrix multiplica-
tion, i.e. if M (1) and M (2) are block matrices, M (1)M (2) is
also a block matrix corresponding to first executing the op-
tion defined in M (1) and then the one defined in M (2). In
this paper, we assume that the action set A = {A1, . . . , Al}
is already given in this matrix format. We introduce a simi-
lar format for value functions. The value function V is rep-
resented as a vector of length n+ 1 with 1 in the first index
and the values for each state in the subsequent indices. MV
is a new value function, corresponding to first executing the
option defined in M and then evaluating the states with V .
Element i+1 of the vector V to state i, as does row i+1 of
the action model. We use MATLAB notation, i.e. V (i + 1)

is element i+ 1 of vector V and M(i+ 1, :) is row i+ 1 of
the matrix M .

Other Ways of Using Hierarchies to Improve
Learning
We give a brief survey of known approaches to hierarchical
learning. We stress that our approach is novel for two rea-
sons: we compose macro-operators at run-time and we have
no fixed hierarchy. This has not been done to date, except
in the work on options and VI (Silver and Ciosek 2012),
which introduced generalizations of the Bellman equation,
versions of which we use. But it did not include state abstrac-
tion, slowing the resulting algorithm — it only produced a
decrease in the iteration count required to solve the MDP,
while we provide better solution time. Other approaches
include using macro-operators to gain speed in planning
(Korf 1985), but for deterministic systems only. Prior work
on HEXQ (Hengst 2002) is largely orthogonal to ours – it
focuses on hierarchy discovery, while we describe an al-
gorithm given the subgoals. The work on portable options
(Konidaris and Barto 2007) only discusses a flat, fixed (un-
like this work) options hierarchy. MAXQ (Dietterich 1998)
also involves a pre-defined controller hierarchy (the MAXQ
graph)4. Combining the use of temporal and state abstrac-
tion was tried before, but differently from this work. The

4One can learn a MAXQ hierarchy (Wang, Li, and Zhou 2012),
but only in a way when it is first learned and then applied.

abstraction-via-statistical-testing approach (Jong and Stone
2005) only works for transfer learning — options are only
constructed after the original MDP has been solved. The U-
tree approach (Jonsson and Barto 2001) does not guarantee
convergence to V ? for all MDPs. The modified LISP ap-
proach (Andre and Russell 2002) uses a fixed option hierar-
chy and the policy obtained is only optimal given the hierar-
chy, i.e. it may not be the optimal policy of the MDP without
the hierarchy constraint.

Table-lookup Value Iteration
We begin by describing the table-lookup algorithm for com-
puting the value function of the MDP. It is similar to the one
described in previous work (Silver and Ciosek 2012), but
not the same — here, termination is implemented in a dif-
ferent, more intuitive, way. We start with plain VI and then
proceed to more complicated variants. In MATLAB notation
(see section), VI can be described as follows for state i.

V(k+1)(i+ 1) max

a
Aa(i+ 1, :)V(k) (1)

Here, a selects an action (control). We rewrite this update to
construct a model corresponding to the optimal value func-
tion — this is not useful on its own, but will come in handy
later. The following is executed for each state i.

a argmax

a
Aa(i+ 1, :)M(k)[1, 0, . . . , 0]

>
;

M(k+1)(i+ 1, :) Aa(i+ 1, :)M(k) (2)

We note that the multiplication M(k)[1, 0, . . . , 0]
> simply

extracts the total reward in the model M(k) (the current value
function) — hence eq. is equivalent to plain VI. However,
it serves an an important stepping stone to introducing sub-
goals, which is what we do next. Assume that we are, for the
moment, not interested in maximizing the overall reward. In-
stead, we want to reach some other arbitrary configuration of
states defined by the subgoal vector G of length n + 1. The
entry i + 1 of G defines the value we associate with reach-
ing state i. We will show later how picking such subgoals
judiciously can improve the speed of the overall algorithm.
Our new update, for subgoal G is the following, which we
execute for each state i.

a argmax

a
Aa(i+ 1, :)M(k)G;

M(k+1)(i+ 1, :) Aa(i+ 1, :)M(k) (3)
This iteration converges (Silver and Ciosek 2012) to a model
M1, which corresponds to the policy for reaching the sub-
goal G. However, this policy executes continually, it does
not stop when a state with a high subgoal value of G(i+ 1)

is reached. We will now fix that by introducing the possi-
bility of termination — in each state, we first determine if
the subgoal can be considered to be reached and only then
do we make the next step. This is a two-stage process, given
below. First, we compute the termination condition �(i) for
each state i, according to the following equation.
�(k)(i) argmax

�(k)(i)2[0,1]
�(k)(i)G(i+ 1) +

(1� �(k)(i))M(k)(i+ 1, :)G (4)

2

We note that this optimization is of a linear function, there-
fore we will either have �(k)(i) = 1 (terminate in state i), or
�(k)(i) = 0 (do not terminate in state i). Conceptually, this
update can be thought of as converting the non-binary sub-
goal specification G into a binary termination condition �.
Once we have computed �(k), we define the diagonal matrix
�(k) = diag(1,�(k)(1),�(k)(2), . . . ,�(k)(n)) as well as the
new matrix B as follows.5

B(�(k),M(k)) = �(k)I + (I � �(k))M(k)

Here, I is the identity matrix. B summarizes our termination
condition — it behaves like model M(k) for the states where
we do not terminate and like the identity model for the states
where we do. Once we have this, we can define the actual
update, which is executed for each state i.

a argmax

a
Aa(i+ 1, :)B(�(k),M(k))G;

M(k+1)(i+ 1, :) Aa(i+ 1, :)B(�(k),M(k)) (5)

By iterating this many times, we can obtain M1, which will
tend to go from every state to states with high values of the
subgoal G. The elements of G are specified in the same
units as the rewards — i.e. this algorithm will go, for the
non-terminating states, to a state with a particular value of
the subgoal if the value of being in the subgoal exceeds the
opportunity loss of reward on the way. For the terminating
states, the model will still make one step according to the
induced policy (see discussion in section).

There is one more way we can speed up the algorithm
— through the introduction of initiation sets. In this case,
instead of selecting an action from the set of all possible
actions, we only select an action from the set of allowed
actions for a given state (the initiation set). More formally,
let Sa(i) be a boolean vector which has ‘true’ in the entries
where action a is allowed is state i and ‘false’ otherwise.
Equation then becomes the following.

a argmax

a:Sa(i)
Aa(i+ 1, :)B(�(k),M(k))G;

M(k+1)(i+ 1, :) Aa(i+ 1, :)B(�(k),M(k)) (6)

The benefit of using initiation sets is that by not considering
irrelevant actions, the whole algorithm becomes much faster.
We defer the definition of initiation sets used to section .

Finally, we solve for several subgoals simultaneously. We
use the current state of every model in every iteration, to
compute the next iteration for both itself and other mod-
els. Denote our subgoals by G(1), G(2), . . . , G(g) and the k-
th iteration of the models trying to solve these subgoals by
M

(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k) . Define the set ⌦(k) as the set of all

models (macro-actions) allowed at iteration k, i.e. ⌦(k) =

{A1, A2, . . . , Al,M
(1)
(k) ,M

(2)
(k) , . . . ,M

(g)
(k)}. This gives rise to

the update given below, for each subgoal q and for each state

5The reader will notice that our matrix B can be under-
stood to be the expected model given the termination condition:
B(�(k),Mk) = E�(k)

[I,M(k)]. However, in our algorithm it is
enough to consider it just a matrix.

i. We now compute the termination condition.

�
(q)
(k)(i) argmax

�(k)(i)2[0,1]
�(k)(i)G

(q)
(i+ 1) +

(1� �(k)(i))M
(q)
(k)(i+ 1, :)G(q)

(7)

The we compute one step of the algorithm according to the
equation.

O argmax

O2⌦(k)

O(i+ 1, :)B(�
(q)
(k),M

(q)
(k))G

(q)
;

M
(q)
(k+1)(i+ 1, :) O(i+ 1, :)B(�

(q)
(k),M

(q)
(k)) (8)

Solving several subgoals simultaneously can improve the al-
gorithm (Silver and Ciosek 2012). The immediate availabil-
ity of the partial solution to every subgoal leads to faster
convergence. In other words, this feature can be used to con-
struct the macro-operator hierarchy at run time of the algo-
rithm.6 This is in contrast to many other approaches, where
the hierarchy is fixed before the algorithm is run.

Combining State Aggregation and Options
We saw in section that given the aggregation7 matrix � and
the disaggregation matrix D, we can convert an action with
the transition matrix P and expected reward vector R to an
aggregate MDP by using ˜P = DP� and ˜R = DR. In our
matrix model notation, this becomes as follows.

˜A =

1 0

0 D

�
A

1 0

0 �

�
, where A =

1 0

R P

�

(9)

This can be viewed as compressing the dynamics, given
our aggregation architecture � of size n ⇥ m, where m is
the number of the aggregate states. We stress that the com-
pressed dynamics define a valid MDP — therefore the algo-
rithms described in the previous section are convergent.

The main idea of our algorithm is the following: define
a subgoal, solve it (i.e. obtain a model for reaching it) and
then add it to the action set of the original problem and use
it as a macro-action, gaining speed. We repeat this for many
subgoals. Solving subgoals is fast because we do it in the
small, aggregate state space. To be precise, we pick a sub-
goal ˜G (see section for examples) and an approximation
architecture �. We then compress our actions with eq. 9 and
use compressed actions in VI according to eqs. 4 and . This
gives us a model ˜M1 solving the subgoal in the aggregate
state space. We want to use this model to help solve the orig-
inal MDP.

However, we cannot do this directly since our model ˜M1
is defined with respect to the aggregate state space and has

6By this we mean that the option models are built up in run
time, possibly using other models. The subgoals are pre-defined
and constant.

7In the work done in this paper, we used hard aggregation so
that each row of � contains a one in one place and zeros elsewhere,
and the matrix D is a renormalized version of �>, so that the rows
sum to one.

3

size (m+1)⇥ (m+1) — we need to find a way to convert
it to a model defined over the original state space, of size
(n+ 1) ⇥ (n+ 1). The new model also has to be valid, i.e.
correspond to a sequence of actions.8

The idea is to make the following transformation: from
the aggregate model, we compute the option in the aggre-
gate state space, we then up-scale the option to the original
state space, construct a one-step model and then construct
the long-term model from it. Concretely, we first compute
the option corresponding to the model ˜M1. The option con-
sists of the policy µ and the termination condition �. We
obtain the termination condition by using eq. 4 for the ag-
gregate states. The policy µ is obtained greedily for each
aggregate state x.

µ(x) = argmax

c

˜Ac(x+ 1, :)B(�, ˜M1)

˜G (10)

Now, we can finally build a one-step model in terms of the
original state-space. We do this according to the following
equation, which we use for each state i.

M 0
(i+ 1, :) = (1� �(�(i))) Aµ(�(i))(i+ 1, :) +

�(�(i)) I(i+ 1, :) (11)

In the above, we denote by I the identity matrix of size
(n+1)⇥(n+1) and by �(i) the aggregate state correspond-
ing9 to the original state i. In more understandable terms, M 0

has rows selected by the policy µ wherever the option does
not terminate and rows from the identity matrix wherever it
does. Now, we do not just need a model that takes us one
step towards the subgoal — we want one that takes us all the
way. Therefore, we continually evaluate the option by expo-
nentiating the model matrix, producing M 01. Now, this new
model still has rows from the identity matrix where the op-
tion terminates — therefore it does not correspond to a valid
combination of primitive actions. To solve this problem, we
compute M 00, according to the following equation (for each
state i).

M 00
(i+ 1, :) = (1� �(�(s))) M 01

(i+ 1, :) +

�(�(s)) Aµ(�(s))(i+ 1, :) (12)

M 00 contains rows from M 01 where the option does not ter-
minate and rows dictated by the option policy where it does.
This guarantees it is a valid combination of primitive actions
and can be added to the action set and treated like any other
action. We now run value iteration (equation 1) using the
extended action set — the original actions and the subgoal
models (M 00

)

(q) corresponding to each subgoal q. This is s
faster than using the original actions alone, even after fac-
toring in the time used to compute the subgoal models (see
section).

8That is why it is not possible to just upscale the model by writ-

ing:

1 0
0 �

�
M̃1

1 0
0 D

�
.

9Note that the equation could be easily generalized to the case
where the aggregation is soft — i.e. there are several aggregate
states corresponding to i, simply by summing all the possibilities
as weighted by the aggregation probabilities.

Observation 1. Value Iteration with the action set A [
{(M 00

)

(1), . . . , (M 00
)

(g)} converges to the optimal value
function of the MDP.

Proof outline. The addition of subgoal macro-operators to
the action set does not change the fixpoint of value iteration
because the macro-operators are, by construction, compo-
sitions of the original actions. See supplement to existing
work (Silver and Ciosek 2012) for a formal proof of a more
general proposition.

This observation tells us that our algorithm will always
exactly solve the MDP, computing V ?. The worst thing that
can happen is that the subgoal macro-operators will be use-
less i.e. the resulting value iteration will take as many itera-
tions as without them.

Why not Use Linear Features
Looking at eqn. 9 one may ask if this is the best way
to compress actions. It may seem that using linear fea-
tures (De Farias and Van Roy 2000; Lizotte 2011; Van Roy
2005) may be better because they are more expressive and
easier to come up with than � and D. Specifically, con-
sider the following way of compressing actions, as an al-
ternative to eq. 9. Define the approximation architecture
˘V = w for modelling value functions, the sequence of
which will converge to the optimal value function. We be-
gin by defining the projection operator (Parr et al. 2008;
Sorg and Singh 2010) that compresses a table-lookup model
M into a model that works with linear features,

˘M ,⌅
(M) =

1 0

0 ⇧

-

�
M

1 0

0

�
(13)

In the above, ⇧-
= (

>
⌅)

�1

>
⌅, and ⌅ is a diagonal

matrix with entries corresponding to a distribution over the
original states of the MDP. We introduce names for the mi-

nor matrices of the models: ˘M ,⌅
(M) =

1 0

q F

�
and

M =

1 0

R P

�
. We note that eq. 13 ensures that the

model ˘M ,⌅
(M) is the best approximation of the model

M in the sense that it solves the optimization problems:10

F = argminF k F �P k⌅ and q = argminq k q�Rk⌅.
In the above, the optimization is applied to the transition
and reward components separately; also, each column of F
is treated independently of the others. The semantics of the
above is as such: each column k of F should be such as to
make the entry s of the corresponding k-th column of F
as close as possible to the feature number k of the next state,
where the index of the current state is s. Similarly, q is
picked so as to approximate the expected next reward for
each state. In other words, F is a linear dynamical system
that models the one-step dynamics on features of the Markov
chain corresponding to an action. One might hope that this
F and q linear dynamical system could be used in much the

10The norms are defined in the following way: kV k⌅ =p
V >⌅V and kAk⌅ =

p
trace (A>⌅A) .

4

Figure 1: Run-times of our algorithm, plain VI and model
VI. All algorithms compute V ?.

options +
Domain plain VI model VI aggr.
Taxi (determ.) 6.43 s. 11.64 s. 4.57 s.
Taxi (stoch.) 8.30 s. 47.80 s. 4.83 s.
Hanoi (determ.) 23.45 s. 51.65 s. 11.57 s.
Hanoi (stoch.) 27.31 s. 357.52 s. 21.71 s.
8-puzzle (determ.) 100.19 s. 221.20 s. 85.94 s.

same way as the MDP compressed with state aggregation to
˜P and ˜R.

But there is a problem with the compressed models de-
fined according to eq. 13. Consider an action with the transi-
tion matrix and approximation architecture given below.

P = �

2

664

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

3

775; =

2

664

1 1
1 0
0 1
0 0

3

775; F = �
1

3

h
2 3
2 0

i

It can be easily shown that this, paired with a uniform dis-
tribution ⌅, produces the matrix F given above. But this ma-
trix has spectrum outside of the unit circle for some � < 1 —
hence if this action is composed with itself time and again,
the VI algorithm will diverge. The argument given above
shows that we cannot use eq. 13 for arbitrary features and
distributions ⌅. On the other hand, our framework based on
eq. 9 does not suffer from the described divergent behaviour.
Also, it does not depend on any distribution over the states,
meaning there is one less parameter to the algorithm.

Experiments
We applied our approach to three domains: Taxi, Hanoi and
8-puzzle. In each case we compared several variants of VI,
including our approach combining state aggregation and op-
tions. For vanilla VI we considered algorithms based on both
eq. 1 (the familiar algorithm, denoted plain VI) and eq.
(model VI, where complete models are constructed). Figure
1 summarises the solution times for each domain; more de-
tails are given in the following domain-specific subsections.
We, however, stress beforehand that our algorithm produced
a speeed-up for each of the domains we tried.

The TAXI Problem
TAXI (Dietterich 1998) is a prototypical example of a prob-
lem which combines spatial navigation with additional vari-
ables. Denote the number of states as n (here n = 7000+1)
and the number of aggregate states as m (here m = 25+1).
The one state is the sink state.

In our first experiment, we ran four algorithms comput-
ing the same optimal value function., one for each combina-
tion of using (or not) state aggregation and options. Consider
using neither aggregation nor options — this is model VI,
one iteration of which has a complexity of O(n2|A| + n3),
in practice it is O(n|A|) because of sparsity. It takes 22 it-
erations to complete. Now consider the version with sub-
goals but no aggregation. Here, we have 5 subgoals: one
for getting to each pick-up location or the fuel pump. An

iteration now has complexity O(g((|A| + g)n2
+ n3

)). Be-
cause of sparsity, this becomes O(g((|A| + g)n + n)) =
O(g((|A| + g)n). The algorithm needs 8 iterations less to
converge, because subgoals allow it to make jumps. How-
ever, due to the increased cost of each iteration, the time
required to converge increased. Now look at the version
with aggregation (see section) and no options. There are
26 aggregate states. We map each original state to one of
25 states by taking the taxi position and ignoring other vari-
ables. Sink state (state 7001) gets mapped to the aggregate
sink state (state 26). We proceed in two stages. First, all ac-
tions are compressed (eq. 9). Then, the problem is solved
using model VI in this smaller state-space. This takes 330
iterations, but is fast because m is small — the complexity
is O(m2| ˜A|+m3). We then obtain the value function of the
aggregate system and upscale it, then we use the new value
function to obtain a greedy model (i.e. each row comes from
the action that maximizes that row times ¯V), which we use
as initialization in our iteration, which takes 3 iterations less
than our original algorithm. Now consider the final version,
where the benefits of aggregation and options are combined.
Again, the algorithm consists of two stages. First, we use
compressed actions to compute models for getting to the five
subgoals. This requires 17 iterations; the complexity of each
is O(g((| ˜A|+ g)m2

+m3
)), where g = 5. This is fast since

m is small. We now upscale these models. We see that if
we add the five macro-actions, we do not need the original
four actions for moving, as all sensible movement is to one
of the five locations. The algorithm now takes only 7 iter-
ations to converge.11 The run-time12 is 6.55 s, i.e. a speed-
up of 1.8 times over model VI. Results for all four versions
are summarized in figure 2. We also constructed a stochastic
version of the problem, with a probability of 0.05 of staying
in the original state when moving. Results are qualitatively
similar and are in figure 2. The speed-up from combining
options with aggregation was greater at 7.1 times. We stress
the main result.13 In the deterministic case, we replace many
O(n) iterations with many O(m3) iterations followed by few
O(n) iterations. For stochastic problems, we replace many
O(n3) iterations with many O(m3) iterations followed by
few O(n3) iterations.

In our second experiment, as a digression from the main
thrust of the paper, we tried a different approach: we can use
the aggregation framework to compute an approximate value
function, gaining speed. Our actions are compressed as de-
fined by eq. 9, and we simply apply eq. 1. This process gives
us a value function ˜V ? defined over the aggregate state space
(in the first case we need to extract it from the reward part
of the model). We upscale this value function to the original

11We need an iteration to: (1) go to the fuel pump, (2) fill in fuel,
(3) go to passenger, (4) pick up passenger, (5) go to destination, (6)
drop off passenger. The 7th iteration comes from the termination
condition.

12This is slightly different from the result in fig. 1 since after
the models have been upscaled, we can proceed either with plain
VI (as is fig. 1) or with model VI, which we do here to make the
comparison fair.

13If the number of subgoals and actions is constant.

5

Figure 2: Run-times of the algorithm in the deterministic and
stochastic versions of TAXI .

deter. no aggreg. aggregation
no options 22 iter. 330 + 19 iter.

11.64 s. 11.73 s.
options 14 iter. 17 + 7 iter.

78.20 s. 6.55 s.

stoch. no aggreg. aggregation
no options 30 iter. 331 + 28 iter.

47.80 s. 26.04 s.
options 18 iter. 20 + 7 iter.

256.04 s. 6.78 s.

states using the equation ¯V =

1 0

0 �

�
˜V ?. Of course, the

obtained value function ¯V is only approximately optimal in
the original problem. Consider a�with 501 aggregate states
— the aggregation happens by eliminating the fuel variable
and leaving others intact. The algorithm used is given by eq.
, applied to compressed actions. It takes 2.94 s / 28 iterations
to converge (determ.) and 3.08 s / 30 iterations (stoch.). The
learned value function corresponds to a policy which ignores
fuel, never visits the pump, but otherwise, if there is enough
fuel, transports the passenger as intended. We have shown
an important principle — if we have an aspect of a system
that we feel our solution can ignore, we can eliminate it and
still get an approximate solution. The benefit is in the speed-
up. — in our case, with respect to solving the original MDP
using plain VI, it is 2.2 (determ.) / 2.7 (stoch.).

The Towers of Hanoi
For r disks, our state representation in the Towers of Hanoi
is an r-tuple, where each element corresponds to a disk and
takes values from {1, 2, 3}, denoting the peg.14 There are
three actions, two for moving the smallest disk and one for
moving a disk between the remaining two pegs. It is known
that VI for this problem takes 2

r iterations to converge. To
speed up the iteration, we introduced the following state ab-
straction. There are r � 2 sub-problems of size 2,...,r � 1.
First, we solve the problem with 2 disks, i.e. our abstrac-
tion only considers the position of the two smallest disks,
ignoring the rest. There are three subgoals, one for placing
the two disks on each of the pegs. Then, once we obtained
three models for the subgoals, we use them to solve the sub-
problem of size 3, ignoring all disks except the three small-
est ones. Again, there are three subgoals. We proceed until
we solve the problem with r disks. For each subgoal, we
need 4 iterations (Three moves and the 4th is required for
the convergence criterion). The total number of iterations is
4 ⇥ 3 ⇥ r, i.e. it is linear in the state space. For 8 disks this
means the following speed-up: 11.57 s (with subgoals) vs.
51.65 s (model VI) vs. 23.45 s (plain VI). We note however,
that the time complexity of the algorithm with subgoals is
still exponential in r, because whereas the number of itera-

14Note that the state representation itself disallows placing a
larger disk on top of a smaller one.

Figure 3: The subgoal used and run-times for the 8-puzzle.
All algorithms compute V ?.

iter. time elapsed
model VI 32 221.20 s.

plain VI 33 100.19 s.
subgoal 25 109.51 s.

subgoal w. init. set 25 85.94 s.

A A A
B B B
C C

tions is only linear, in each iteration we need to iterate the
whole state space, which is exponential.15 For a stochastic
version, the run-times were 357.52 s for model VI, 27.31
s for plain VI and 21.71 s for computing the same optimal
value function with options with aggregation.

The 8-puzzle
The 8-puzzle (Story 1879; ?) is well-known in the planning
community. Our subgoal is shown in figure 3.16 ‘A’,‘B’, and
‘C’ denote groups of tiles. The subgoal consists in arranging
the tiles so that each group is in correct place (but tiles within
each group are allowed to occupy an incorrect place). The
matrix � is such that the original configuration of the tiles
is mapped onto one where each tile is only marked with the
group it belongs to. Using the subgoal alone did not result in
a speed-up, so we used the notion of initiation sets (Sutton,
Precup, and Singh 1999). We trained the subgoal for 9 iter-
ations (the number 9 was obtained by trial and error), so the
obtained model is only able to reach the subgoal for some
starting states (the ones at most 9 steps away from the sub-
goal in terms of primitive actions). We upscaled the model,
but this time the new model had an initiation set containing
only those states from which the subgoal is reachable. The
iteration we then used is plain value iteration, extended to
initiation sets. The intuition behind initiation sets is that it
only makes sense to use a subgoal if we are already in a part
of the state space close to it. Thus, we obtained a total run-
time of 85.94 seconds, which amounts to a speed-up of 1.17
over plain value iteration. The results are in figure 3.

Conclusions
We introduced new Bellman optimality equations that fa-
cilitate VI with options. These equations can be combined
with state aggregation in a sound way, and therefore can be
applied to the solution of medium-sized MDPs.17 This is
the first algorithm combining options and state abstraction
which is guaranteed to converge. This is notable because
other proposed approaches, notably based on linear features,

15However, this problem is not particular to our approach — ev-
ery algorithm that purports to compute the value function for each
state will have computational complexity at least as high as the
number of such states.

16Other subgoals are shown in the documentation accompany-
ing the source code. Please also consult the source code, where all
subgoals are implemented.

17We provide software used in our experiments under GPL in
the hope that others may use it for their problems.

6

are known to diverge even for small problems. Finally, we
have shown experimentally that the benefits of options and
state aggregation are only realized when they are applied to-
gether.

References
Andre, D., and Russell, S. J. 2002. State abstraction for pro-
grammable reinforcement learning agents. In AAAI Confer-
ence on Artificial Intelligence / Annual Conference on Inno-
vative Applications of Artificial Intelligence, 119–125.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ,
USA: Princeton University Press.
Bertsekas, D. P. 2012. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific Belmont.
De Farias, D. P., and Van Roy, B. 2000. On the existence
of fixed points for approximate value iteration and temporal-
difference learning. Journal of Optimization Theory and Ap-
plications 105:589–608.
Dietterich, T. G. 1998. The MAXQ Method for Hierarchi-
cal Reinforcement Learning. In International Conference on
Machine Learning, 118–126.
Hengst, B. 2002. Discovering hierarchy in reinforcement
learning with HEXQ . In International Conference on Ma-
chine Learning, volume 2, 243–250.
Jong, N. K., and Stone, P. 2005. State Abstraction Discov-
ery from Irrelevant State Variables. . In International Joint
Conferences on Artificial Intelligence, 752–757.
Jonsson, A., and Barto, A. G. 2001. Automated state ab-
straction for options using the U-tree algorithm. Advances in
neural information processing systems 1054–1060.
Konidaris, G., and Barto, A. G. 2007. Building Portable Op-
tions: Skill Transfer in Reinforcement Learning. . In Interna-
tional Joint Conferences on Artificial Intelligence, volume 7,
895–900.
Korf, R. 1985. Learning to Solve Problems by Searching for
Macro-Operators. Research Notes in Artificial Intelligence,
Vol 5. Pitman.
Lizotte, D. J. 2011. Convergent fitted value iteration with lin-
ear function approximation. In Shawe-Taylor, J.; Zemel, R.;
Bartlett, P.; Pereira, F.; and Weinberger, K., eds., Advances in
Neural Information Processing Systems 24. 2537–2545.
Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and
Littman, M. L. 2008. An analysis of linear models, linear
value-function approximation, and feature selection for rein-
forcement learning. In Proceedings of the 25th international
conference on Machine learning, ICML ’08, 752–759. New
York, NY, USA: ACM.
Precup, D.; Sutton, R. S.; and Singh, S. 1998. Theoretical re-
sults on reinforcement learning with temporally abstract op-
tions. In Machine Learning: ECML-98, volume 1398 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg.
382–393.
Ribas-Fernandes, J. J.; Solway, A.; Diuk, C.; McGuire, J. T.;
Barto, A. G.; Niv, Y.; and Botvinick, M. M. 2011. A neu-
ral signature of hierarchical reinforcement learning. Neuron
71(2):370–379.
Silver, D., and Ciosek, K. 2012. Compositional planning us-
ing optimal option models. In 29th International Conference
on Machine Learning.
Sorg, J., and Singh, S. 2010. Linear options. In Pro-
ceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: Volume 1 - Volume 1, AA-
MAS ’10, 31–38. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.
Story, W. E. 1879. Notes on the “15” puzzle. American
Journal of Mathematics 2(4):397–404.
Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and Semi-MDPs: A Framework for Temporal Abstraction
in Reinforcement Learning. Artificial Intelligence 112:181–
211.
Sutton, R. S. 1995. TD Models: Modeling the World at
a Mixture of Time Scales . In Proceedings of the Twel-
veth International Conference on Machine Learning, 531–
539. Morgan Kaufmann.
Van Roy, B. 2005. TD(0) Leads to Better Policies than
Approximate Value Iteration . In Weiss, Y.; Schölkopf, B.;
and Platt, J., eds., Advances in Neural Information Processing
Systems 18. 1377–1384.
Wang, H.; Li, W.; and Zhou, X. 2012. Automatic discovery
and transfer of maxq hierarchies in a complex system. In
ICTAI, 1157–1162.

Appendix
In this appendix, we discuss background information con-
cerning state aggregation for MDPs, adapted to the notation
of our paper. This is necessary because Bertsekas’ original
notation is difficult to apply to our work. We stress that the
ideas presented in this appendix are entirely due to Bertsekas
(Bertsekas 2012).

We are concerned with an MDP which has |A| actions,
and for an action a the probability transition matrix is Pa,
defined by Pa(i, j) = �Pr(it+1 = j|it = i, at = a) and
the vector of expected rewards for each state is Ra, de-
fined by Ra(i) = E [rt|it = i, at = a]. There are m aggre-
gate states. In addition, we introduce two matrices18 defin-
ing the approximation architecture: the aggregation matrix
� and the disaggregation matrix D. The matrix � has di-
mensions n ⇥ m and the matrix D has dimension m ⇥ n.
It is useful to think about these matrices as conversion op-
erators: the matrix � converts a value function defined over
the aggregate states into one defined over the original states;
conversely, the matrix D converts a value function defined
over the original states into one defined over the aggregate
states. There are no conditions on these matrices other than
the rows have to sum to one, as they are probability distri-
butions modeling, for �, the degree by which each state is
represented by various aggregate states and, for D, the de-
gree to which a certain aggregate state corresponds to vari-
ous original states. Having defined the matrices, we can de-
fine our first approximation step. The Bellman optimality
operator in the original MDP is called T , and is defined by
(TV)(i) = maxa(PaV)(i) +Ra(i) and the optimum value
function V ? satisfies the fixpoint equation V ?

= TV ?. Now,
the approximation consists in solving the following equation
instead (we will see later that this is not solved exactly and
further approximation is necessary).

˜V ?
= DT (� ˜V ?

) (14)

18We employ the names introduced by Bertsekas (Bertsekas
2012).

7

In the above, we use ˜· to denote the aggregate problem.
We note that this equation operates on a shorter value func-
tion — ˜V ? has entries corresponding to aggregate states.
The idea is, of course that the number of aggregate states is
tractable, so we can compute ˜V ?. However, we need to re-
formulate the equation since in its present form it contains
the operator T , which still operates on the original states. To
do so, we expand the definition of T , to obtain the following
state-wise equation, for the aggregate state x.

˜V ?
(x) =

X

i

dxi

⇣
max

a
Pa(i, :)� ˜V ?

+Ra(i)
⌘

This equation leads to the following iterative algorithm,
which computes ˜V ? as k !1.

˜V(k+1)(x) =
X

i

dxi

⇣
max

a
Pa(i, :)� ˜V(k) +Ra(i)

⌘

In the above, Pa(i, :) denotes the row number i of the prob-
ability transition matrix corresponding to action a (in terms
of the original states). Value functions are assumed to be col-
umn vectors. In order to be able to operate exclusively with
objects that have dimensionality corresponding to the num-
ber of aggregate states, we introduce another approximation
and namely we do the following.

˜V(k+1)(x) = max

a

X

i

dxi

⇣
Pa(i, :)� ˜V(k) +Ra(i)

⌘

We note that this approximation is exact if states mapping
to a single aggregate state all have the same optimal action.
Now, we can reformulate the equation in the following way.

˜V(k+1)(x) = max

a
D(x, :)Pa�

˜V(k) +D(x, :)Ra

= max

a
(

˜Pa
˜V(k))(x) + ˜Ra(x) (15)

In the above, D(x, :) denotes the row of D corresponding to
aggregate state x and Pa is the probability transition matrix
corresponding to action a in the original MDP. Now, we note
that solving the above equation is equivalent to solving a
modified MDP with actions corresponding to the original ac-
tions, probability transition matrices given by ˜Pa = DPa�

and expected reward vectors given by ˜Ra = DRa. The
states of the modified MDP are the aggregate states.

Therefore, under our two explained approximations, solv-
ing the original MDP may be replaced by solving a much
smaller aggregate MDP, by computing ˜Pa and ˜Ra. The so-
lution can then be computed by any known algorithm, al-
though in this paper we focus only on VI. We emphasize that
the VI is convergent because the matrices ˜Pa and ˜Ra define
a valid MDP. We stress again that this involves two approx-
imations: first, we are solving a modified Bellman equation
14 that utilizes state aggregation and second, we move the
max operator outside of the sum in equation 15.

8

Path Finding under Uncertainty through Probabilistic Inference

David Tolpin, Brooks Paige, Jan Willem van de Meent, Frank Wood

University of Oxford
{dtolpin,brooks,jwvdm,fwood}@robots.ox.ac.uk

Abstract

We introduce a new approach to solving path-finding prob-
lems under uncertainty by representing them as probabilis-
tic models and applying domain-independent inference al-
gorithms to the models. This approach separates problem
representation from the inference algorithm and provides a
framework for efficient learning of path-finding policies. We
evaluate the new approach on the Canadian Traveller Prob-
lem, which we formulate as a probabilistic model, and show
how probabilistic inference allows high performance stochas-
tic policies to be obtained for this problem.

Introduction

In planning under uncertainty the objective is to find the op-
timal policy — a policy that maximizes the expected re-
ward. In most interesting cases the optimal policy can-
not be found exactly, and approximation schemes are used
to discover the policy, either represented explicitly or as
an implicit property of the planning algorithm, through
reinforcement learning. Approximation schemes include
value/policy iteration, Q-learning, policy gradient meth-
ods (Sutton and Barto 1998), as well as methods based
on heuristic search (Bonet and Geffner 2001) and Monte
Carlo sampling such as MCTS (Kocsis and Szepesvári 2006;
Browne et al. 2012).

Domain-independent planning algorithms (Bonet and
Geffner 2001; Haslum, Bonet, and Geffner 2005; Helmert
2006) can be applied to different domains with little modi-
fication, however for many applications domain-dependant
techniques are still critical in order to obtain a high perfor-
mance policy, and put the burden of implementation on the
domain expert formulating the planning problem.

The framework of probabilistic inference (Pearl 1988)
proposes solutions to a wide range of Artificial Intelligence
problems by representing them as probabilistic models. Ef-
ficient domain-independent algorithms are available for sev-
eral classes of representations, in particular for graphical
models (Lauritzen 1996), where inference can be performed
either exactly and approximately. However, graphical mod-
els typically require that the full graph of the model to
be represented explicitly, and are not powerful enough for

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems where the state space is exponential in the prob-
lem size, such as the generative models common in plan-
ning (Szörényi, Kedenburg, and Munos 2014).

Probabilistic programs (Goodman et al. 2008; Mans-
inghka, Selsam, and Perov 2014; Wood, van de Meent,
and Mansinghka 2014) can represent arbitrary probabilistic
models, efficient approximate inference algorithms have re-
cently emerged (Wingate, Stuhlmüller, and Goodman 2011;
Wood, van de Meent, and Mansinghka 2014; Paige et al.
2014). In addition to expressive power, probabilistic pro-
gramming separates modeling and inference, allowing the
problem to be specified in a simple language which does not
assume any particular inference technique.

In this paper, we show a connection between probabilis-
tic inference and path finding, which allows many path-
finding problems to be cast as inference problems using
probabilistic programs. Based on this connection, we pro-
vide a generic scheme for expressing a path-finding prob-
lem as a probabilistic program that infers the path-finding
policy. We illustrate this generic scheme by its application
to the Canadian Traveller Problem (Papadimitriou and Yan-
nakakis 1991; Bar-Noy and Schieber 1991; Nikolova and
Karger 2008). In the empirical evaluation, we show that
high performance stochastic policies can be obtained using
domain-independent inference techniques. In the conclud-
ing section, we discuss other possible areas of application of
probabilistic programming in planning, as well as possible
difficulties.

Preliminaries

Probabilistic Programming

Probabilistic programs are regular programs extended by
two constructs (Gordon et al. 2014):
• The ability to draw random values from probability distri-

butions.
• The ability to condition values computed in the programs

on probability distributions.
A probabilistic program implicitly defines a probability dis-
tribution over the program’s output. Formally, we define a
probabilistic program as a stateful deterministic computa-
tion P with the following properties:

• Initially, P expects no arguments.

9

• On every call, P returns either a distribution F , a distri-
bution and a value (G, y), a value z, or ?.

• Upon returning F , P expects a value x drawn from F as
the argument to continue.

• Upon returning (G, y) or z, P is invoked again without
arguments.

• Upon returning ?, P terminates.

A program is run by calling P repeatedly until termina-
tion. Every run of the program implicitly produces a se-
quence of pairs (Fi, xi) of distributions and drawn from
them values of latent random variables. We call this se-
quence a trace and denote it by x

x

x. A trace induces a se-
quence of pairs (Gj , yj) of distributions and values of ob-
served random variables. We call this sequence an image
and denote it by y

y

y. We call a sequence of values zk an out-
put of the program and denote it by z

z

z. Program output is
deterministic given the trace.

By definition, the probability of a trace is proportional to
the product of the probability of all random choices xxx and
the likelihood of all observations yyy:

pP(x|yx|y
x|y) /

|xxx|Y

i=1

pFi(xi)

|yyy|Y

j=1

pGj (yj) (1)

The objective of inference in probabilistic program P is to
discover the distribution of zzz.

Several implementations of general probabilistic pro-
gramming languages are available (Goodman et al. 2008;
Mansinghka, Selsam, and Perov 2014; Wood, van de Meent,
and Mansinghka 2014). Inference is usually performed us-
ing Monte Carlo sampling algorithms for probabilistic pro-
grams (Wingate, Stuhlmüller, and Goodman 2011; Wood,
van de Meent, and Mansinghka 2014; Paige et al. 2014).
While some algorithms are better suited for certain infer-
ence types, most can be used with any valid probabilistic
program.

Canadian Traveller Problem

Canadian Traveller Problem (CTP) was introduced in (Pa-
padimitriou and Yannakakis 1991) as a problem of finding
the shortest travel distance in a graph where some edges may
be blocked. There are several variants of CTP (Bar-Noy and
Schieber 1991; Nikolova and Karger 2008; Bnaya, Felner,
and Shimony 2009); here we consider the stochastic version.
In the stochastic CTP we are given
• Undirected weighted graph G = (V,E).
• The initial and the final location nodes s and t.
• Edge weights w : E ! R.
• Traversability probabilities: po : E ! (0, 1].
The actual state of each edge is fixed for every problem in-
stance but becomes known only upon reaching one of the
edge vertices. The goal is to find a policy that minimizes the
expected travel distance from s to t. The travel distance is
the sum of weights of all traversed edges during the travel,
where traversing in each direction is counted separately.

(F1, x1)

(G1, y1)

(F2, x2)

�
l

o

g

pF1 (
x1)

� lo
g

p

G1
(

y

1)
�
l

o

g

p

F
2 (
x

2
)

Figure 1: A path in the graph of a probabilistic program

CTP problem is PSPACE-hard (Fried et al. 2013), how-
ever a number of heuristic algorithms were proposed, in-
cluding high-quality policies based on Monte Carlo meth-
ods (Eyerich, Keller, and Helmert 2010). Policies are empir-
ically compared by averaging the distance travel over mul-
tiple instantiations of the actual states of the edges (open
or blocked) according to the traversal probabilities. Since
the travel distance is defined only for instance where a path
between s and t exists, instantiations in which t cannot be
reached from s are ignored.

A trivial travel policy is realized by traversing the problem
graph in a depth-first order until the final location is reached.
The expected travel distance of the policy is bounded from
above by the sum of weights of all edges in the graph by
noticing that every edge is traversed at most once in each
direction, and at most half of the edges are traversed on av-
erage.

Duality between Path Finding and

Probabilistic Inference

We shall now show a connection between path finding and
probabilistic inference. This connection was noticed ear-
lier (Shimony and Charniak 1991) and was used to search
for the maximum a-posteriori probability (MAP) assignment
in graphical models using a best-first search algorithm. Here
we further extend the analogy and establish a bilateral cor-
respondence between inferring the distribution defined by
a probabilistic model and learning the optimal policy in a
path-finding problem.

We proceed in two steps. First, following earlier work,
we establish a connection between a MAP assignment and
the shortest path. Then, based on this analogy, we explain
how discovering the optimal policy in a generative model
can be translated into inferring the output distribution of a
probabilistic program and vice versa.

Inference on probabilistic programs computes a represen-
tation of distribution (1). An equivalent form of (1) is ob-
tained by taking logarithm of both sides:

log pP(xxx) =

|xxx|X

i=1

log pFi(xi) +

|yyy|X

j=1

log pGj (yj) + C (2)

where C is a constant that does not depend on x

x

x. To find
the MAP assignment xxxMAP , one must maximize log p(x

x

x).
One can view x

x

x as a specification of a path in a graph where
each node corresponds to either (Fi, xi) or (Gj , yj), and the
costs of edges entering (Fi, xi) or (Gj , yj) is � log pFi(xi)

o � log pHj (yj), correspondingly (Figure 1). Then, finding

10

the MAP assignment is tantamount to finding the tracexxx that
produces the shortest path. (Shimony and Charniak 1991;
Sun, Druzdzel, and Yuan 2007) use this correspondence in
their MAP algorithms for graphical models.

We shall turn now to a more general case when the MAP
assignment of a part of the trace x

x

x

✓ is inferred. In a prob-
abilistic program, this is expressed by selecting x

x

x

✓ as the
program output, zzz x

x

x

✓. The distribution of zzz is marginal-
ized over the rest of the trace xxx¬✓

= x

x

x \ xxx✓, and finding the
MAP assignment for xxx✓ corresponds to finding the mode of
the output distribution:

x

x

x

✓
MAP = argmax pP(zzz)

/ argmax

Z

xxx¬✓

2

64
|x✓x✓x✓|Y

i=1

pF ✓
i
x

x

x

✓
i

|yyy|Y

j=1

pGj (yj)

3

75 pP(xxx
¬✓
)dx

x

x

¬✓
,

(3)

where the integrand in equation (3) depends on x

x

x

¬✓. Just
like in the case of MAP assignment to all random vari-
ables, equation (3) corresponds to a path finding problem:
x

x

x

✓ can be viewed as a policy, and determining x

x

x

✓
MAP cor-

responds to learning a policy which minimizes the expected
path length

Exxx¬✓

2

64�
|xxx✓|X

i=1

log pF ✓
i
(x

✓
i)�

|yyy|X

j=1

log pGj (yj)

3

75 (4)

While in principle policy learning algorithms could be used
for MAP estimation, a greater potential lies, in our opinion,
in casting planning problems as probabilistic programs and
learning the optimal policies by estimating the modes of the
programs’ distributions. We suggest to adopt the Bayesian
approach, according to which prior beliefs are imposed on
policy parameters, and the optimal policy is learned through
inferring posterior beliefs by conditioning the beliefs on ob-
servations. We explore this approach in the next section.

Stochastic Policy Learning through

Probabilistic Inference

We have shown that in order to infer the optimum policy,
a probabilistic program for policy learning should run the
agent on the distribution of problem instance and policies,
and compute probability of each execution such that the log-
arithm of the probability is equal to the negated travel cost.
The generic program shown in Algorithm 1 achieves this by

Algorithm 1 Policy learning through probabilistic infer-
ence.
Require: agent, Instances, Policies

1: instance DRAW(Instances)
2: policy DRAW(Policies)
3: cost RUN(agent, instance, policy)
4: OBSERVE(1, Bernoulli(e�cost

))
5: PRINT(policy)

randomly drawing problem instances and policies from their

distributions supplied as program arguments (lines 1 and 2)
and updating the log probability of the sample (line 4) by
calling OBSERVE. OBSERVE adds the log probability of its
first argument, the value, with respect to its second argu-
ment, the distribution. Consequently, the log probability of
the output policy

logpP(policy) =

log pPolicies(policy) + log e

�cost(policy)
+ C

=�cost(policy) + log pPolicies(policy) + C (5)

When policies are drawn from their distribution uniformly,
log pPolicies(policy) is the same for any policy, and does not
affect the distribution of policies specified by the probabilis-
tic program:

log pP(policy) = �cost(policy) + C

0 (6)

In practice, this is achieved by using a uniform distribu-
tion on policy parameters, such as the uniform continuous
or discrete distribution for scalars, the categorical distribu-
tion with equal choice probabilities for discrete choices, or
the symmetric Dirichlet distribution with parameter 1 for
real vectors. Alternatively, if different policies have different
probabilities with respect to the distribution Policies from
which the policies are drawn, their log probabilities (taken
with the opposite sign) have the interpretation of the costs
of the corresponding policies and provide a means for spec-
ifying preferences of the model designer with respect to dif-
ferent policies. In either case, the optimal policy is approxi-
mated by estimating the mode of the program output.

When policies are drawn uniformly, the scale of the travel
cost does not affect the choice of optimal policy. However,
as follows from equation (6), the shape of the probability
density (or probability mass for discrete distributions) de-
pends on the cost scale — the higher the cost, the sharper the
shape. Thus, by altering the cost scale we can affect the per-
formance of the inference algorithm: on one hand, the mode
estimate of a sharper function can be computed with higher
accuracy, on the other hand, when pP(policy) changes too
fast with its argument in the high probability region, approx-
imate inference algorithms converge slowly. The right scale
depends on the probabilistic program, and finding the most
appropriate scale is a parameter optimization problem.

Note that the probabilistic program for policy learning is
independent of the inference algorithm which would be used
to obtain the results. The programmer does not need to make
any assumptions about the way the mode of the output distri-
bution is estimated, and even whether approximate or exact
inference (if appropriate) is performed.

Case Study: Canadian Traveller Problem

We evaluated the proposed policy learning scheme on the
Canadian Traveller Problem (Algorithm 2). The algorithm
draws CTP problem instances from a given graph with
traversability of each edge randomly selected according to
the probabilities p, and learns a stochastic policy based on
depth-first search — the policy is specified by a vector of
probabilities of selecting each of the adjacent edges in every

11

node. When the policy is realized, the selection probabilities
are conditioned such that only open unexplored edges are se-
lected, in accordance with the base depth-first search traver-
sal. Dirichlet(1

1

1

deg(v)
) is a uniform distribution, hence the

Algorithm 2 Learning stochastic policy for the Canadian
traveller problem
Require: CTP(G, s, t, w, p)

1: instance DRAW(CTP(G,w, p))
2: for v 2 V do

3: policy(v) DRAW(Dirichlet(111deg(v)))
4: end for

5: repeat

6: (reached, distance) STDFS(instance, policy)
7: until reached

8: OBSERVE(1, Bernoulli
�
e

�distance
�
)

9: PRINT(policy)

log probability of a trace is equal to the path cost taken with
the opposite sign. STDFS (line 6) is a flavour of depth-first
search which enumerates node children in a random order
according to the policy for the current node. An optimal
policy is expected to assign a higher probability to edges
leading to shorter paths having lower probability to become
blocked.

To assess the quality of learned policies we generated sev-
eral CTP problem specifications by triangulating a randomly
drawn set of either 50 or 20 nodes from Poisson-distributed
points on a unit square. The average DFS travel cost in
fully traversable instances was 7.9 for 50 node instances,
and 5.7 for 20 node instances. The same traversal proba-
bility in the range [0.35, 1.0] is assigned to every edge of
the graph (the bond percolation threshold for Delaunay tri-
angulation is⇡0.33 (Becker and Ziff 2009), hence instances
with p < 0.3 are disconnected with high probability). A 50
node instance is shown in Figure 2. The s and t nodes are
marked by the red circles, and edge weights are equal to the
Euclidean distances between the nodes.

Lightweight Metropolis-Hastings (Wingate, Stuhlmüller,
and Goodman 2011) was used for inference. We learned a
policy for each problem specification by running the infer-
ence algorithm for 10,000 iterations. Then, we evaluated
policies returned at different numbers of iterations on 1,000
randomly drawn instances to estimate the average travel
cost. The average computation time of learning and eval-
uation per instance was ⇡80s on Intel Core i5 CPU.

The results are shown in Figure 3, where the solid lines
correspond to the average travel cost over the set of prob-
lems of the corresponding size, and dashed lines to 95%
confidence intervals. For both 50 and 20 node problems, the
policy mostly converged after ⇡1000 iterations, achieving
50–80% improvement compared to the uniform stochastic
policy. While a further refinement of the policy is possible,
a different type of policy should be learned to obtain sig-
nificantly better results, for example, a deterministic policy
which takes online information into account. This, however,
would complicate the probabilistic program which we chose
to keep as simple as possible — the actual implementation

Figure 2: An instance of CTP with 50 nodes. Initial (1) and
final (25) locations are marked by red circles; edge weights
are Euclidean distances between edge vertices.

20 50 100 200 500 1000 2000 5000 10000

2
3

4
5

6

samples

av
er

ag
e

tra
ve

l c
os

t

50 nodes, p=0.85
50 nodes, p=0.5
20 nodes, p=0.85
20 nodes, p=0.5

Figure 3: Average travel cost vs. number of samples for
problems with 50 and 20 nodes and traversability proba-
bilities 0.85 and 0.5. The policies mostly converged after
⇡1000 samples.

of the program is just above 100 lines of code, including the
implementation of DFS.

A learned policy for a 50 node problem is visualized in
Figure 4. Edge widths correspond to the confidence about
the policy for the edge. Edges with higher precision (lower
variance) of the policy are broader. Edge color is blue when
a traversal through the edge is much more probable in one
than in the other direction, and green when traversal in either
direction has the same probability, with shades of green and
blue reflecting how directed the edge is. As we would expect
in a converged policy, edges in the center of the graph are
thicker, that is, more explored, than at the periphery, where
changes in the policy are less likely to affect the average

12

Figure 4: Visualization of policy learned for blocking proba-
bility 0.5 on instance in Figure 2. Broader edges correspond
to more explored components of the policy.

travel cost. Bright blue (uni-directional) edges are mostly
radial relative to the direction from the initial position (node
1) to the goal (node 25), and many well-explored tangential
edges are green (bi-directional). This corresponds to an in-
tuition about the policy — traversals through radial edges
are mostly in the direction of the goal, and through the tan-
gential edges in either direction to find an alternative route
when the edge leading to the goal is blocked.

Discussion

We introduced a new approach to policy learning based on
casting a policy learning task as a probabilistic program. The
main contributions of the paper are:
• Discovery of bilateral correspondence between proba-

bilistic inference and policy learning for path finding.
• A new approach to policy learning based on the estab-

lished correspondence.
• A realization of the approach for the Canadian trav-

eller problem, where improved policies were consistently
learned by probabilistic program inference.
The proposed approach can be extended to many different

planning problems, both in well-known path-finding appli-
cations and in other domains involving policy learning un-
der uncertainty; Partially observable Markov Decision Pro-
cesses and generalized Multi-armed bandit settings are just
two examples. At the same time, the exposure of probabilis-
tic programming tools to different domains and new appli-
cations is challenging. These tools were initially developed
with certain applications in mind. Our limited experience
shows that the probabilistic programming paradigm scales
well to new applications and larger problems. However, as
more problems are approached using the probabilistic pro-
gramming methodology, apparent weaknesses and limita-

tions are uncovered, and a more powerful and flexible in-
ference algorithm will have to be developed.

The policy learning algorithm presented here follows the
offline learning scheme — the policy is selected before act-
ing, and then used unmodified until the goal is reached. Al-
though this is, indeed, the easiest way to cast policy learning
as probabilistic inference, online learning can also be imple-
mented so that when additional computation during acting
is justified by the time cost, the policy is updated based on
the information gathered online, as in some of state-of-the-
art algorithms for CTP (Eyerich, Keller, and Helmert 2010).
Moreover, the time cost of updating the policy incremen-
tally based on the new evidence is lower than of inferring a
new policy due to the any-time nature of Bayesian updating.
Online inference is a subject of ongoing research in proba-
bilistic programming.

By performing inference on a probabilistic program, we
obtain a representation of distribution of policies rather than
a single policy. We then use this distribution to select a pol-
icy. When the inference is performed approximately, which
is a common case, the expected quality of the selected pol-
icy improves with more computation. In the most basic set-
ting, a fixed threshold on the number of iterations of the
inference algorithm can be imposed. In general, however,
determining when to stop the inference and commit to a
particular policy, whether in offline or online setting, is a
rational metareasoning decision (Russell and Wefald 1991;
Hay et al. 2012). Making this decision in an informed and
systematic way is another topic for research.

13

References

Bar-Noy, A., and Schieber, B. 1991. The Canadian trav-
eller problem. In Proc. of the Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’91, 261–270.
Becker, A. M., and Ziff, R. M. 2009. Percolation thresholds
on two-dimensional voronoi networks and delaunay triangu-
lations. Phys. Rev. E 80:041101.
Bnaya, Z.; Felner, A.; and Shimony, S. E. 2009. Canadian
traveler problem with remote sensing. In Boutilier, C., ed.,
IJCAI, 437–442.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2):5–33.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samoth-
rakis, S.; and Colton, S. 2012. A survey of Monte Carlo
tree search methods. Computational Intelligence and AI in
Games, IEEE Transactions on 4(1):1–43.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the Canadian traveler’s problem. In Proc. of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
Atlanta, Georgia, USA, July 11-15, 2010.
Fried, D.; Shimony, S. E.; Benbassat, A.; and Wenner, C.
2013. Complexity of Canadian traveler problem variants.
Theor. Comput. Sci. 487:1–16.
Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.; Bonawitz,
K.; and Tenenbaum, J. B. 2008. Church: a language for
generative models. In Proc. of Uncertainty in Artificial In-
telligence.
Gordon, A. D.; Henzinger, T. A.; Nori, A. V.; and Rajamani,
S. K. 2014. Probabilistic programming. In International
Conference on Software Engineering (ICSE, FOSE track).
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In Proceed-
ings, The Twentieth National Conference on Artificial Intel-
ligence and the Seventeenth Innovative Applications of Ar-
tificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, 1163–1168.
Hay, N.; Russell, S. J.; Tolpin, D.; and Shimony, S. E. 2012.
Selecting computations: Theory and applications. In UAI,
346–355.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Int. Res. 26(1):191–246.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte
Carlo planning. In Proc. of the 17th European Conference
on Machine Learning, ECML’06, 282–293.
Lauritzen, S. 1996. Graphical Models. Clarendon Press.
Mansinghka, V. K.; Selsam, D.; and Perov, Y. N. 2014.
Venture: a higher-order probabilistic programming platform
with programmable inference. CoRR abs/1404.0099.
Nikolova, E., and Karger, D. R. 2008. Route planning under
uncertainty: The Canadian traveller problem. In Proc. of the
23rd National Conference on Artificial Intelligence - Volume
2, AAAI’08, 969–974. AAAI Press.

Paige, B.; Wood, F.; Doucet, A.; and Teh, Y. 2014. Asyn-
chronous anytime sequential Monte Carlo. In Advances in
Neural Information Processing Systems.
Papadimitriou, C. H., and Yannakakis, M. 1991. Shortest
paths without a map. Theor. Comput. Sci. 84(1):127–150.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Russell, S., and Wefald, E. 1991. Do the right thing: studies
in limited rationality. Cambridge, MA, USA: MIT Press.
Shimony, S. E., and Charniak, E. 1991. A new algorithm for
finding MAP assignments to belief networks. In Proc. of the
Sixth Annual Conference on Uncertainty in Artificial Intel-
ligence, UAI ’90, 185–196. New York, NY, USA: Elsevier
Science Inc.
Sun, X.; Druzdzel, M. J.; and Yuan, C. 2007. Dynamic
weighting A* search-based MAP algorithm for bayesian
networks. In Proc. of the 20th International Joint Confer-
ence on Artifical Intelligence, IJCAI’07, 2385–2390. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Szörényi, B.; Kedenburg, G.; and Munos, R. 2014. Opti-
mistic planning in markov decision processes using a gen-
erative model. In Ghahramani, Z.; Welling, M.; Cortes, C.;
Lawrence, N.; and Weinberger, K., eds., Advances in Neural
Information Processing Systems 27. Curran Associates, Inc.
1035–1043.
Wingate, D.; Stuhlmüller, A.; and Goodman, N. D. 2011.
Lightweight implementations of probabilistic programming
languages via transformational compilation. In Proc. of the
14th Artificial Intelligence and Statistics.
Wood, F.; van de Meent, J. W.; and Mansinghka, V. 2014.
A new approach to probabilistic programming inference. In
Artificial Intelligence and Statistics.

14

Automatic Generation of HTNs From PDDL

Anders Jonsson
Universitat Pompeu Fabra
08018 Barcelona, Spain
anders.jonsson@upf.edu

Damir Lotinac
Universitat Pompeu Fabra
08018 Barcelona, Spain
damir.lotinac@upf.edu

Abstract

Hierarchical Task Networks (HTNs) are a common model for
encoding knowledge about planning domains in the form of
task decompositions. Since an HTN is parameterized it can
be used to solve any instance of a planning domain. Thus
HTN planning is an interesting candidate for generalizing
knowledge about a planning instance to other instances of the
same domain, just like in the learning track of the Interna-
tional Planning Competition.
We present a novel algorithm that automatically generates an
HTN from the PDDL description of a planning domain and a
single representative instance. The HTNs that our algorithm
constructs contain two types of composite tasks that interact
to achieve the goal of a planning instance. One type of task
achieves fluents by traversing the edges of invariant graphs
in which only one fluent can be true at a time. The other
type of task traverses a single edge of an invariant graph by
applying the associated action, which first involves ensuring
that the preconditions of the action hold. The resulting HTNs
can be applied to any instance of a planning domain, and are
provably sound, such that the solution to an HTN instance
can always be translated back to a solution to the original
planning instance. In several domains we are able to solve
most or all planning instances using HTNs created from a
single example instance.

Introduction
Hierarchical Task Networks, or HTNs, are a popular tool
for encoding hierarchical structure into planning domains.
In the past, HTNs have been successfully used in a variety
of planning applications: military planning (Munoz-Avila
et al. 1999), Web service composition (Wu et al. 2003),
unmanned air vehicle control (Miller et al. 2004), strate-
gic game playing (van der Sterren 2009; Menif, Guettier,
and Cazenave 2013), personalized patient care (Sánchez-
Garzón, Fernández-Olivares, and Castillo 2013) and busi-
ness process management (González-Ferrer, Fernández-
Olivares, and Castillo 2013), to name a few.
Although HTNs are known to be at least as expressive as

STRIPS planning (Erol, Hendler, and Nau 1994), this is not
the main reason for their popularity. Quite the opposite, in
fact. Arguably, the most important knowledge encoded in an

Copyright c⃝ 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

HTN is not the possible ways to expand its tasks, but rather
the ways in which the tasks cannot be expanded. By exclud-
ing portions of the state space, search proceeds more quickly
towards the goal, or in HTN terminology, towards generat-
ing a valid expansion of the initial task list. In the extreme
case, each task has a single possible expansion, and planning
is reduced to a simple traversal of the task hierarchy.
Another powerful characteristic of HTNs is that tasks

are parameterized, making it possible to encode knowledge
about an entire planning domain, not just individual plan-
ning instances. Although identifying effective decomposi-
tion strategies for all instances of a domain can be arduous,
once an HTN has been constructed for a planning domain,
it can be used to solve an entire family of instances more
efficiently.
Thus, the main reason that HTNs are frequently used in

real-world applications is that they offer a potent mecha-
nism for reducing the search effort required to solve a fam-
ily of large-scale planning instances. This is also the rea-
son that HTNs were so successful in the hand tailored track
of early planning competitions (IPC): the participants were
given access to the planning domains beforehand and de-
signed HTNs that effectively narrowed the search to a tiny
portion of the state space. It is not a coincidence that the
HTN planner that achieved the largest coverage at IPC-2002
and is widely regarded as the state-of-the-art in HTN plan-
ning, SHOP2 (Nau et al. 2003), performs blind search in the
task space to compute a valid expansion. Most of the work
required to reduce the search effort is performed while de-
signing the HTN, and once this work is done, there is little
need to optimize search.
In summary, HTNs offer a mechanism for human experts

to encode prior knowledge about a planning domain. Typ-
ically, this requires many hours of fine-tuning, debugging
and testing. This is fine for planning applications in which
the initial effort is compensated by the subsequent reduction
in search time during successive applications of the planner.
However, a large body of research in the planning commu-
nity is dedicated to finding domain-independent approaches
to planning. Traditionally, HTNs have not found a place in
this research because of their domain-dependent emphasis.
In this paper we ask the following question: is it possi-

ble to devise domain-independent strategies for automati-
cally deriving HTNs that offer some of the same benefits

15

as those designed by human experts? Although there have
been earlier attempts to learn HTNs automatically (Hogg,
Munoz-Avila, and Kuter 2008; Zhuo et al. 2009), these ap-
proaches rely on partial information about the task decom-
position, which already encodes much of the domain knowl-
edge required to define HTNs. In contrast, our approach is
to generate HTNs directly from the PDDL encoding of a
planning domain and a single representative instance.
Our approach is to generate HTNs that encode invariant

graphs of planning domains. An invariant graph is similar
to a lifted domain transition graph, but can be subdivided on
types. To traverse an invariant graph we define two types of
tasks: one that reaches a certain node of an invariant graph,
achieving the associated fluent, and one that traverses a sin-
gle edge of an invariant graph, applying the associated ac-
tion. These two types of tasks are interleaved, in that the ex-
pansion of one type of task involves tasks of the other type.
In experiments, we tested our approach on planning

benchmarks from the IPC. In four domains, our algorithm
is able to construct HTNs that make it possible to efficiently
solve any instance of the domain using blind search. The
approach is partially successful in other domains, but the
branching factor becomes a problem for large instances.
Still, the results indicate that automatically generating HTNs
is possible.
The rest of the paper is organized as follows. We first pro-

vide a background on planning and HTNs. We then intro-
duce the concept of invariant graphs, and describe our base
algorithm for constructing HTNs. Next, we describe several
optimizations on top of the base algorithm, and present ex-
perimental results. We conclude with a discussion of related
work and possible directions for future work.

Planning
In this section we introduce notation related to planning and
HTNs. Since our work depends heavily on lifted represen-
tations, we use PDDL notation to define actions and tasks.

Planning Domains
We consider the fragment of PDDLmodelling typed STRIPS
planning domains with positive preconditions and goals.
A planning domain is a tuple d = ⟨T ,≺, P, A⟩, where
T = {τ1, . . . , τn} is a set of types, ≺ an inheritance rela-
tion on types, P a set of predicates and A a set of actions.
Each predicate p ∈ P and action a ∈ A has a parameter list
(ϕ(p) and ϕ(a), respectively) whose elements are types. For
example, the types and predicates in LOGISTICS are
(:types truck airplane − vehicle

package vehicle − physobj
airport location − place
city place physobj − object)

(:predicates (incity ?loc − place ?city − city)
(at ?obj − physobj ?loc − place)
(in ?pkg − package ?veh − vehicle)).

Each action a ∈ A has a precondition pre(a), an add effect
add(a), and a delete effect del(a). Each precondition and
effect consists of a predicate p and a mapping from ϕ(p) to
ϕ(a). An example action from LOGISTICS is given by

(:action loadtruck
:parameters (?p − pkg ?t − truck ?l − place)
:precondition (and (at ?t ?l) (at ?p ?l))
:effect (and (not (at ?p ?l)) (in ?p ?t))).
Note that the parameters of all preconditions and effects re-
fer to the parameters of the action loadtruck.
Given a domain d, a STRIPS planning instance is a tu-

ple p = ⟨Ω, init, goal⟩, where Ω = Ω1 ∪ . . . ∪ Ωn is
a set of objects of each type, init is an initial state, and
goal is a goal state. Object ω ∈ Ω has type τ ∈ T iff
ω ∈ Ωi for some 1 ≤ i ≤ n and τi equals τ or inherits
from τ . Instance p implicitly defines a set of fluents F =
{(p v1 · · · v|ϕ(p)|) | p ∈ P, vi ∈ Ωϕ(p)i

, 1 ≤ i ≤ |ϕ(p)|}
consisting of assignments of objects in Ω to the parameters
of predicates such that each object has the appropriate type.
The initial state init ⊆ F and goal state goal ⊆ F are both
subsets of fluents.
The planning instance also defines a set of operators O =

{(a v1 · · · v|ϕ(a)|) | a ∈ A, vi ∈ Ωϕ(a)i
, 1 ≤ i ≤ |ϕ(a)|}

consisting of assignments of objects in Ω to the parameters
of actions. Each operator o ∈ O, o = (a v1 · · · v|ϕ(a)|),
has a precondtion pre(o) ⊆ F , and add effect add(o) ⊆ F
and a delete effect del(o) ⊆ F , each a subset of fluents in-
stantiated from the preconditions and effects of a by copying
objects among v1, . . . , v|ϕ(a)| onto the parameters of predi-
cates. For example, the operator (loadtruck p1 t1 l2) in
LOGISTICS has preconditions (at t1 l2) and (at p1 l2).
A state s ⊆ F is a subset of fluents that are true, while

fluents in F \ s are false. An operator o ∈ O is applicable in
s if and only if pre(o) ⊆ s, and the result of applying o in
s is a new state s ! o = (s \ del(o)) ∪ add(o). A plan for
p is a sequence of operators π = ⟨o1, . . . , on⟩ such that oi,
1 ≤ i ≤ n, is applicable in I!o1! · · ·!oi−1, and π solves
p if it reaches the goal state, i.e. if G ⊆ I ! o1 ! · · ·! on.
We use this LOGISTICS instance as a running example:

(define (problem logistics-example)
(:domain logistics)
(:objects a1 − airplane ap1 ap2 − airport

c1 c2 − city l1 l2 − location
t1 t2 − truck p1 − package)

(:init (at p1 l1) (at a1 ap2)
(at t1 l1) (incity l1 c1) (incity ap1 c1)
(at t2 l2) (incity l2 c2) (incity ap2 c2))

(:goal (and (at p1 ap1)))).

Hierarchical Task Networks
We use a notation inspired by Geier and Bercher (2011) to
describe HTNs. Their notation, however, is grounded, so we
introduce a lifted representation similar to STRIPS domains.
In this context, an HTN domain is a tuple h = ⟨P,A,C,M⟩,
where P is a set of predicates,A is a set of actions (i.e. prim-
itive tasks), C is a set of compound tasks and M is a set
of decomposition methods. Each task c ∈ C and method
m ∈M has an associated parameter list ϕ(c) and ϕ(m), re-
spectively. Unlike STRIPS domains, HTN domains are un-
typed and we allow negative preconditions.
A task network is a tuple tn = ⟨T,≺⟩, where T ⊆ A ∪C

16

is a set of tasks and ≺ is a partial order on T . A method
m = ⟨c, tnm, pre(m)⟩ consists of a compound task c ∈ C, a
task network tnm = ⟨Tm,≺m⟩ and a precondition pre(m).
Each precondition p ∈ P and task t ∈ Tm has an associated
mapping from ϕ(p) or ϕ(t) to ϕ(m).
Given h = ⟨P,A,C,M⟩, an HTN instance is a tuple s =

⟨Ω, I, tnI⟩, where Ω is a set of objects, I is an initial state
and tnI is a task network. Just like for STRIPS, Ω induces
sets F and O of fluents and operators, as well as sets C and
M of grounded compound tasks and methods. A grounded
task network has tasks in O ∪ C, and is primitive if all tasks
are in O. The initial state I ⊆ F is a subset of fluents,
and the initial grounded task network tnI = ⟨{tI}, ∅⟩ has a
single grounded compound task tI ∈ C.
We use (s, tn)→D (s′, tn′) to denote that a pair of a state

and a task network decomposes into another pair, where
tn = ⟨T,≺⟩ and tn′ = ⟨T ′,≺′⟩. A valid decomposition
consists in choosing a task t ∈ T such that t′ ̸≺ t for each
t′ ∈ T , and applying one of the following rules:
1. If t is primitive, the decomposition is applicable if

pre(t) ⊆ s, and the resulting pair is given by s′ = s ! t,
T ′ = T \ {t} and ≺′= {(t1, t2) ∈≺| t1, t2 ∈ T ′}.

2. If t is compound, the decomposition method m =
⟨t, tnm, pre(m)⟩ is applicable if pre(m) ⊆ s, and the
resulting pair is given by s′ = s, T ′ = T \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈≺| t1, t2 ∈ T ′}

∪ {(t1, t2) ∈ T ′ × Tm | (t1, t) ∈≺}

∪ {(t2, t1) ∈ Tm × T ′ | (t, t1) ∈≺}.

The first rule removes a primitive task t from tn and ap-
plies the effects of t to the current state, while the second
rule uses a method m to replace a compound task t with
tnm while leaving the state unchanged. If there is a finite
sequence of decompositions from (s1, tn1) to (sn, tnn) we
write (s1, tn1)→∗D (sn, tnn). An HTN instance is solvable
if and only if (sI , tnI) →∗D (sn, ⟨∅, ∅⟩) for some state sn,
i.e. the resulting task network is empty.

Invariants
In STRIPS planning, a mutex invariant is a subset of fluents
such that at most one is true at any moment. An algorithm
for detecting mutex invariants is implemented as part of the
Fast Downward planning system (Helmert 2009). This al-
gorithm is of particular interest to us since it is instance-
independent: the algorithm only relies on the domain de-
scription to detect invariants. Unlike Fast Downward, which
later grounds the resulting invariants in a specific planning
instance, our algorithm operates directly on the invariants
extracted from the domain description.
In LOGISTICS, Fast Downward finds a single invariant

{(in ?o ?v), (at ?o ?p)}, i.e. a set of predicates with as-
sociated variable lists. Variables that appear in the lists of
all predicates are bound, i.e. take on the same value for all
predicates. The remaining variables are free and can be re-
placed with any object of the given type. The meaning of
the invariant is that across all LOGISTICS instances, a given
object ?o is either in a vehicle or at a location.

(in ?p ?t) (at ?p ?l) (in ?p ?a)

(unloadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(loadtruck ?p ?t ?l)

(at ?t ?l)
(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 1: Invariant graphs in LOGISTICS.

An invariant can be grounded on a concrete assignment of
objects from a planning instance. In our running example,
assigning the package p1 to the bound variable ?o in the
invariant above and considering all assignments of objects
to the free variables results in the grounded invariant
{(at p1 ap1),(at p1 ap2),(at p1 l1),(at p1 l2),
(in p1 t1),(in p1 t2),(in p1 a1)}.
If a predicate p ∈ P is not part of any invariant but there are
actions that add and/or delete p, we create a new invariant
{(p ?o1 · · · ?ok),(¬p ?o1 · · · ?ok))}, i.e. all variables are
bound and an associated fluent can either be true or false.
Given an invariant, our algorithm generates one or sev-

eral invariant graphs. In LOGISTICS, all actions affect the
lone invariant above. However, when loading or unloading
a package, the bound object ?o is a package, when driving a
truck ?o is a truck, and when flying an airplane ?o is an air-
plane. Moreover, we can either load a package into a truck
or an airplane. We differentiate between types such that each
invariant may correspond to multiple invariant graphs.
To generate the invariant graphs we go through each ac-

tion, find each transition of each invariant that it induces (by
pairing add and delete effects and testing whether the bound
objects are identical), and map the types of the predicates to
the invariant. We then either create a new invariant graph
for the bound types or add nodes to an existing graph corre-
sponding to the mapped predicate parameters.
Figure 1 shows the invariant graphs in LOGISTICS. In the

top graph (G1), the bound object is a package ?p, in the mid-
dle graph (G2) a truck ?t, and in the bottom graph (G3) an
airplane ?a. Note that the predicate in is not actually part of
the two bottom graphs, since trucks and planes cannot be in-
side other vehicles. Nevertheless, the invariant still applies:
a truck or plane can only be at a single place at once.
Each edge of an invariant graph corresponds to an action

that deletes one predicate of the invariant and adds another.
To do so, the parameters of the action have to include the
parameters of both predicates, including the bound objects.
In the figure, the invariant notation is extended to actions on
edges such that each parameter is either bound or free.
Even if the actions of the domain preserve the invariant

property, the initial state of a planning instance may contain
more than one fluent of an associated grounded invariant, in

17

which case the grounded invariant is not a mutex invariant.
To verify that an invariant corresponds to actual grounded
invariants, our algorithm needs access to the initial state of
an example planning instance p of the domain. If this verifi-
cation fails, the invariant is not considered by the algorithm.

Generating HTNs
In this section we describe our algorithm for automatically
generating HTNs. The idea is to construct a hierarchy of
tasks that traverse the invariant graphs to achieve certain flu-
ents. In doing so there are two types of interleaved tasks: one
that achieves a fluent in a given invariant (which involves ap-
plying a series of actions to traverse the edges of the graph),
and one that applies the action on a given edge (which in-
volves achieving the preconditions of the action).
Formally, our algorithm takes as input a STRIPS planning

domain d = ⟨T ,≺, P, A⟩ and outputs an HTN domain h =
⟨P ′, A′, C, M⟩. The algorithm first constructs the invariant
graphs G1, . . . , Gk described above. Below we describe the
components of the generated HTN domain h.

Predicates
The set P ′ ⊇ P extends P with three predicates for each
p ∈ P : persist-p, visited-p, and achieving-p. Re-
spectively we use these predicates to temporarily cause p to
persist, to flag p as an already visited node during search,
and to prevent infinite recursion in case p or another predi-
cate from the same invariant is currently being achieved.

Tasks
Each action a ∈ A from the input STRIPS planning domain
d becomes a primitive task of h. We add extra preconditions
to ensure that a is not grounded on the wrong type, and that
a does not delete a predicate that is supposed to persist. We
also add primitive tasks for visiting, locking and unlocking
each predicate p ∈ P . Visiting marks a predicate as visited,
locking causes a predicate to temporarily persist, while un-
locking frees a predicate so that it can be deleted again. For
each invariant graph Gi, we add two primitive tasks set-
flags-i that marks each predicate p ∈ P in Gi as being
achieved, and clear-flags-i that clears all flags for Gi.
We also include three types of compound tasks:

• For each predicate p ∈ P that appears as positive in any
invariant graph, a task achieve-p.

• For each invariant graph Gi and each p ∈ P that is posi-
tive in Gi, a task achieve-p-i.

• For each invariant graph Gi, each predicate p ∈ P in Gi,
and each outgoing edge of p (corresponding to an action
a ∈ A), a task do-p-a-i.

The first task is a wrapper task that achieves a predicate p in
any invariant, while the other two are the interleaved tasks
for achieving p by traversing the edges of an invariant graph
Gi. Since the preconditions and goals of the planning do-
main are positive, we never have to achieve a negated fluent.

Methods
We describe the methods associated with each of the three
types of compound tasks in turn. We outline methods in
pseudo-SHOP2 syntax, with parameters omitted, in the fol-
lowing format:
(:method (⟨name⟩)
(⟨precondition⟩)
(⟨tasklist⟩)).
The first type of task, achieve-p, has one associated method
for each invariant graph Gi in which p appears. An outline
of this method is given by
(:method (achieve-p)
((¬achieving-p))
((set-flags-i) (achieve-p-i) (lock-p) (clear-flags-i))).
Intuitively this method guides the search to those invariant
graphs where p can be achieved. This corresponds to the
compound task achieve-p-i for some invariant graph Gi.
The method also sets and clears the flags of predicates in
Gi to prevent infinite recursion, and temporarily locks p to
prevent p from being deleted.
The second type of compound task, achieve-p-i, has

one associated method for each predicate p′ in the invari-
ant graph Gi and each outgoing edge of p′ (corresponding
to an action a):
(:method (achieve-p-i)
((p′) (¬visited-p′))
((visit-p′) (do-p′-a-i) (achieve-p-i))).
Action a appears on an outgoing edge from p′, i.e. a deletes
p′. Intuitively, one way to achieve p in Gi, given that we
are currently at some different node p′, is to traverse the
edge associated with a using the compound task do-p′-a-
i. Before doing so we mark p′ as visited to prevent us from
visiting p′ again. After traversing the edge we recursively
achieve p from the resulting node. To stop the recursion
we define a “base case”, which is a method with the same
name (achieve-p-i), which is applicable only when p al-
ready holds and has no associated compound or primitive
tasks.
The third type of compound task, do-p-a-i, has only one

associated method. The aim is to apply action a to traverse
an outgoing edge of p in the invariant graph Gi. To do so,
the task list has to ensure that all preconditions p1, . . . , pk

of a hold (excluding p, which holds by definition, as well as
any static preconditions of a). We define the method as
(:method (do-p-a-i)
()
(((achieve-p1) · · · (achieve-pk)) (a)
((unlock-p1) · · · (unlock-pk)))).
The decomposition thus achieves all preconditions of a
(locking them temporarily), then applies a, and finally un-
locks the preconditions (allowing them to be deleted again).
To restrict the choices when traversing the HTN, we im-

pose a total order on all task lists of methods, except tasks
(achieve-p1) · · · (achieve-pk) of the method do-p-a-i,
since it may be difficult to determine in which order to
achieve the preconditions of an action.

18

(achieve-at p1 ap1) (set-flags-1 p1) (set-flags-1 p1) (set-flags-1 p1) (set-flags-1 p1)
(achieve-at-1 p1 ap1) (visit-at p1 l1) (visit-at p1 l1) (visit-at p1 l1)
(lock-at p1 ap1) (do-at-loadtruck-1 p1 t1 l1) (achieve-at t1 l1) (set-flags-2 t1)
(clear-flags-1 p1) (achieve-at-1 p1 ap1) (loadtruck p1 t1 l1) (achieve-at-2 t1 l1)

(lock-at p1 ap1) (unlock-at t1 l1) (lock-at t1 l1)
(clear-flags-1 p1) (achieve-at-1 p1 ap1) (clear-flags-2 t1)

(lock-at p1 ap1) (loadtruck p1 t1 l1)
(clear-flags-1 p1) (unlock-at t1 l1)

(achieve-at-1 p1 ap1)
(lock-at p1 ap1)
(clear-flags-1 p1)

Table 1: The first four task expansions of the HTN instance generated from the running example in LOGISTICS.

Planning Instances
Once we have constructed the HTN h we can apply it
to any instance of the domain. Given a STRIPS instance
p = ⟨Ω, init, goal⟩, we construct an HTN instance s =
⟨Ω, init′, L⟩ as follows. The set of objects of s is identi-
cal to that of p. The initial state init′ includes all fluents in
init. Moreover, for each type τ ∈ T of the planning domain
and each object ω ∈ Ω, init′ includes the fluent (τ ω) if ω
has type τ . Given goal = {(p1), . . . , (pk)}, the task list is
L = ⟨(achieve-p1), . . . , (achieve-pk)⟩, where we do not
impose any order on tasks.
We show that the HTN translation is sound. The transla-

tion is not always complete; in the future we want to iden-
tify subclasses of planning instances for which it is provably
complete.
Theorem 1 Let π = ⟨o1, . . . , om⟩ be a solution to s, and let
π′ equal π with all lock-p, unlock-p, visit-p, achieve-
in-i and clear-flags-i operators removed. Then π′ is a
solution to p.
Proof sketch For π to be a solution to s, the precondition
of each operator oi has to hold following the application of
o1, . . . , oi−1. Let us restrict attention to fluents associated
with the predicates of the original planning domain. The
removed operators have no effect on these fluents, while the
remaining operators in π′ have the same preconditions and
effects on these fluents in p and s. Since the initial state on
these fluents is the same in p and s, π′ is a plan for p.
Each expansion of (achieve-pj) applies the operator

(lock-pj) after (pj) is achieved, causing it to persist, i.e. no
operator can delete it. Thus the fluents (p1), . . . , (pk) hold
after applying π in s, implying that they hold after applying
π′ in init, satisfying the goal state of p.
There is a small technicality that we need to resolve: if

(pj) is a precondition of some action a, it can be unlocked as
a result of expanding a grounded task of type do-p-a-i, and
subsequently deleted. We solve this by checking whether
a precondition already holds and only unlocking it if it did
not already hold prior to expanding the grounded task; the
details are omitted in the description of the HTN.

Example
In LOGISTICS, our algorithm generates two wrapper tasks
achieve-in and achieve-at, and four tasks achieve-in-

1, achieve-at-1, achieve-at-2, and achieve-at-3, cor-
responding to the predicates in invariant graphs. The task
achieve-at-1 has five associated methods: one for each
edge of the graph G1, plus the base case method.
Moreover, the algorithm generates six tasks do-at-

loadtruck-1, do-at-loadplane-1, do-at-unloadtruck-
1, do-at-unloadplane-1, do-at-drivetruck-2, and do-
at-flyplane-3, corresponding to the six edges of the
graphs. The latter two do not have preconditions besides at
(the predicate incity in the precondition of drivetruck is
static). The remaining four tasks each achieve a single pre-
condition: the truck or plane being at the associated place.
To illustrate the tasks and associated methods we sketch

the task expansions of the HTN instance generated from our
running example. The only goal is (at p1 ap1), so the task
list L contains a single task (achieve-at p1 ap1). Table 1
shows the first four task expansions of the HTN instance. In
each case, the task to be decomposed is underlined.
The first decomposition is produced by the lone method

for (achieve-at p1 ap1). The current node associated with
p1 in G1 is (at p1 l1), with two outgoing edges, corre-
sponding to actions loadtruck and loadplane. Apply-
ing the method for (achieve-at-1 p1 ap1) associated with
(at p1 l1) and loadtruck produces the second expansion.
The only method for (do-at-loadtruck-1 p1 t1 l1) ex-
pands to (achieve-at t1 l1), which in turn expands to
(achieve-at-2 t1 l1) (the last expansion shown).
Since (at t1 l1) already holds, we can apply the base

case method for (achieve-at-2 t1 l1), at which point the
only composite task is (achieve-at-1 p1 ap1), recursively
achieving (at p1 ap1) from the current node (in p1 t1).
Attempting to unload p1 at l1 fails since (at p1 l1) has
already been visited. Instead, the only option is to unload
p1 at ap1, which achieves the goal (at p1 ap1).

Optimizations
In this section we discuss several optimizations of the base
algorithm for generating HTNs.

Ordering Preconditions
Achieving the preconditions of an action a in any order is
inefficient since an algorithm solving the HTN instance may
have to backtrack repeatedly to find a correct order. For this
reason, we include an extension of our algorithm that uses

19

1: function ORDER(a, p)
2: V ← pre(a) \ {p}, Z ← ⟨⟩
3: repeat
4: for p′ ∈ V do
5: W ← {p} ∪ V \ {p′}
6: for each invariant graphGj containing p′ do
7: Generate all acyclic paths in Gj to p′

8: Test if paths applicable whenW persists
9: end for
10: if each path achieving p′ is applicable then
11: V ← V \ {p′}
12: Z ← ⟨p′, Z⟩
13: end if
14: end for
15: until V , Z converge
16: return (V, Z)
17: end function

Figure 2: Algorithm ordering preconditions of a except p.

a simple inference technique to compute a partial order in
which to achieve the preconditions of a.
We define a set of predicates whose value is supposed to

persist, and check whether a path through an invariant graph
is applicable given these persisting predicates. While do-
ing so, only the values of bound variables are known, while
free variables can take on any value. Matching the bound
variables of predicates and actions enables us to determine
whether an action allows a predicate to persist.
Consider a task of type do-p-a-i, i.e. using action a to

delete p. Figure 2 shows how to order all preconditions of a
except p. In the algorithm, V is the set of preconditions to
be ordered, while Z is a sequence of preconditions, initially
empty. The algorithm considers one precondition p′ ∈ V
at a time and checks if we can achieve p′ while all remain-
ing preconditions persist. If so, we remove p′ from V and
place it first in Z. We then iterate until no more precon-
ditions can be removed from V , and return (V, Z). In the
method m associated with do-p-a-i, the preconditions in Z
can be achieved in order. On the other hand, we cannot say
anything about the order of preconditions that remain in V .

Goal Ordering
Just as for preconditions, achieving the goals in any order
results in more backtracking. To order the goals we imple-
ment an algorithm similar to the one for ordering precon-
ditions. While the ordered preconditions are coded into the
HTN, the goals are different for each instance of the do-
main. Since HTNs are instance-independent, our approach
is to define new tasks that compute a goal ordering as a pre-
processing step.
To accomplish this, we first order the goals of the repre-

sentative instance passed to the algorithm. We run the pre-
condition ordering algorithm on the set of goal predicates
PG ⊆ P , i.e. predicates whose associated fluents appear in
the goal. Given an ordering of the predicates in PG, we then
order the set of fluents of each predicate p ∈ PG using a
similar algorithm. To do so, the invariant graphs need to be

(on ?x ?b) (clear ?b) (holding ?b)

(unstack ?x ?b)

(stack ?x ?b)

(pickup ?b)

(putdown ?b)

(unstack ?b ?y)

(stack ?b ?y)

Figure 3: Invariant graph in the BLOCKS domain.

partially grounded on each pair of fluents to be ordered.
For each pair of fluents (p u1 · · · uk) and (p v1 · · · vk),

we check if (p v1 · · · vk) is achievable when (p u1 · · · uk)
is fixed. Each invariant graph that contains p is partially
grounded on (p u1 · · · uk), while the preconditions of ac-
tions that directly achieve p are grounded on (p v1 · · · vk).
If this grounding violates the invariant, (p v1 · · · vk) should
be ordered before (p u1 · · · uk). Once the invariant is inval-
idated by partial grounding, the algorithm stores the indices
of the parameters of p that invalidated the invariant.
We introduce two new tasks for goal ordering:

• A new root task solve, with an associated method that
decomposes to achieve-p tasks to achieve predicates in
PG in the order inferred from the representative instance.
This method is recursively called for each goal fluent.

• A task order, with an associated method that uses the
stored parameter indices to order the goal fluents of a sin-
gle predicate p ∈ PG.
As an example, in the BLOCKS domain, PG = {on}, so

the method for solve always decomposes to achieve-on.
Figure 3 shows one of the invariant graphs in BLOCKS that
contains on. To define the method for order we test each
pair of goal fluents to establish an order among them. Con-
sider two goal fluents (on a b) and (on b c). If we fix the
fluent (on a b) and attempt to achieve (on b c), the only op-
erator (stack b c) that directly achieves (on b c) has pre-
condition (holding b), which violates the invariant since
(on a b) is assumed to hold. Thus (on b c) should be or-
dered before (on a b). We can generalize this knowledge
and derive a rule that whenever two goal fluents of type on
have the same object as the first and second parameter, re-
spectively, the former should be ordered before the latter.
This general rule is coded into the method for order.

Results
We ran our algorithm in the STRIPS planning domains from
IPC-2000 and IPC-2002. The reason for choosing these do-
mains is that we can directly compare the performance of
our automatically generated HTNs with HTNs hand-crafted
by human experts. Since hand-coded planners were not al-
lowed to compete in later competitions, there exist no hand-
crafted HTNs from those competitions to compare to.
As a reminder, on the one hand we compare to HTNs de-

signed by experts that had previous access to each domain
and ample time to define tasks, on the other to a highly opti-
mized heuristic search planner. In contrast, our approach is

20

to generate HTNs for each domain in a fraction of a second
and to solve HTNs using JSHOP (the Java implementation
of SHOP2), which uses blind search to compute a valid ex-
pansion.
We performed experiments with two versions of our al-

gorithm. The base algorithm that achieves the preconditions
and goals in any order was slow in testing, so we activated
precondition ordering in both versions. The first version,
HTNPrecon, achieves the goals in the order they appear in
the PDDL definition. The second version, HTNGoal, imple-
ments our goal ordering strategy in addition to precondition
ordering.
For each version of our algorithm, we used JSHOP to

solve the resulting HTN instances in each domain. For com-
parison, we also ran Fast Downward (Helmert 2006) in blind
search (FDBlind) setting. Since JSHOP applies blind search
to solve HTN instances, it would be unfair to compare to a
heuristic planner. We used a memory limit of 4GB and a
timeout of 1,800 seconds.
Table 2 shows the results in the 9 domains from the two

competitions. For each planner we report the number of in-
stances solved and the maximum time taken to solve an in-
stance. For the HTNs, we also report the maximum num-
ber of backtracks (in thousands) performed while solving
the HTN instances. Since JSHOP performs blind search,
the number of backtracks should approximate the number of
tasks expanded. For Fast Downward, we instead report the
maximum number of expanded nodes (in thousands).
As expected, our goal ordering strategy mainly improves

the performance of the algorithm in BLOCKS and DEPOTS,
the two domains that are most sensitive to goal ordering. In
addition, goal ordering enables us to solve two additional
instances in SATELLITE.
Regarding the hand-crafted HTNs, they successfully

solve all instances of all domains with little backtracking;
however, recall that our algorithm generates HTNs in a frac-
tion of a second, while the hand-crafted HTNs were care-
fully designed by human experts. We give times and back-
track information for those hand-crafted domains that could
run on JSHOP; for the other domains we give only coverage.

Related Work
Our approach to generating HTNs from a single planning in-
stance and using them to solve larger instances of the same
planning domain can be viewed as a form of generalized
planning, which has received a lot of recent attention, most
notably in the form of the learning track of the IPC. One pop-
ular approach to generalized planning is to identify macros
(Botea et al. 2005; MacGlashan 2010; Muise et al. 2009;
Newton et al. 2007), i.e. sequences of operators that fre-
quently appear in the solutions to example instances. Once
identified, such macros can then be inserted into the ac-
tion space of larger instances in order to speed up search.
Another approach is to learn reactive policies for plan-
ning domains (Khardon 1999; Levine and Humphreys 2003;
Martin and Geffner 2000; Yoon, Fern, and Givan 2002). A
third approach is to learn domain-specific knowledge in or-
der to improve heuristic estimates computed during search
(de la Rosa et al. 2011; Yoon, Fern, and Givan 2008). In

contrast to most of these techniques, which are inductive,
ours is a generative approach to generalized planning.
Achieving fluents by traversing the edges of domain tran-

sition graphs is the strategy used by DTGPlan (Chen, Huang,
and Zhang 2008) and similar algorithms. There also ex-
ist other inference techniques that can solve many individ-
ual instances backtrack-free (Lipovetzky and Geffner 2009;
2011). The novelty of our approach is the ability to do this
in an instance-independent way.
Our work is also related to other approaches to hierarchi-

cal planning (Holte et al. 1996; Marthi, Russell, and Wolfe
2008; Elkawkagy et al. 2012), but ours is the only work that
we know of that create the hierarchies automatically.

Conclusion
In this paper we have presented what we believe to be the
first domain-independent algorithm for generating HTNs.
All the algorithm needs is a PDDL description of the plan-
ning domain and a single representative instance. In four do-
mains, the algorithm successfully generates HTNs that can
be used to efficiently solve any instance, thus being compet-
itive with HTNs designed by human experts and heuristic
search algorithms. Although the success of the algorithm is
limited in the remaining domains, we believe that there are
still many potential benefits.
First of all, one has to recall that to design HTNs, a hu-

man expert typically has to spend hours of work fine-tuning
an HTN for each domain. In contrast, our algorithm runs in
a fraction of a second. In many cases, even though the re-
sulting HTN is not constrained enough, subtasks identified
by the algorithm may still be useful. This is the case, for ex-
ample, in BLOCKS, where the resulting HTN contains tasks
and methods for putting a block on top of another block. In
such cases, the algorithm can help suggest initial decompo-
sitions that can later be refined by a human expert.
In BLOCKS, the main reason that the algorithm fails is

that it has no way of inferring that some blocks should be
on the table before achieving the goal. It would of course
be easy to add this knowledge to the encoding, but the al-
gorithm would no longer be domain-independent. In almost
all other cases for which the algorithm is not as successful,
the branching factor of the HTN is too large due to the fact
that predicates can be achieved in more than one way. Either
there are multiple invariant graphs containing the predicate,
or we can traverse an invariant graph in multiple ways. In
these cases, an HTN planner has to test all possible ways
of achieving a predicate before reporting failure, causing an
enormous amount of backtracking.
The avenue for future research that we find most promis-

ing is to test different restrictions on the invariant graphs. If
the representative instance can still be solved under some re-
striction, the resulting HTN may still be able to solve other
instances, and the restriction has the effect of reducing the
branching factor. In essence, this mechanism would reduce
the number of ways to traverse the invariant graphs.
Another option is to translate the resulting HTNs back to

classical planning instead of using an HTN solver (Alford,
Kuter, and Nau 2009; Lekavý and Návrat 2007). In this way

21

HTNPrecon HTNGoal FDBlind Hand-crafted
FREECELL[60] 0 - - 0 - - 5 228 17834 60 - -
BLOCKS[35] 0 - - 12 50.84 6877 18 32.5 7856 35 0.3 0
ROVERS[20] 20 1.7 16 20 2.0 16 6 219 32787 20 1 1
LOGISTICS[80] 80 8.3 75 80 29.2 75 10 1.58 432 80 - -
DRIVERLOG[20] 7 74.5 5080 8 60.1 4913 7 40.2 3421 20 - -
ZENOTRAVEL[20] 4 1527.8 194477 6 1453.8 161365 8 162 5994 20 0.2 0
MICONIC[150] 150 0.66 0 150 0.75 0 55 509 75372 150 0.0 0
SATELLITE[20] 18 0.59 1.2 20 1 0.7 6 702 22982 20 - -
DEPOTS[22] 4 59.73 4655 15 1178.8 50404 4 53.5 6034 22 - -

Table 2: Results in the IPC-2000 and IPC-2002 domains, with the number of instances of each domain shown in brackets.

we can take advantage of the reduced branching factor of-
fered by the HTNs, and use heuristic search planners to solve
the resulting classical planning instances.

References
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’09),
1629–1634.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI Planning with Automati-
cally Learned Macro-Operators. Journal of Artificial Intel-
ligence Research 24:581–621.
Chen, Y.; Huang, R.; and Zhang, W. 2008. Fast Planning
by Search in Domain Transition Graphs. In Proceedings
of the 23rd National Conference on Artificial Intelligence
(AAAI’08), 886–891.
de la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo,
D. 2011. Scaling up Heuristic Planning with Relational
Decision Trees. Journal of Artificial Intelligence Research
40:767–813.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In Proceedings of the 26th National
Conference on Artificial Intelligence (AAAI’12).
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI’94),
1123–1128.
Geier, T., and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 1955–1961.
González-Ferrer, A.; Fernández-Olivares, J.; and Castillo,
L. 2013. From Business Process Models to Hierarchical
Task Network Planning Domains. Knowledge Engineering
Review 28(2):175–193.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.

Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence (AAAI’08), 950–
956.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A. 1996.
Hierarchical A*: Searching Abstraction Hierarchies Effi-
ciently. In Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI’96), 530–535.
Khardon, R. 1999. Learning Action Strategies for Planning
Domains. Artificial Intelligence 113(1-2):125–148.
Lekavý, M., and Návrat, P. 2007. Expressivity of STRIPS-
Like and HTN-Like Planning. In Proceedings of the 1st KES
Symposium on Agent and Multi-Agent Systems - Technolo-
gies and Applications (KES-AMSTA’07), 121–130.
Levine, J., and Humphreys, D. 2003. Learning Action
Strategies for Planning Domains Using Genetic Program-
ming. In EvoWorkshops, volume 2611 of Lecture Notes in
Computer Science, 684–695.
Lipovetzky, N., and Geffner, H. 2009. Inference and De-
composition in Planning Using Causal Consistent Chains.
In Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS’09).
Lipovetzky, N., and Geffner, H. 2011. Searching for Plans
with Carefully Designed Probes. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS’11).
MacGlashan, J. 2010. Hierarchical Skill Learning for High-
Level Planning. In Proceedings of the 24th National Con-
ference on Artificial Intelligence (AAAI’10).
Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic Hier-
archical Planning: Optimal and Online Algorithms. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 222–231.
Martin, M., and Geffner, H. 2000. Learning Generalized
Policies in Planning Using Concept Languages. In Pro-
ceedings of the 7th International Conference on Principles
of Knowledge Representation and Reasoning (KR’00), 667–
677.
Menif, A.; Guettier, C.; and Cazenave, T. 2013. Plan-
ning and Execution Control Architecture for Infantry Seri-
ous Gaming. In Proceedings of the 3rd International Plan-
ning in Games Workshop (PG’13), 31–34.

22

Miller, C.; Goldman, R.; Funk, H.; Wu, P.; and Pate, B.
2004. A Playbook Approach to Variable Autonomy Con-
trol: Application for Control of Multiple, Heterogeneous
Unmanned Air Vehicles. In Annual Meeting of the Amer-
ican Helicopter Society.
Muise, C.; McIlraith, S.; Baier, J.; and Reimer, M. 2009. Ex-
ploiting N-Gram Analysis to Predict Operator Sequences. In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS’09).
Munoz-Avila, H.; Aha, D.; Breslow, L.; and Nau, D. 1999.
HICAP: An Interactive Case-Based Planning Architecture
and its Application to Noncombatant Evacuation Opera-
tions. In Proceedings of the 16th National Conference on
Artificial Intelligence (AAAI’99), 870–875.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN Planning Sys-
tem. Journal of Artificial Intelligence Research 20:379–404.
Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning Macro-Actions for Arbitrary Planners and Do-
mains. In Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS’07), 256–
263.
Sánchez-Garzón, I.; Fernández-Olivares, J.; and Castillo, L.
2013. An Approach for Representing and Managing Medi-
cal Exceptions in Care Pathways Based on Temporal Hierar-
chical Planning Techniques. In Process Support and Knowl-
edge Representation in Health Care (ProHealth’12), Lec-
ture Notes in Computer Science 7738, 168–182.
van der Sterren, W. 2009. Multi-Unit Planning with HTN
and A*. In AIGameDev Paris Game AI Conference.
Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D.
2003. Automating DAML-SWeb Services Composition Us-
ing SHOP2. In Proceedings of the 2nd International Seman-
tic Web Conference (ISWC’03), 195–210.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive Policy Se-
lection for First-Order Markov Decision Processes. In Pro-
ceedings of the 18th Conference on Uncertainty in Artificial
Intelligence (UAI’02), 568–576.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. Journal of Ma-
chine Learning Research 9:683–718.
Zhuo, H.; Hu, D.; Hogg, C.; Yang, Q.; and Munoz-Avila,
H. 2009. Learning HTN Method Preconditions and Action
Models from Partial Observations. In Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI’09), 1804–1809.

23

