
Research Workshop of the
Israel Science Foundation

Proceedings of the 7th Workshop on

Heuristics and Search
for Domain-independent

Planning (HSDIP)

Edited By:
Ron Alford, J. Benton, Erez Karpas, Michael Katz, Nir Lipovetzky,

Gabriele Röger and Jordan Thayer

Jerusalem, Israel 8/6/2015

Organizing Committee

Ron Alford
U.S. Naval Research Lab, USA

J. Benton
SIFT, USA

Erez Karpas
Massachusetts Institute of Technology, USA

Michael Katz
IBM Research, Israel

Nir Lipovetzky
University of Melbourne, Australia

Gabriele Röger
University of Basel, Switzerland

Jordan Thayer
SIFT, USA

Table of Contents

Complexity Issues of Interval Relaxed Numeric Planning
Johannes Aldinger, Robert Mattmüller and Moritz Göbelbecker 4

Tight Bounds for HTN Planning with Task Insertion
Ron Alford, Pascal Bercher and David Aha 13

From FOND to Probabilistic Planning: Guiding Search for Quality Policies
Alberto Camacho, Christian Muise, Akshay Ganeshen and Sheila McIlraith 20

A Heuristic Estimator based on Cost Interaction
Yolanda E-Martı́n, Marı́a D. R-Moreno and David Smith 29

Red-Black Planning: A New Tractability Analysis and Heuristic Function
Daniel Gnad and Jörg Hoffmann 38

From Fork Decoupling to Star-Topology Decoupling
Daniel Gnad, Jörg Hoffmann and Carmel Domshlak 47

Goal Recognition Design With Non-Observable Actions
Sarah Keren, Avigdor Gal and Erez Karpas 56

Classical Planning with Simulators: Results on the Atari Video Games
Nir Lipovetzky, Miguel Ramı́rez and Hector Geffner 64

Analysis of Bagged Representations in PDDL
Patricia Riddle, Mike Barley, Santiago Franco and Jordan Douglas 71

Finding and Exploiting LTL Trajectory Constraints in Heuristic Search
Salomé Simon and Gabriele Röger 80

Simulation-Based Admissible Dominance Pruning
Álvaro Torralba and Jörg Hoffmann 89

Complexity Issues of Interval Relaxed Numeric Planning

Johannes Aldinger and Robert Mattmüller and Moritz Göbelbecker
Albert-Ludwigs-Universität, Institut für Informatik

79110 Freiburg, Germany
{aldinger,mattmuel,goebelbe}@informatik.uni-freiburg.de

Abstract

Automated planning is a hard problem even in its most
basic form as STRIPS planning. We are interested in
numeric planning tasks with instantaneous actions, a
problem which is not even decidable in general. Relax-
ation is an approach to simplifying complex problems
in order to obtain guidance in the original problem. We
present a relaxation approach with intervals for numeric
planning and discuss the arising complexity issues.

Introduction
Relaxation is a predominant approach to simplifying plan-
ning problems. Solutions of the relaxed planning problem
can be used to guide search in the original planning task.
The forward propagation heuristic hadd (Bonet, Loerincs,
and Geffner 1997; Bonet and Geffner 2001) was used in the
heuristic search planner that won the first International Plan-
ning Competition (IPC 1998) and hmax (Bonet and Geffner
1999) is its admissible counterpart. The underlying assump-
tion of a delete relaxation is that propositions which are
achieved once during planning can not be invalidated. More
recent planning systems are usually not restricted to propo-
sitional state variables of the planning problem. Instead they
use the SAS+ formalism (Bäckström and Nebel 1993) which
allows for (finite-domain) multi-valued variables. Unlike
propositional STRIPS (Fikes and Nilsson 1971), a “delete
relaxation” corresponds to variables that can attain a set of
values at the same time. Extending this concept for nu-
meric planning relaxes the set representation even further.
Numeric variables can have infinitely many values which
makes it impossible to store all of them. A memory efficient
approach is to consider the enclosing interval of all possi-
ble values for each numeric variable. The methods to deal
with intervals have been subject to the field of interval arith-
metic (Young 1931) which has been used in mathematics for
decades (Moore, Kearfott, and Cloud 2009) and enables us
to deal with intervals in terms of basic numeric operations.

Numeric planning tasks can require actions to be applied
multiple times, as setting a numeric variable to a target value
can require multiple steps even in relaxed problems. In this
paper we provide the foundations for interval relaxed nu-
meric planning.

Related Work
Extending the concept of classical planning heuristics to nu-
meric problems has been done before, albeit only for a sub-
set of numeric tasks. In many relevant real world problems,
numeric variables can only be manipulated in a restricted
way. The Metric-FF planning system (Hoffmann 2003) tries
to convert the planning task into a linear numeric task which
ensures that variables can “grow” in only one direction. By
introducing inverted auxiliary variables for decreasing nu-
meric variables, the concept of a delete relaxation trans-
lates into a relaxation where decrease effects are considered
harmful and higher values of a variable are always beneficial
to fulfill the preconditions of actions.

More recently, Coles et al. (2008) investigated an ap-
proach based on linear programs. In many relevant real
world applications, numeric variables are used to model re-
sources. Delete relaxation heuristics fail to offer guidance
on such problems if a cyclic resource transfer is possible.
As delete relaxations make the assumption that sub-goals
stay achieved, a resource transfer can “produce” resources
without decreasing them at their original destination. Coles
et al. analyze the planning problem for consumers and pro-
ducers of resources and build a linear program to ensure that
resources are not more often consumed than produced or ini-
tially available to obtain an informative heuristic.

Basics
In this section we outline numeric planning with instanta-
neous actions which is expressible in PDDL2.1, layer 2
(Fox and Long 2003). We present an overview over interval
arithmetic, the technique we use to extend delete relaxation
heuristics to numeric planning. The section closes with a
short complexity discussion.

Numeric Planning with Instantaneous Actions
Given a set of variables V with domains dom(v) for all
v ∈ V , a state s is a mapping of variables v to their respec-
tive domains. Throughout the paper, we denote the value of
a variable v in a state s by s(v).

A numeric planning task Π = 〈VP ,VN ,O, I,G〉 is a
5-tuple where VP is a set of propositional variables vp
with domain {true, false}. VN is a set of numeric vari-
ables vn with domain Q∞ where we abbreviate Q∞ for

Q ∪ {−∞,∞} throughout the paper. O is a set of opera-
tors, I the initial state and G is the goal condition. A nu-
meric expression e1 ◦ e2 is an arithmetic expression with
operators ◦ ∈ {+,−,×,÷} and expressions e1 and e2 re-
cursively defined over variables VN and constants from Q.
A numeric constraint con = (e1 ./ e2) compares numeric
expressions e1 and e2 with ./ ∈ {≤, <,=, 6=}. A condition
is a conjunction of propositions and numeric constraints.
A numeric effect is a triple (vn ◦= e) where vn ∈ VN ,
◦= ∈ {:=,+=,−=,×=,÷=} and e is a numeric expres-
sion. Operators o ∈ O are of the form 〈pre → eff〉 and
consist of a condition pre and a set of effects eff which con-
tains at most one numeric effect for each numeric variable
vn and at most one truth assignment for each propositional
variable vp.

The semantic of a numeric planning task is straightfor-
ward. For constants c ∈ Q, s(c) = c by abuse of notation.
Numeric expressions (e1 ◦ e2) for ◦ ∈ {+,−,×,÷} are re-
cursively evaluated in state s: s(e1 ◦ e2) = s(e1) ◦ s(e2). A
state satisfies a condition s � vp iff s(vp) = true, where
vp ∈ VP . For numeric constraints, s � (e1 ./ e2) iff
s(e1) ./ s(e2) where ./ ∈ {≤, <,=, 6=}, and e1 and e2
are expressions. A state satisfies a conjunctive condition
s � k1 ∧ k2 iff s � k1 and s � k2.

An operator o = 〈pre → eff〉 is applicable in s iff
s � pre. The successor state appo(s) = s′ resulting from
an application of o is defined as follows, where eff =
{eff1, . . . , effn}: if effi is a numeric effect vn ◦= e with
◦= ∈ {+=,−=,×=,÷=}, s′(vn) = s(vn) ◦ s(e). If effi

is a numeric effect vn := e, then s′(vn) = s(e). If effi is a
propositional effect vp := ep with ep ∈ {true, false}, s′(vp)
is the new truth value ep. Finally, if a variable v does not
occur in any effect, then s′(v) = s(v).

A plan π is a sequence of actions that leads from I to a
state satisfying G such that each action is applicable in the
state that follows by executing the plan up to that action.

We intend to relax numeric planning with the help of in-
tervals. The next section establishes the foundations of in-
terval arithmetic.

Interval Arithmetic
Interval arithmetic uses an upper and a lower bound to
enclose the actual value of a number. Closed intervals
[x, x] = {q ∈ Q∞ | x ≤ q ≤ x} contain all rational num-
bers (or ±∞) from x to x. Throughout this paper we refer
to the lower bound of an interval x by x and to the upper
bound by x. The set Ic = {[x, x] | x ≤ x} contains all
closed intervals. Numbers q can be transformed into a de-
generate interval [q, q]. The basic arithmetic operations in
interval arithmetic are given as:

• addition: [x, x] + [y, y] = [x+ y, x+ y],

• subtraction: [x, x]− [y, y] = [x− y, x− y],

• multiplication: [x, x]× [y, y] =[
min(xy, xy, xy, xy),max(xy, xy, xy, xy)

]
,

• division: [x, x]÷ [y, y] =[
min

(
x/y, x/y, x/y, x/y

)
,max

(
x/y, x/y, x/y, x/y

)]

if 0 /∈ [y, y]. Otherwise, at least one of the bounds
diverges to ±∞. We do not explicate all cases of x, x, y
and y being positive, negative or zero which determine
which of the bounds diverge and refer the interested
reader to the literature (Moore, Kearfott, and Cloud
2009).

Analogously we define open bounded intervals (x, x)
= {q ∈ Q∞ | x < q < x} and the set of open inter-
vals Io = {(x, x) | x < x}, as well as half open in-
tervals [x, x) = {q ∈ Q∞ | x ≤ q < x} and (x, x]
= {q ∈ Q∞ | x < q ≤ x} and the respective sets
Ico = {[x, x) | x < x} and Ioc = {(x, x] | x < x}. Fi-
nally the set of mixed bounded intervals is given as
Im = Ic ∪ Io ∪ Ioc ∪ Ico. Open and mixed bounded intervals
follow the same arithmetic rules as closed intervals. When-
ever open and closed bounds contribute to the new interval
bound, the bound is open.
Example 1. The product (−2, 3] × [−4, 2) is the interval
[−12, 8). The lower bound is the result of 3 × −4 and the
resulting bound is closed because both contributing bounds
are closed. The new upper bounds is computed by −2 ×
−4 and the open bound of the left interval determines the
“openness” of the resulting bound.
Definition 1. Let x, y ∈ Im be intervals. The convex
union u = x t y is the interval with u = min(x, y) and
u = max(x, y). Whether the bounds of u are open or closed
depends on whether those of x and y are open or closed.

Definition 1 implicitly adds all values between the inter-
vals to the resulting interval if x ∩ y = ∅.

Complexity
Unlike classical planning, which is PSPACE-complete (By-
lander 1994), numeric planning is undecidable (Helmert
2002). Even though completeness of numeric planning can
therefore not be achieved in general, numeric planners can
find plans or an assurance that the problem is unsolvable
for many practical problems. Moreover, we will prove in
the following section that the relaxed numeric plan existence
problem is decidable in polynomial time for acyclic depen-
dency tasks, tasks in which the expressions of numeric ef-
fects do not depend on the variable they alter.

Delete Relaxation
In this section we discuss natural extensions of delete relax-
ation to planning with numeric variables.

Motivation
As planning is hard, it is beneficial to consider a simplified
problem in order to obtain guidance in the original problem.
The delete relaxation of classical planning ignores delete
effects, effects that set the truth value of a proposition to
false. As action preconditions and the goal condition require
propositions to evaluate to true, delete effects complicate
plan search. Finding a relaxed plan on the other hand is pos-
sible in polynomial time because relaxed actions do not have
delete effects and therefore each action has to be applied at
most once. Plans for the original problem are also plans for

the corresponding delete relaxed planning task. While find-
ing any relaxed plan is possible in polynomial time, finding
a shortest relaxed plan is NP-hard (Bylander 1994).

Numeric Relaxation Approaches
The idea behind delete relaxation is that facts that are
reached once stay achieved. We will now discuss several
ways to extend this concept to numeric planning. Combina-
tions of these approaches are subject of future research.

Enumeration. The number of values that a variable can
attain after applying a fixed number of actions is finite. An
idea is to store the set of all attained values for each vari-
able. However, the number of attainable values grows ex-
ponentially with the number of applied operators. As such
it becomes infeasible to maintain the set of possible values
quickly.

Example 2. Consider a numeric planning task with ini-
tial state I(x) = 0 and operators o1 = 〈∅ → {x += 1}〉
and o2 = 〈∅ → {x ÷= 2}〉. Denoting by xk, k = 0, . . . , 3
the set of possible values of x after k steps, we
have: x0 = {0}, x1 = {0, 1}, x2 = {0, 12 , 1, 2} and
x3 = {0, 14 , 12 , 1, 1 1

2 , 2, 3}.
For problems with bounded plan length, the enumeration

approach requires space exponential in the bound. Even
worse, the enumeration relaxation remains undecidable in
general.

Theorem 1. The numeric plan existence problem in an enu-
meration relaxation is undecidable.

Proof sketch. We can basically adopt the proof for nu-
meric planning by Helmert (2002). Formalizing Diophan-
tine equations as planning problem results in a task that is
not decidable as solutions have to be integers and the relax-
ation does not relax this property.

Discretization. In order to restrict the number of possi-
ble values from the enumeration approach, multiple values
can be aggregated into “buckets”, where a representative ap-
proximates all values within. These representatives can be
treated as multi-valued finite domain variables from classi-
cal SAS+-planning. The state transition has to be defined
in such a way that completeness is preserved – plans for the
real problem have to act as plans in the relaxed problem.
Proper abstractions offer potential for future research.

Higher values are better. Another approach is only feasi-
ble on a restricted set of planning tasks. If all preconditions
and goals have the form (x > c) or (x ≥ c) where x is a nu-
meric variable and c a numeric constant, higher values are
always beneficial for a variable. Numeric effects are only
allowed to alter numeric variables by a positive constant,
and therefore, decrease effects are considered harmful. The
Metric-FF planning system uses this type of relaxation and
Hoffmann (2003) shows that a large class of problems can
be compiled into the required linear normal form.

Interval relaxation. An interval which encloses all val-
ues that a numeric variable can attain is a memory efficient
method. Algebraic base operations are allowed in PDDL and

supported by interval arithmetic. Therefore, we will focus
on interval relaxation in the following section.

Interval Relaxation

In this section we elaborate on interval relaxation for nu-
meric planning tasks. We will discuss the complexity of
the plan existence problem for the presented semantics. We
identify a class of tasks with acyclic dependencies between
variables for which we can generate interval relaxed plans in
polynomial time.

The interval relaxation of a numeric planning task differs
only marginally from the original task description on a syn-
tactic level. Propositional variables can now be both true and
false at the same time and numeric variables are mapped to
closed intervals.

Definition 2. Let Π be a numeric planning task. The inter-
val delete relaxation Π+ = 〈V+

P ,V+
N ,O+, I+,G+〉 of Π is

a 5-tuple where V+
P are the propositional variables from Π

with the domains replaced by dom(vp) = {true, false, both}
and V+

N are the numeric variables with the domains replaced
by closed intervals dom(vn) = Ic for all vn ∈ V+

N . The
initial state I+ is derived from I by replacing numbers
I(vn) with degenerate intervals I+(vn) = [I(vn), I(vn)]
and I+(vp) = I(vp). G+ is the goal condition.

The semantic of Π+ draws on interval arithmetic. Nu-
meric expressions are defined recursively: let e1 and e2
be numeric expressions. The interpretation of a constant
expression is s+(c) = [c, c] and compound expressions
are interpreted as s+(e1 ◦ e2) = s+(e1) ◦ s+(e2) for
◦ ∈ {+,−,×,÷} where “◦” now operates on intervals.
For (goal and operator) conditions, the relaxed semantic
is defined as follows: let vp ∈ V+

P be a propositional
variable, then s+ � vp iff s+(vp) ∈ {true, both}. For
numeric constraints let e1 and e2 be numeric expres-
sions, and ./ ∈ {<,≤,=, 6=} a comparison operator. Then
s+ � (e1 ./ e2) iff ∃q1 ∈ s+(e1),∃q2 ∈ s+(e2) with q1 ./ q2.
This implies that two intervals can be “greater” and “less”
than each other at the same time.

The semantic of numeric effects vn ◦= e is relaxed
twice: vn keeps its old value and gains all values up
to the new value which is an interval in the relaxation.
The state app+

o (s+) = s′+ resulting from an appli-
cation of o with effect eff ∈ {eff1, . . . , effn} is then
s′+(vn) = s+(vn) t (s+(vn) ◦ s+(e)) if eff is a numeric ef-
fect. As we use the convex union from Definition 1, s′+(vn)
contains all values between the old value of vn and the eval-
uated expression (s+(vn) ◦ s+(e)). For propositional ef-
fects, s′+(vp) = both if the effect changes the truth value
effi(vp) 6= s+(vp) of vp, and s′+(vp) = s+(vp) otherwise.
Again, s′+(v) = s+(v) if v occurs in no effect.

Example 3. Applying o = 〈∅ → {x ×= e}〉 in a state map-
ping x 7→ [8, 10] and e 7→ [− 1

2 ,
1
2] leads to a state s′(x) =

[8, 10] t ([8, 10]× [− 1
2 ,

1
2]) = [8, 10] t [−5, 5] = [−5, 10].

Interval Relaxation Complexity
For the classical relaxed planning problem, a relaxed plan
can be found by applying all applicable operators in paral-
lel until a fix-point is reached. As no effect can destroy a
condition in the relaxed task, the number of operators in the
planning task restricts the required number of iterations un-
til a fix-point is reached. The task is solvable if the goal
condition holds in the resulting state. A serialized plan can
be obtained by ordering actions from the same parallel layer
arbitrarily.

We employ a similar method for interval relaxed numeric
planning. We have to approach the challenge that numeric
operators can have to be applied arbitrarily often. An idea
is to transform the planning task into a semi-symbolic rep-
resentation which captures repeated application of operators
with numeric effects. We define interval relaxed and repe-
tition relaxed planning tasks which we refer to as repetition
relaxed for short. In repetition relaxed planning tasks we
simulate the behavior of applying numeric effects arbitrar-
ily often independently. As we will see later, the indepen-
dence assumption is not justified for numeric effects vn ◦= e
where the expression of the assignment e depends on the af-
fected variable vn. We show that an adaptation of the al-
gorithm from classical relaxed planning can be used to find
plans for repetition relaxed planning tasks with acyclic de-
pendencies, where the variables in e do not depend on vn.

Repetition relaxed planning tasks use mixed bounded in-
tervals, intervals whose bounds can either be open or closed,
to capture the attainable values of a numeric variable. We
are interested in the behavior of numeric effects in the limit.
We use different fonts to distinguish a variable and its value
e.g. s(x) = x in the following, whenever the state s is not
essential. If an operator o has an additive effect x ±= e for
±= ∈ {+=,−=} which can extend a bound of x once, it
can extend that bound to any value by applying o multiple
times. The result of applying an additive effect arbitrarily
often in a state s only depends on whether e can be nega-
tive, zero or positive. The behavior of multiplicative effects
>= ∈ {×=,÷=} is slightly more complex. Multiplica-
tive effects x >= e can contract or expand depending on
whether e contains elements with absolute value greater one
and switch signs if e negative which results in up to seven
different behaviors of e.

Definition 3. Let Π+ be an interval relaxed planning task.
An (interval and) repetition relaxed planning task of Π+ is
a 5-tuple Π# = 〈V +

P ,V#
N ,O#, I#,G#〉 with propositional

variables V +
P from Π+. The domains of numeric variables

dom(vn) = Im for vn ∈ V#
N are extended to mixed-bounded

intervals. The initial state I#(vp) = I+(vp) assigns the
same truth value from I+ to each propositional variable vp
and each numeric variable vn is initialized to the same closed
degenerate interval I#(vn) = I+(vn).

Again, the relaxation does not change much on a syn-
tactical level. The main difference lies in the semantic
of numeric effects. The semantic of numeric expressions
can be transferred directly from the interval relaxation as
interval arithmetic operations are also defined for mixed

bounded intervals. The interpretation of a numeric ex-
pression is given as s#(e1 ◦ e2) = s#(e1) ◦ s#(e2) for
expressions e1 and e2 and ◦ ∈ {+,−,×,÷}. The semantic
of conditions is again s# � vp iff s#(vp) ∈ {true, both}
for propositions vp ∈ V#

P . For numeric con-
straints e1 ./ e2 where e1 and e2 are expres-
sions and comparison operator ./ ∈ {<,≤,=, 6=},
s# � (e1 ./ e2) iff ∃q1 ∈ s#(e1),∃q2 ∈ s#(e2) with
q1 ./ q2.

The semantic of numeric effects captures the repeated
application of actions. We first define the repeti-
tion relaxed semantic of x ◦= e for intervals x and e
with ◦= ∈ {:=,+=,−=,×=,÷=}. Let x0 = x and
xi+1 = xi t (xi ◦ e) for i ≥ 0 where (x : e) is defined
as e for assign effects. Let succ◦(x, e) =

⋃∞
i=0 xi. We are

interested in the result of applying an operator arbitrarily
often individually for each effect, where the interval e is
fixed even if the expression e depends on x. As xi+1 ⊇ xi
by definition of the convex union and because all xi are
convex, the resulting set succ◦(x, e) is an interval. How-
ever, open bounded intervals can be generated by the limit
value consideration. The state app#

o (s#) = s′# resulting
from an application of o with effect eff = {eff1, . . . , effn}
is then again s′#(v) = s#(v) if v occurs in no effect,
s′#(vp) = both if effi(vp) 6= s#(vp) is a propositional effect
which changes the truth value of vp and s′#(vp) = s#(vp)

otherwise. For numeric effects effi = (vn ◦= e), s′#(vn) =
succ◦(s#(vn), s

#(e)).
Fixing expressions e of numeric effects vn ◦= e to the

interval e they evaluate to in the previous state is beneficial to
compute the successor, as changes in the assignment (which
can be an arbitrary arithmetic expression) do not have to be
considered immediately. The repetition relaxation Π# of a
planning task relaxes Π+ further and plans for Π+ are still
plans for Π#. The reason is that each operator application
can only extend the interval of affected numeric variables
more than before. Evaluating the expression in the successor
state s′#(e) can only extend the interval s#(e).

We want to use the fix-point algorithm which applies all
operators of a planning task in parallel until a fix-point is
reached to find a repetition relaxed plan. The successors
succ◦(x, e) of numeric effects are defined by the limit⋃∞

i=0 xi and we are interested in determining the result of
such an effect in constant time. The result only depends
on which of up to 21 symbolic behavior classes are
covered by x and e. The seven behavior classes for e are
Be = {(−∞,−1), {−1}, (−1, 0), {0}, (0, 1), {1}, (1,∞)},
and for x they are Bx = {(−∞, 0), {0}, (0,∞)}. We
decompose e and x into the hit behavior classes where
e ∩ ẽ 6= ∅ for a behavior class ẽ ∈ Be and x ∩ x̃ 6= ∅ for
a behavior class x̃ ∈ Bx, respectively. Table 1 contains
partial behaviors T◦(x, e) for ◦= ∈ {+=,−=,×=,÷=}
where T◦(x, e) is only defined if x ⊆ x̃ ∈ Bx and
e ⊆ ẽ ∈ Be and T◦(x, e) is the table entry with column
x̃ and row ẽ in the table with the corresponding ◦=
operator. We use “indeterminate” parentheses L · , · M to
denote intervals whose openness is determined by the terms

+= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) (−∞, xM Lx, xM Lx,∞)

−= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) Lx,∞) Lx, xM (−∞, xM
×= ẽ

(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) (−∞,∞) Lx,−xM Lx, x×eM Lx, 0] Lx, 0) Lx, xM (−∞, xM
{0} [0, 0]

(0,∞) (−∞,∞) L−x, xM Lx×e, xM [0, xM (0, xM Lx, xM Lx,∞)

÷= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) Lx, x÷eM Lx,−xM (−∞,∞) undefined (−∞, xM Lx, xM Lx, 0)
{0} [0, 0] undefined [0, 0]

(0,∞) Lx÷e, xM L−x, xM (−∞,∞) undefined Lx,∞) Lx, xM (0, xM

Table 1: Partial behaviors for numeric effects

contributing to it. For assignment effects := we do not
need a table as the behavior is equal for all classes, and
T:(x, e) = Lmin(x, e),max(x, e)M.
Theorem 2. The partial behaviors T◦(x, e) are equal to
succ◦(x, e) for x ⊆ x̃ ∈ Bx and e ⊆ ẽ ∈ Be.

We prove Theorem 2 exemplarily for two of the less ob-
vious entries in Table 1. The proofs for the remaining cases
can be done similarly.

Proof for multiplication, x ⊆ x̃ = (0,∞) and e ⊆ ẽ = (0, 1):
We have to show that succ×(x, e) = (0, xM.

“⊆”: In order to prove succ×(x, e) ⊆ (0, xM, we show
that for every element q ∈ succ×(x, e) =

⋃∞
i=0 xi there

exists an index k ∈ N with q ∈ xk = Lxk, xkM and
xk ⊆ (0, xM. We prove this subset relation separately for
each bound of xk.
Lower bound: We show xk > 0 for all k ∈ N
by induction. The base case x0 > 0 holds as
x0 = x ⊆ (0,∞). Inductively xi+1 = xi t (xi × e)
= min(xi, xi × e, xi × e, xi × e, xi × e). As x ⊆ (0,∞)
and e ⊆ (0, 1) are both positive, the result is positive as
well. The minimum is obtained for xi × e because e is a
contraction. Thus, for all k it holds that q ≥ xk > 0.
Upper bound: Again, we show xk ≤ x for all k ∈ N
by induction. The base case holds because x0 = x with
interval open/closed as for x. The upper bound does not
change in the inductive step and we have xi+1 = xi because
xi+1 ≥ xi by definition of the convex union and xi+1 ≤ xi
because xi+1 = xi × e which is smaller than xi because
0 < e ≤ e < 1 is a contraction. The upper bound of the
interval remains open/closed as x as well for xi+1. Thus,
for every q it holds that q ≤ xk ≤ x. Together with the
lower bound 0 < q we can conclude that q ∈ (0, xM.

“⊇”: Now we have to show the converse direction
succ×(x, e) ⊇ (0, xM. Let q ∈ (0, xM. We have to show
that q ∈ succ×(x, e). As xk = x for all k ∈ N we only have
to show that there exists a k ∈ N with q ∈ xk = Lxk, xkM be-
cause xi+1 ⊇ xi and therefore q ∈ succ×(x, e) =

⋃∞
i=0 xi.

Such a k exists because to obtain x× ek < q respectively
ek < q ÷ x. Building the logarithm alters the inequality

because e < 0: loge(e
k) > loge(q ÷ x). Therefore,

q ∈ succ×(x, e) for k ≥ dloge(q ÷ x)e.

Proof for division, x ⊆ x̃ = (−∞, 0) and e ⊆ ẽ = (−∞,−1):
We have to show that succ÷(x, e) = Lx, x÷ eM.

“⊆”: We prove succ÷(x, e) ⊆ Lx, x÷ eM again by show-
ing that for every q ∈ succ÷(x, e) =

⋃∞
i=0 xi there exists an

index k ∈ N with q ∈ xk = Lxk, xkM. We show inductively
that xk ⊆ Lx, x÷ eM for all k ∈ N.
Base case: For q ∈ x0 = Lx, xM with bounds open/closed as
in x, it is easy to show that also q ∈ Lx, x÷ eM because from
x ⊆ (−∞, 0) and e ⊆ (−∞,−1) we know that x, x, e and
e are all negative and therefore x÷ e > 0 > x so the upper
bound on the right hand side is always greater than the upper
bound of x0 and we have x = x0 ≤ q ≤ x0 < x÷ e.
Inductive step, lower bound: We have to prove that the
lower bound xi+1 ≥ x, with the induction hypothesis that
xi ≥ x holds. The new bound xi+1 = xi t (xi ÷ e)
= min(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e) is attained at xi
because −∞ < e < e < 0 and xi are negative making the
results xi÷ e and xi÷ e positive and obviously greater than
0 and as such also greater than xi. If the upper bound xi is
also negative, the minimum for xi+1 is clearly attained by xi
but even if xi is positive, it is bounded by 0 ≤ xi ≤ (x÷ e).
Because the division by e ⊆ (−∞,−1) is a contraction, the
highest absolute value is attained by dividing by e but still
(x ÷ e) ÷ e ≥ (xi ÷ e) ≥ xi. Therefore, the minimum of
xi+1 = xi. The lower bound remains open/closed for all k
and q ≥ xi+1 = xi = x0 = x.
Inductive step, upper bound: We now have to show that
xi+1 ≤ x ÷ e. The new bound xi+1 is computed
as xi t (xi ÷ e) = max(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e).
The maximum is attained at xi ÷ e (and at xi if they are
equal). The reasoning is as follows: all elements of e are
negative and if xi and xi are both negative, xi has the higher
absolute value. If xi is positive, the division by a negative
number will not contribute to a higher upper bound. As
e < e < −1 is a contraction, the highest value is achieved
for x ÷ e with bounds closed if the bounds corresponding
to x and to e are both closed, and open otherwise. With
xi > x by induction hypothesis, we can therefore conclude

that xi+1 ≤ xi ÷ e ≤ x÷ e. Therefore, q ≤ xk ≤ x÷ e.
Together with the lower bound x ≤ xk ≤ q we can conclude
that q ∈ Lx, x÷ eM.

“⊇”: We have to show that succ÷(x, e) ⊇ Lx, x÷ eM. Let
q ∈ Lx, x÷eM. We have to show that it then also follows that
q ∈ succ÷(x, e). As xk = x for all k ∈ N we only have to
show that there exists a k ∈ N with q ∈ xk = Lxk, xkM be-
cause xi+1 ⊆ xi and therefore q ∈ succ÷(x, e) =

⋃∞
i=0 xi.

The maximum is obtained after k = 1 steps because the
maximum to compute xi+1 = xi ÷ e only depends on the
lower bound xi which equals x for all k ≥ 0.

With such a decomposition, numeric effects can now be
computed in constant time. Unfortunately, the union of the
partial behaviors of an effect does not equal the semantic of
a successor.
Hypothesis 1. The successor succ◦(x, e) of an ef-
fect x ◦=e is the union of the successors obtained
by decomposition of the effect into behavior classes,
i.e.

⋃
x̃∈Bx,ẽ∈Be

succ◦(x ∩ x̃, e ∩ ẽ) = succ◦(x, e) where
succ◦(∅, e) = succ◦(x, ∅) = ∅.

Hypothesis 1 does not hold in general, as the following
example illustrates. The successor can grow into behavior
classes which were not covered by the decomposition:
Example 4. Let o = 〈∅ → {x ×= e}〉 have a numeric effect
on x in a state where x = [1, 4] and e = [− 1

2 , 2]. The succes-
sor succ×(x, e) is (−∞,∞). However, the partial behaviors
of the decomposition are succ×(x, [− 1

2 , 0)) = [−2, 4],
succ×(x, [0, 0]) = [0, 4], succ×(x, (0, 1)) = (0, 4],
succ×(x, [1, 1]) = [1, 4] and succ×(x, (1, 2]) = [1,∞).
With the union succ×(x ∩ x̃, e ∩ ẽ) = [−2,∞) which
differs from succ×(x, e) = (−∞,∞).

However, the number of behavior classes is restricted,
and therefore, new behavior classes can only be hit a re-
stricted number of times. The hypothesis can therefore
be fixed by including the partial behaviors T◦(x, e) of the
classes attained by x in a nested fix-point iteration: Let
x0 = x and xj+1 =

⋃
x̃∈Bx,ẽ∈Be

succ◦(xj ∩ x̃, e ∩ ẽ) with
succ◦(∅, e) = succ◦(x, ∅) = ∅ for j ≥ 0. Let s̃ucc◦(x, e) =⋃∞

j=0 xj . Now, the newly attained behavior classes become
part of the decomposition in the next iteration.
Example 5. Recall Example 4 starting with x0 = x = [1, 4]
where the successor succ×(x0 ∩ x̃, e ∩ ẽ) = [−2,∞).
Building the decomposition over the newly achieved behav-
ior classes with x1 = [−2,∞) and e = [− 1

2 , 2] contains
among others succ×([−2, 0), (1, 2]) = (−∞, 0). The union
still contains partial behaviors which set the upper bound to
∞ and therefore succ×(x1 ∩ x̃, e ∩ ẽ) = (−∞,∞). Now, a
fix-point is reached and s̃ucc◦(x, e) = succ◦(x, e).
Lemma 1. The union of decomposed successors
s̃ucc◦(x, e) converges after at most 21 steps.
Proof sketch. The number of behaviors in each class is re-
stricted to |Bx| = 3 and |Be| = 7. Most partial behaviors
T◦(x, e) either set a new bound to a certain value (0 or±∞),
or leave a bound of x unchanged. The only unsafe cases are
multiplications or divisions of a bound with −1 or e. How-
ever, none of these cases is problematic because e is fixed:

T×(x, e) with x ⊆ x̃ = (−∞, 0) and e ⊆ ẽ = (−1, 0)
sets a new upper bound x× e > 0. However, for all classes
T×(x, e) with x ⊆ x̃ = (0,∞), the upper bound is either set
to∞ or it remains the same. Therefore no problematic inter-
actions occur. The same reasoning holds for T×(x, e) with
x ⊆ x̃ = (0,∞) and e ⊆ ẽ = (−1, 0) as well as T÷(x, e)
with e ⊆ ẽ = (−∞,−1).

The feasibility of a decomposition can therefore be refor-
mulated to the following Theorem:
Theorem 3. The successor succ◦(x, e) of an effect x ◦= e
is the fix-point of the convex union of the successors ob-
tained by decomposition of the effect into behavior classes,
i.e. s̃ucc◦(x, e) = succ◦(x, e).
Proof sketch. It should be evident that s̃ucc◦(x, e) ⊆
succ◦(x, e). In the first iteration of s̃ucc◦(x, e) all partial
behaviors succ◦(x ∩ x̃, e ∩ ẽ) are operations on subsets of x
and e. As interval arithmetic is well defined, an arithmetic
operation on a interval x will therefore always subsume the
interval resulting from the same operation of a sub-interval
x′ ⊆ x. During each iteration of s̃ucc◦(x, e), the decom-
position can only grow to behavior classes that were part of
succ◦(x, e) in the first place.

The converse direction s̃ucc◦(x, e) ⊇ succ◦(x, e) is
shown by contradiction. Let q ∈ succ◦(x, e) but not in
s̃ucc◦(x, e). Both successor functions are defined recur-
sively starting with x0 = x. Therefore q /∈ x0, and there has
to be a k > 0 in succ◦(x, e) with kk+1 = xkt(xk◦e) so that
xk ⊂ s̃ucc◦(x, e) but xk+1 6⊂ s̃ucc◦(x, e). After k steps,
the bound of the successors extended beyond the decom-
position s̃ucc◦(x, e) for the first time. Obviously, the new
bound does not originate in xk but the new interval xk+1 is
obtained from (xk ◦ e). The resulting interval depends on
xk, xk, e, e and in case of division also on whether 0 ∈ e.
Each combination of these extreme bounds is contained in
one partial behavior T◦(xk, e). If (xk ◦ e) hits a new behav-
ior class or extends the bounds within a behavior class, this
is a contradiction to s̃ucc◦(x, e) being a fix-point. If (xk ◦e)
stays within a behavior, this is a contradiction to T◦(xk, e)
being well defined (Theorem 2). Thus, such a k cannot be
found, and therefore, it is impossible for q ∈ succ◦(x, e) but
not q ∈ s̃ucc◦(x, e).

With the help of the decomposed successor s̃ucc◦(x, e)
we can compute the result of applying an operator app#

o
with the repetition relaxed semantic in constant time. This
allows us to use the parallel fix-point algorithm from the
classical case analogously: apply all applicable operators in
parallel until a fix-point is reached. If the algorithm termi-
nates, the plan is indeed a plan.
Theorem 4. The parallel fix-point algorithm for repetition
relaxed planning is correct, i.e. if the algorithm outputs an
alleged plan, it is indeed a plan for Π#.

Proof. Operators are only applied if the precondition is ful-
filled.

Unfortunately, the algorithm does not necessarily termi-
nate. In the definition of the semantic of a repetition re-
laxed planning task, we fix the effect e even if it depends
on x. However, this implicit independence assumption is

not justified. Inspecting the entries in Table 1 reveals criti-
cal entries (marked in red) for multiplicative effects which
contract x and flip the arithmetic sign at the same time.
The same is true for assignment effects where T:(x, e) =
Lmin(x, e),max(x, e)M. In these cases, the new value of x
can have a different behavior, if e also depends on x. As e
can change when x changes, the algorithm does not neces-
sarily terminate.
Example 6. Let x = [−1,−1] and o = 〈∅ → {x ×= e}〉
with e = − x+1

2 . The goal is G = {x ≥ 1}.
Applying the operator arbitrarily often according to the

repetition semantic yields the following progression for k
operator applications:

k x e
0 [−1,−1] [0, 0]
1 [−1, 0] [−0.5, 0]
2 [−1, 0.5] [−0.75, 0]
3 [−1, 0.75] [−0.875, 0]
4 [−1, 0.875] [−0.9375, 0]
5 [−1, 0.9375] [−0.96875, 0]

...
...

Obviously, interval x does not only change a restricted num-
ber of times, so the fix-point algorithm for interval relaxed
numeric planning will not terminate.

If we succeeded in directly computing the fix-point to
which the intervals converge with a symbolic interval we
could continue the fix-point algorithm from here. In Exam-
ple 6 we could continue if we would set x = [−1, 1) and
e = (−1, 0]. Unfortunately, the authors did not succeed in
finding a general approach to do so (or to prove that such
a general approach does not exist). Instead, we will now
restrict the problem to planning tasks where the aforemen-
tioned problem does not occur. The problem in Example 6 is
that e depends on x. Thus, we will restrict planning tasks to
contain only effects where the assigned expression is inde-
pendent from the affected variable. We will then show that
such planning tasks are solvable in polynomial time.
Definition 4. A numeric variable v1 is directly dependent on
a numeric variable v2 in task Π if there exists an o ∈ O with
a numeric effect v1 ◦= e so that e contains v2.

Note that a variable can be directly dependent on itself.
Also, the definition of direct dependence does not consider
operator applicability.
Definition 5. A planning task Π is an acyclic dependency
task, if the direct dependency relation is acyclic.
Theorem 5. The parallel fix-point algorithm for repetition
relaxed planning terminates for acyclic dependency tasks.

Proof. As the planning task has acyclic dependencies, the
direct dependency relation induces a topology. Let a phase
of the algorithm be a sequence of parallel operator appli-
cations, where no new operator becomes applicable. Dur-
ing each phase, we consider numeric effects in topological
order concerning the dependency graph. Let V #l

N ⊆ V #
N

be the variables in dependency layer l. We iterate over the
layers k ≥ 0 of the topology assuming that a fix-point is

reached for all variables V #k
N . Variables V #k+1

N only de-
pend on variables V #l

N with 0 ≤ l ≤ k or on constants. A
fix-point is reached for all those variables by induction hy-
pothesis. Inductively, we can assume that the expressions
of numeric effects which alter the variables of layer V #k+1

N
are fixed. Therefore, the successor succ◦(x, e) of an effect
(x ◦= e) with x = s#(x) and e = s#(e) does not change
the variable more than once (or more than 21 times, if we
also consider the intermediate variable updates of the nested
fix-point iteration from Lemma 1).

The number of phases is restricted, too, with the same ar-
gument as for the fix-point algorithm in the classical case.
No precondition can be invalidated once it holds, and during
each phase at least one operator which was not applicable
before must become applicable. The number of phases is
therefore restricted to the number of operators in the plan-
ning task.

Theorem 6. The fix-point algorithm for repetition relaxed
planning is complete for acyclic dependency tasks.

Proof. We prove completeness by contradiction and show
that it is impossible that the algorithm terminates and re-
ports unsolvable although a plan exists. Now assume there
is a plan, but the algorithm terminates and reports unsolv-
able. Therefore, a satisfiable condition must have been un-
satisfied. For propositional conditions, this is impossible,
as s#(vp) � vp if vp ∈ {true, both} and no effect can set
a propositional variable to false. Additionally, all operators
are applied as soon as they are applicable. Thus, without
loss of generality, a satisfiable numeric constraint was not
achieved by the algorithm. This implies that a numeric ef-
fect (vn ◦= e) would have been able to assign a value to a
variable which was not reached by our algorithm. Therefore,
the successor defined by the semantic succ◦(s#(vn), s

#(e))
has to be different from the successor computed by the al-
gorithm s̃ucc◦(s#(vn), s

#(e)) which is impossible for nu-
meric tasks with Theorem 3, a contradiction.

Until now we have an algorithm which can compute paral-
lel plans for repetition relaxed planning tasks in polynomial
time for acyclic dependency tasks. As intervals can only
grow by applying an operator, the plan can be serialized by
applying parallel operators from the same layer in an arbi-
trary order. Beneficial effects may make the application of
some operators unnecessary, but it cannot harm conditions.

We are interested in plans for the interval relaxation with-
out the symbolic description of numeric variables. We will
now show that we can derive interval relaxed plans π+ from
repetition relaxed plans π#.

Theorem 7. Plans for the repetition relaxation correspond
to plans for the interval relaxation.

Proof sketch. A serialization of a repetition relaxed plan
π# = 〈o1, o2, . . . , on〉 where 0 < i < n are the operators
applied in the i-th step where the same operator can be ap-
plied in multiple steps. We seek to find a repetition constant
ki for each operator in order to satisfy the constraints from
interval relaxed planning corresponding to those of the rep-
etition relaxed planning plan. However, repetition relaxed

tasks operate on mixed bounded intervals Im whereas inter-
val relaxed tasks are restricted to closed intervals. Thus, we
have to explicate the interval bounds as well. The repetition
relaxed fix-point algorithm is split into phases, were during
each phase the same operators are applicable. Within each
phase, the operators are applied in parallel at most 21 times
for each variable (if all variables have different topology lev-
els in the dependence graph). In order to determine the repe-
tition constants ki, we look at each constraint [a, a] ./ [b, b].
By definition of ./, there exist qa and qb in the respective
intervals so that qa ./ qb. Let qa and qb be such numbers
which satisfy the constraint a ./ b where a and b are in-
tervals which are obtained by evaluating the corresponding
expressions s#(ea) and s#(eb). We investigate each expres-
sion individually. For each expression we have a target value
q. For the constraints above the expressions are ea and eb
and the corresponding target values qa and qb. Unless the
expression is a variable, the target value has to be obtained
recursively from the expressions e1 ◦ e2.

Example 7. Let x = [0, 1), y = [0, 1) and z = (1.7, 3] be
the symbolic values of variables x, y and z with a condition
x+y > z. From ea = x+y 7→ [0, 2) and eb = z we choose an
arbitrary qa = 1.9 ∈ s#(ea) an arbitrary qb = 1.8 ∈ s#(eb)
from within the expression intervals so that the constraint
is satisfied. Now we have to recursively find appropriate
qx and qy in the sub-expressions. A leeway of 2 − 1.9 =
0.1 can be distributed arbitrarily to the target values of the
sub-expressions. We could for example continue with target
values 0.95 for x and y each.

We can choose arbitrary target values for the sub-
expressions within a leeway of feasible choices. Eventu-
ally, all expressions induce target values for the numeric
variables. This can induce multiple different target values
for each variable where only the most extreme target val-
ues have to be considered (an interval including the most
extreme target values will also include intermediate target
values). All target values originate from a repetition relaxed
symbolic state, so they are indeed reachable. In the repeti-
tion relaxed plan, each operator which has a numeric effect
on a variable with a target value achieved the symbolic value
for this variable with a partial behavior from Table 1. For
each operator, the constant k is now computed by solving
x ± k · e = q for additive effects and x > ek = q for mul-
tiplicative effects. The k is therefore the same k from the
proof of Theorem 2. Each operator then has to be applied
n times, where n is the sum over all kp in the phases of the
algorithm, where kp is the maximum number of applications
required for that operator in that phase.

Theorem 8. The problem to generate an interval relaxed
numeric plan is in P for tasks with acyclic dependencies.

Proof. The fix-point algorithm for repetition relaxed plan-
ning tasks is correct (Theorem 4) and complete (Theorem 6)
and it terminates in polynomial time (Theorem 5). There-
fore, generating a repetition relaxed plan π# is possible in
polynomial time. An interval relaxed plan π+ can be con-
structed from π# (Theorem 7) in polynomial time.

The definition of a relaxation is adequate (Hoffmann
2003) if it is admissible, i.e. any plan π for the original task
Π is also a relaxed plan for Π+, if it offers basic informed-
ness, i.e. the empty plan is a plan for Π iff it is a plan for
Π+ and finally the plan existence problem for the relaxation
is in P.
Theorem 9. The interval relaxation is adequate for acyclic
dependency tasks.

Proof. Admissibility. After each step of the plan π, if propo-
sitional variables of the relaxed state differ from the original
state, they assign to both which cannot invalidate any (goal
or operator) conditions. The original value of numeric vari-
ables is contained in the interval of the relaxed state. As
comparison constraints are defined with the relaxed seman-
tic that a constraint holds if it holds for any pair of elements
from the two intervals, admissibility follows directly.

Basic informedness. No (goal or operator) conditions
are dropped from the task. Relaxed numeric variables are
mapped to degenerate intervals which only contain one el-
ement. Therefore, conditions in the original task x ./ y
correspond to interval constraints [x, x] ./ [y, y] which are
satisfied iff they are satisfied in the relaxed task.

Polynomiality. As a corollary to Theorem 8, we can also
conclude that interval relaxed numeric plan existence is in P
for tasks with acyclic dependencies.

The interval relaxation is admissible and offers basic in-
formedness. For acyclic dependency tasks, the plan exis-
tence problem can be decided in polynomial time. Thus, the
interval relaxation is adequate.

The proposed relaxation advances the state of the art even
though the adequacy of interval relaxation was only shown
for a restricted set of tasks. However, the requirement of
acyclic dependency for numeric expressions is a strict gen-
eralization of expressions e being required to be constant,
which is required for other state-of-the-art approaches e.g.
(Hoffmann 2003). On the practical side, many interesting
planning problems are restricted to constant expressions.

Conclusion and Future Work
We presented interval algebra as a means to carry the con-
cept of a delete relaxation from classical to numeric plan-
ning. We proved that this relaxation is adequate for acyclic
dependency tasks, tasks where the expressions of numeric
effects do not depend on the affected variable. The com-
plexity of the approach for arbitrary interval relaxed plan-
ning problems remains an open research issue though. It is
imaginable that a clever approach can find the fix-point of
arbitrary operator application in polynomial time.

In the future, we intend to adapt the most iconic heuristics
from classical planning, hmax, hadd and hFF to the interval
relaxation framework.

Acknowledgments
This work was partly supported by the DFG as part of the
SFB/TR 14 AVACS.

References
Bäckström, C., and Nebel, B. 1993. Complexity results for
SAS+ planning. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence (IJCAI 1993).
Bonet, B., and Geffner, H. 1999. Planning as Heuristic
Search: New Results. In Proceedings of the 5th European
Conference on Planning (ECP 1999), 360–372.
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A Robust
and Fast Action Selection Mechanism for Planning. In Pro-
ceedings of the 14th National Conference on Artificial Intel-
ligence and 9th Innovative Applications of Artificial Intelli-
gence Conference (AAAI 1997/ IAAI 1997), 714–719.
Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence 69
(AI 1994) 165–204.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A Hybrid
Relaxed Planning Graph-LP Heuristic for Numeric Planning
Domains. In Proceedings of the 20th International Confer-
ence on Automated Planning and Search (ICAPS 2008).
Fikes, R., and Nilsson, N. J. 1971. STRIPS: a New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 2 (AI 1971) 189–208.
Fox, M., and Long, D. 2003. PDDL2.1 : An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20 (JAIR 2003) 61–124.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proceedings
of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002), 303–312.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ’Ignoring Delete Lists’ to Numeric State Variables.
Journal of Artificial Intelligence Research 20 (JAIR 2003)
291–341.
Moore, R. E.; Kearfott, R. B.; and Cloud, M. J. 2009. In-
troduction to Interval Analysis. Society for Industrial and
Applied Mathematics.
Young, R. C. 1931. The Algebra of Many-valued Quantities.
Mathematische Annalen 104 260–290.

Tight Bounds for HTN planning with Task Insertion1

Ron Alford
ASEE/NRL Postdoctoral Fellow

Washington, DC, USA
ronald.alford.ctr@nrl.navy.mil

Pascal Bercher
Ulm University
Ulm, Germany

pascal.bercher@uni-ulm.de

David W. Aha
U.S. Naval Research Laboratory

Washington, DC, USA
david.aha@nrl.navy.mil

Abstract

Hierarchical Task Network (HTN) planning with Task
Insertion (TIHTN planning) is a formalism that hy-
bridizes classical planning with HTN planning by al-
lowing the insertion of operators from outside the
method hierarchy. This additional capability has some
practical benefits, such as allowing more flexibility
for design choices of HTN models: the task hierarchy
may be specified only partially, since “missing required
tasks” may be inserted during planning rather than prior
planning by means of the (predefined) HTN methods.
While task insertion in a hierarchical planning setting
has already been applied in practice, its theoretical
properties have not been studied in detail, yet – only
EXPSPACE membership is known so far. We lower that
bound proving NEXPTIME-completeness and further
prove tight complexity bounds along two axes: whether
variables are allowed in method and action schemas,
and whether methods must be totally ordered. We also
introduce a new planning technique called acyclic pro-
gression, which we use to define provably efficient TI-
HTN planning algorithms.

1 Introduction
Hierarchical Task Network (HTN) planning (Erol et al.
1996) is a planning approach, where solutions are gener-
ated via step-wise refinement of an initial task network in
a top-down manner. Task networks may contain both com-
pound and primitive tasks. Whereas primitive tasks cor-
respond to standard STRIPS-like actions that can be ap-
plied in states where their preconditions are met, compound
tasks are abstractions thereof. That is, for every compound
task, the domain features a set of decomposition methods,
each mapping that task to a task network. Solutions are
obtained by applying methods to compound tasks thereby
replacing these tasks by the task network of the respec-
tive method. HTN planning is strictly more expressive than
non-hierarchical (i.e., classical) planning. That is, solutions
of HTN problems may be structured in a way that are
more complex than solutions of classical planning problems
(Höller et al. 2014). However, HTN planning is also harder
than classical planning. The complexity of the plan existence

1This paper will appear in IJCAI-2015.

Table 1: Summary of our TIHTN plan existence results (not
including Corollary 7). All results are completeness results.

Ordering Variables Complexity Theorem
total no PSPACE Thm. 3
total yes EXPSPACE Thm. 4

partial no NEXPTIME Thm. 5, 6
partial yes 2-NEXPTIME Thm. 5, 6

problem ranges up to undecidable even for propositional
HTN planning (Erol et al. 1996; Geier and Bercher 2011;
Alford et al. 2015). Even the verification of HTN solutions
is harder than in classical planning (Behnke et al. 2015).

Hierarchical planning approaches are often chosen for
real-world application scenarios (Nau et al. 2005; Lin et al.
2008; Biundo et al. 2011) due to the ability to specify so-
lution strategies in terms of methods, but also because hu-
man expert knowledge is often structured in a hierarchical
way and can thus be smoothly integrated into HTN planning
models. On the other side, these methods also make HTN
planning less flexible than non-hierarchical approaches, be-
cause only those solutions may be generated that are “reach-
able” via the decomposition of the methods. So, defining
only a partially hierarchical domain is not sufficient to pro-
duce all desired solutions. Several HTN researchers have
thus investigated how partially hierarchical domain knowl-
edge can be exploited during planning without relying on
the restricted (standard) HTN formalism (Kambhampati et
al. 1998; Biundo and Schattenberg 2001; Alford et al. 2009;
Geier and Bercher 2011; Shivashankar et al. 2013).

The most natural way to overcome that restriction is to
allow both the definition and decomposition of compound
tasks and the insertion of tasks from outside the decompo-
sition hierarchy as it is done, for example, by Kambhampati
et al. (1998) and Biundo and Schattenberg (2001) in Hybrid
Planning – a planning approach fusing HTN planning with
Partial-Order Causal-Link (POCL) planning.

This additional flexibility also pays off in terms of com-
putational complexity: allowing arbitrary insertion of tasks
into task networks lowers the complexity of the plan exis-
tence problem from undecidable (for standard HTN plan-

ning) to EXPSPACE membership (for HTN planning with
task insertion – TIHTN planning) (Geier and Bercher 2011).
This reduction of the complexity also has its negative con-
sequences, however. Some planning problems that can be
easily expressed in the HTN planning setting may not be
expressed in the TIHTN setting (others only with a blowup
of the problem size) (Höller et al. 2014). Also, the set of
TIHTN solutions of a problem may not correspond to the
ones the domain modeler intended: in HTN planning – as
opposed to TIHTN planning – only those plans are regarded
solutions that can be obtained by decomposition only. Thus,
certain plans may be ruled out even if they are executable.

In this paper, we investigate the influence of method struc-
ture (partially vs. totally ordered) and of variables (proposi-
tional vs. lifted TIHTN problems), and provide tight com-
plexity bounds of the plan existence problem for the four
resulting classes of TIHTN problems. The results are sum-
marized in Table 1 (and compared to the respective results
from HTN planning in Table 2 in the last section). Notably,
we show that propositional TIHTN planning is NEXPTIME-
complete, easier than the previously known EXPSPACE up-
per bound. Besides providing tight complexity bounds for
the plan existence problem, another contribution is a new
algorithm, called acyclic progression, that efficiently solves
TIHTN problems. The paper closes with a discussion about
the new complexity findings for TIHTN planning that puts
them into context of already known results for HTN plan-
ning.

2 Lifted HTN Planning with Task Insertion
Geier and Bercher (2011) defined a propositional (set-
theoretic) formalization of HTN and TIHTN planning prob-
lems. Both problem classes are syntactically identical – they
differ only in the solution criteria. Recently, we extended
their formalization of HTN planning to a lifted representa-
tion based upon a function-free first order language (Alford
et al. 2015), where the semantics are given via grounding.
For the purpose of this paper, we replicate the definitions for
lifted HTN planning and extend them by task insertion to
allow specifying lifted TIHTN planning problems.

Task names represent activities to accomplish and are syn-
tactically first-order atoms. Given a set of task names X , a
task network is a tuple tn = (T,≺, α) such that:

• T is a finite nonempty set of task symbols.

• ≺ is a strict partial order over T .

• α : T → X maps from task symbols to task names.

Since task networks are only partially ordered and any task
name might be required to occur several times, we need a
way to “identify” them uniquely. For that purpose, we use
the task symbols T as unique place holders. A task network
is called ground if all task names occurring in it are variable-
free.

A lifted TIHTN problem is a tuple (L,O,M, sI , tnI),
where:

• L is a function-free first order language with a finite set of
relations and constants.

• O is a set of operators, where each o ∈ O is a triple
(n, χ, e), n being its task name (referred to as name(o))
not occurring in L, χ being a first-order logic formula
called the precondition of o, and e being a conjunction
of positive and negative literals in L called the effects of
o. We refer to the set of task names in O as primitive.

• M is a set of (decomposition) methods, where each
method m is a pair (c, tn), c being a (non-primitive or
compound) task name, called the method’s head not oc-
curring in O or L, and tn being a task network, called the
method’s subtasks, defined over the names in O and the
method heads inM.

• sI is the (ground) initial state and tnI is the initial task
network that is defined over the names in O.
We define the semantics of lifted TIHTN planning

through grounding. For the details of the grounding pro-
cess, we refer to (Alford et al. 2015). The ground (or
propositional) TIHTN planning problem obtained from
(L,O,M, sI , tnI) is given by P = (L, O,M, sI , tn

′
I).

The operatorsO form an implicit state-transition function
γ : 2L ×O → 2L for the problem, where:

• A state is any subset of the ground atoms in L. The finite
set of states in a problem is denoted by 2L;

• o is applicable in a state s iff s |= prec(o);
• γ(s, o) is defined iff o is applicable in s; and
• γ(s, o) = (s \ del(o)) ∪ add(o).
Executability A sequence of ground operators
〈o1, . . . , on〉 is executable in a state s0 iff there
exists a sequence of states s1, . . . , sn such that
∀1≤i≤nγ (si−1, oi) = si. A ground task network
tn = (T,≺, α) is primitive iff it contains only task
names from O. tn is executable in a state s0 iff tn is
primitive and there exists a total ordering t1, . . . , tn of
T consistent with ≺ such that 〈α (t1) , . . . , α (tn)〉 is
executable in s0.

Task Decomposition Primitive task networks can only be
obtained by refining the initial task network via decomposi-
tion of compound tasks. Intuitively, decomposition is done
by selecting a task with a non-primitive task name, and re-
placing the task in the network with the task network of a
corresponding method. More formally, let tn = (T,≺, α)
be a task network and let m = (α(t), (Tm,≺m, αm)) ∈ M
be a method. Without loss of generality, assume T∩Tm = ∅.
Then the decomposition of t in tn by m into a task network
tn′, written tn−−→t,m D tn′, is given by:

T ′ := (T \ {t}) ∪ Tm
≺′ := {(t, t′) ∈ ≺ | t, t′ ∈ T ′} ∪ ≺m

∪ {(t1, t2) ∈ Tm × T | (t, t2) ∈ ≺}
∪ {(t1, t2) ∈ T × Tm | (t1, t) ∈ ≺}

α′ := {(t, n) ∈ α | t ∈ T ′} ∪ αm

tn′ := (T ′,≺′, α′)
If tn′ is reachable by any finite sequence of decompositions
of tn, we write tn→∗D tn′.

Task Insertion TIHTN planning, in addition to decompo-
sition, allows tasks to be inserted directly into task networks.
Let tn = (T,≺, α) be a task network, t be a fresh task sym-
bol not in T , and o be a primitive task name. Then task
insertion, written tn −−→t,o I tn

′, results in the task network
tn′ = (T ∪ {t} ,≺, α ∪ {(t, o)}). If tn′ is reachable by any
sequence of insertions to tn, we write tn→∗I tn′.

Task insertion commutes with decomposition, i.e., if
tn1 −−→t,m D tn2 −−→t′,o I tn3, then there exists a tn′2 such that
tn1−−→t′,o I tn

′
2
−−→
t,m D tn3. If tn′ is reachable by any sequence

of decompositions and insertions to tn, we write tn→∗DI tn
′.

Solutions Under HTN semantics, a problem P is solv-
able iff tnI →∗D tn′ and tn′ is executable in sI . The task
network tn′ is then called an HTN solution of P . Under
TIHTN semantics, P is solvable iff there exists a tn′ such
that tnI →∗DI tn

′ and tn′ is executable in sI .
The following definitions go beyond those in (Alford et

al. 2015; Geier and Bercher 2011).

Acyclic Decompositions Let tn be a task network se-
quence starting in tnI and ending in a task network tn′, s.t.
tnI →∗DI tn

′. For each network tnj ∈ tn, every task sym-
bol was either present in tnI , inserted directly via task in-
sertion, or is the result of a sequence of decompositions of
a task symbol in tnI . For the tasks arrived at by decompo-
sition, we can define their ancestors in the usual way: For
tni, tni+1 ∈ tn with tni −−−→ti,mi D tni+1, ti is an ancestor of
each task t′ ∈ tni+1 that comes from mi; and ancestry is
transitive, i.e., if ti is an ancestor of tj and tj is an ancestor
of tk, then ti is an ancestor of tk. tn is acyclic if for every
task t in its final task network, the ancestors of t all have
unique task names. Thus, an acyclic series of decomposi-
tions and insertions tnI →∗DI tn

′ makes no use of recursive
methods, regardless of their presence in the set of methods.

Geier and Bercher (2011) represent ancestry using de-
composition trees and show that, given a TIHTN solution
tn that is obtained via cyclic method application, one can
repeatedly remove cycles (replacing orphaned sequences of
decomposition with task insertion) to arrive at an acyclic so-
lution tn′.

The next corollary follows as a special case of the applica-
tion of Lemma 1 and Lemma 2 by Geier and Bercher (2011).

Corollary 1. Let P = (L, O,M, sI , tnI) be a ground plan-
ning problem and let tn = (T,≺, α) be a task network such
that tnI →∗DI tn and 〈t1, . . . , tk〉 is an executable task se-
quence of tn that does not violate the ordering constraints
≺. Then there exists a task network tn′ = (T ′,≺′, α′) with
an acyclic decomposition tn →∗DI tn

′ and an executable
task sequence 〈t′1, . . . , t′k〉 of tn′ not violating α′, such that
∀iα (ti) = α′ (t′i).

3 Acyclic Progression for TIHTN Planning
HTN planners generally solve problems either using decom-
position directly (Erol et al. 1994; Bercher et al. 2014), or
by using progression (Nau et al. 2003), which interleaves
decomposition and finding a total executable order over the
primitive tasks (Alford et al. 2012). Since progression-based

HTN algorithms can be efficient across a number of syntac-
tically identifiable classes of HTN problems (Alford et al.
2015), it makes a useful starting point for designing efficient
TIHTN algorithms.

We define acyclic progression for TIHTN planning as a
procedure that performs progression on a current state. To
that end, it maintains a task network of primitive and com-
pound tasks that still need to be applied to the current state
or to be decomposed, respectively. To avoid recursive defi-
nitions, it maintains a set of ancestral task names. More pre-
cisely, search nodes are tuples (s, tn, h), where s is a state,
tn = (T,≺, α) is a task network, and h is a mapping of the
tasks in T to the set of ancestral task names, represented as
a set of task-task-name pairs. For each node, there are three
possible operations:

• Task insertion: If o is an operator such that s |= prec(o),
then (γ (s, o) , tn, h) is an acyclic progression of (s, tn, h)

• Task application: If t ∈ T is an unconstrained primitive
task (∀t′ 6=tt

′ ⊀ t) and s |= prec (α (t)), then we can apply
α(t) to s and remove it from tn and h. So, given

T ′ := T \ {t}
≺′ := {(t1, t2) ∈ ≺ | t1 6= t ∧ t2 6= t}
α′ := {(t′, n) ∈ α | t′ 6= t}
tn′ := (T ′,≺′, α′)
h′ := {(t′, n) ∈ h | t′ 6= t}

then (γ (s, α (t)) , tn′, h′) is an acyclic progression of
(s, tn, h).

• Task decomposition: If t ∈ T is an unconstrained non-
primitive task, (α (t) , tnm) ∈ M is method with tnm =
(Tm,≺m, αm), and none of the task names in α occur as
an ancestral task name of t in h, then we can decompose
t and update the history. So if tn−−→t,m D tn′ and

h′ := {(t′, n) ∈ h | t′ 6= t}
∪ {(tm, n) | tm ∈ Tm, (t, n) ∈ h}
∪ {(tm, α (t)) | tm ∈ Tm}

then (s, tn′, h′) is an acyclic progression of (s, tn, h).

If there is a sequence of acyclic progressions from the
triple (s, tn, h) to (s′, tn′, h′), we write (s, tn, h) →∗AP
(s′, tn′, h′). Notably, acyclic progression is only acyclic
over decompositions, not states reached. If there is any se-
quence of acyclic decompositions to an empty task network,
then the problem has a TIHTN solution:
Lemma 2. Given a ground planning problem P =
(L, O,M, sI , tnI), there is a series of acyclic progressions
(sI , tnI , ∅)→∗AP (s, tn∅, ∅) (where tn∅ is the empty task net-
work) if and only if P is solvable under TIHTN semantics.

Proof. (⇒) Let TD be the subsequence of the acyclic pro-
gression (sI , tnI , ∅)→∗AP (s, tn∅, ∅) containing all the de-
compositions performed, TA be the subsequence of task ap-
plications, TI be the subsequence of task insertions, and
TIA be the subsequence of both task applications and in-
sertions.

Since task application only removes primitive tasks, TD
must be a decomposition of tnI to a primitive task network
tn′, specifically one with a partial order ≺′ which is con-
sistent with the order and content of task applications, TA.
Then, given that task insertion commutes with decomposi-
tion, TI gives us a set of insertions tn′→∗I tn′′, and TIA is
a witness that tn′′ has an executable ordering.

(⇐) If P is solvable, by Corollary 1 there is an acyclic
decomposition sequence tn such that tnI →∗D tn, and a se-
quence of insertions tn→∗I tn′ such that tn′ = (T ′,≺′, α′)
has an executable ordering TIA = 〈t1, . . . , tk〉. Insertions
commute with both themselves and with decomposition, and
decompositions commute with each other so long as one de-
composed task is not an ancestor of the other. So the fol-
lowing procedure gives an acyclic progression of P to the
empty network. Given that ti is the last task from TIA to
be applied to the state (by insertion or application) and the
current triple under progression is (sj , tnj , hj):

• If there is a non-primitive task tj in tnj such that tj is an
ancestor of ti+1 in the sequence tn, use the decomposition
from tn to decompose tj .

• If ti+1 exists in tnj , progress it out of the task network
with task application and move on to ti+2.

• Else, ti+1 was obtained by insertion, and so use insertion
to apply α′ (ti+1) to sj and move on to ti+1.

A problem’s acyclic progression bound is the size of the
largest task network reachable via any sequence of acyclic
progressions. Only decomposition can increase the task net-
work size. Since decomposition is required to be acyclic,
every problem has a finite acyclic progression bound. Given
the tree-like structure of decomposition, if m is the max
number of subtasks in any method and n is the number of
task names, and T is the set of task symbols in the initial
task network, then |T | ·mn is an acyclic progression bound
of the problem.

If methods are totally ordered (i.e., the ≺ relation in each
method is a total order), then we reach a much tighter bound:

Theorem 3. Propositional TIHTN planning for problems
with totally-ordered methods is PSPACE-complete.

Proof. Classical planning provides a PSPACE lower
bound (Geier and Bercher 2011). Here, we provide an up-
per bound.

Let P = (L, O,M, sI , tnI) be a ground TIHTN problem
where each method is totally ordered. The initial task net-
work tnI may be partially ordered. Letting tnI = (T,≺, α),
there are |T | initial tasks. Since the methods are totally
ordered, any sequence of progressions (sI , tnI , ∅) →∗AP
(s, tn, h) preserves that tn can be described by the relation-
ship of |T | or fewer totally ordered chains of tasks.

Progression can only affect the unconstrained tasks in the
chains. While the acyclic decomposition phase of progres-
sion can lengthen a chain bym−1 tasks (m being the size of
the largest method), each of those tasks has a strictly larger
set of ancestral task names, and the size of that set is capped.
If n is the number of ground task names, each chain can

only grow to a length of n · (m− 1). So the acyclic pro-
gression bound of problems with totally ordered methods is
|T | · n · (m− 1). Since the size of any state is also poly-
nomial, totally ordered proposition TIHTN plan existence is
PSPACE-complete.

Theorem 4. TIHTN planning is EXPSPACE-complete for
lifted problems with totally-ordered methods.

Proof. Grounding a lifted domain produces a worst-case
exponential increase in the number of task names providing
EXPSPACE membership. Lifted classical planning provides
the EXPSPACE lower bound (Erol et al. 1995).

4 22
k Bottles of Beer on the Wall

At most 2L tasks need to be inserted between each pair
of two consecutive primitive tasks in any acyclic decom-
position (Geier and Bercher 2011). This provides an upper
bound on the number of task insertions needed to show a TI-
HTN problem is solvable. The song “m Bottles of Beer on
the Wall” uses a decimal counter to encode a bound on the
number of refrains in space logarithmic to m (Knuth 1977).
Much like this, we will give transformations of TIHTN op-
erators so that a binary counter ensures strict upper bounds
on the number of primitive tasks in any solution. This will
limit the length of any sequence of progressions, giving us
upper complexity bounds for TIHTN planning.

Clearly, we could just limit acyclic progression to a
bounded depth instead. However we will also use the bound-
ing transformation below in the following section to pro-
vide a polynomial transformation of acyclic HTN problems
which preserves solvability under TIHTN semantics.

Let P be a propositional problem with a set of oper-
ators O and language L. Given a bound of the form 2k,
we create a language L′ which contains L and the follow-
ing propositions: counting, count init , and counteri and
decrementi for i ∈ {1 . . . k + 1}. We define the operator
set O′ to be each operator in O with the added the pre-
condition ¬counting and the additional effect counting ∧
decrement1. We define another set of operatorsOcount with
the following operators:
• (count init op,¬count init , count init ∧ counterk),

initializing the counter to the value 2k.
• (decrement i 0 op, pre, eff) for i ∈ {1..k}, where:

pre := count init ∧ decrementi ∧ ¬counteri
eff := ¬decrementi ∧ decrementi+1 ∧ counteri

setting the ith bit of the counter to 1 if it was zero and
moves on to the next bit.

• (decrement i 1 op, pre, eff) for i ∈ {1..k}, where:

pre := count init ∧ decrementi ∧ counteri
eff := ¬decrementi ∧ ¬counting ∧ ¬counteri

setting the ith bit of the counter to 0 and stops counting.
Then in the problem P ′ with operators O′ ∪ Ocount and
the language L′, any executable sequence consists of an al-
ternating pattern of an operator from O′ followed by a se-
quence of counting operators from Ocount. Since there is

no operator to decrement counterk+1, we can only apply
2k operators from O′ to the state. Notice that by setting the
appropriate counteri propositions in the count init op op-
erator, we could have expressed any bound between 0 and
2k+1 − 1.

We can extend this to doubly-exponential bounds for
lifted problems. Let P be a lifted problem with language
L and operators O, and let 22

k

be our bound on operators
from O to encode. Let L′ contain L and the following pred-
icates: counting(), count init(), and counter (v1, . . . , vk)
and decrement (v1, . . . , vk), and let 0, 1 be arbitrary dis-
tinct constants in L′.

As with the counteri predicates, the ground counter(. . .)
predicates will express a binary counter in the state, with
a binary index (the variables) into the exponential num-
ber of bits. Let cr1 . . . , crk be predicates such that each
cri has the form counter (vk, . . . , vi+1, 0, 1, . . . , 1) and let
dec1 . . . , deck be predicates such that each deci has the form
decrement (vk, . . . , vi+1, 0, 1, . . . , 1) where each vm is a
variable. So:
• dec1 = decrement (vk, . . . , v2, 0)

• dec2 = decrement (vk, . . . , v3, 0, 1)

• deck−1 = decrement (vk, 0, 1, . . . , 1), and
• deck = decrement (0, 1, . . . , 1)

Similarly, let dec′1, . . . , dec
′
k be predicates of the form

decrement (vk, . . . , vi+1, 1, 0, . . . , 0), so:
• dec′1 = decrement (vk, . . . , v2, 1)

• dec′2 = decrement (vk, . . . , v3, 1, 0)

• dec′k−1 = decrement (vk, 1, 0, . . . , 0)

• dec′k = decrement (1, 0, . . . , 0)

So if v is an assignment of v1, . . . , vk to {0, 1} and we view
the proposition deci [v] as an instruction to decrement the
jth bit of the counter, then dec′i [v] is for decrementing the
bit with index j + 1.

Let O′ consist of each operator in O with the added
the precondition ¬counting() and the additional effect
counting() ∧ decrement (0, . . . , 0). We define Ocount to
be the following operators:
• (count init op(), pre, eff), where:

pre := ¬count init()

eff := count init() ∧ counter (1, 0, . . . , 0)
which initializes the counter to the value 22

k

.
• (decrement i 0 op(), pre, eff) for i ∈ {1..k}, where:

pre := count init() ∧ deci ∧ ¬cri
eff := ¬deci ∧ deci+1 ∧ cri

which, if v is an assignment of v1, . . . , vk to {0, 1}, sets
cri [v] to 1 if it was zero and moves on to the next bit.

• (decrement i 1 op(), pre, eff) for i ∈ {1..k}, where:
pre := count init() ∧ deci ∧ cri
eff := ¬deci ∧ ¬counting() ∧ ¬cri

which, if v is an assignment of v1, . . . , vk to {0, 1}, sets
cri [v] to 0 and stops counting.

So after decrement (0, . . . , 0) is set by an operator (and
count init op() has been applied in the past), the only
legal sequence of operators involves stepping sequentially
through the 2j possible counter (. . .) predicates until the
decrement operation is finished.

Similar to the propositional transformation, we can start
the counter at some number which is a polynomial sum of
2i for i ∈

{
1..2k

}
. These two transformations are the dual

of the counting tasks in Theorems 4.1 and 4.2 from Alford
et al. (2015). Where the counting tasks gave methods that
enforced exactly 2k and 22

k

repetitions of a given task be
in any solution, this transformation ensures that there are no
more than the specified number of primitive tasks.

Theorem 5. Propositional TIHTN planning is in
NEXPTIME; lifted TIHTN planning is in 2-NEXPTIME.

Proof. Use the appropriate transformation from above to
limit the number of primitive operators in any solution to
|T | · mn · 2L, where |T | is the number of tasks in the
initial network, m is the max method size, n is the num-
ber of non-primitive task names in the grounded problem
(exponential for lifted problems), and 2L is the total num-
ber unique states expressible by L. This ensures every se-
quence of acyclic progressions ends after an exponential
number of steps for propositional problems and a doubly-
exponential number of steps for lifted problems. Thus, a
depth-first non-deterministic application of acyclic progres-
sion until it reaches a solution or can progress no more is
enough to prove the existence of a TIHTN solution.

5 Acylic HTN Planning with TIHTN
Planners

Theorem 5 provides upper bounds for TIHTN planning. Sec-
tion 2 describes acyclic decomposition. An acyclic prob-
lem is one in which every sequence of decompositions is
acyclic (Erol et al. 1996; Alford et al. 2012). HTN plan
existence for propositional partially ordered acyclic prob-
lems is NEXPTIME-complete and 2-NEXPTIME-complete
for lifted partially ordered acyclic problems.

Theorem 6.1 of (Alford et al. 2015) encodes NEXPTIME-
and 2-NEXPTIME-bounded Turing machines almost en-
tirely within the task network of propositional and lifted
acyclic HTN problems, respectively. Of particular interest
here, though, is that, for a given time bound and Turing
machine, every primitive decomposition of the initial task
network in these encodings has exactly the same number of
primitive tasks. This lets us use the bounding transformation
from Section 4 to prevent rogue task insertion under TIHTN
semantics:

Theorem 6. Propositional TIHTN planning is NEXPTIME-
hard; lifted TIHTN planning is 2-NEXPTIME-hard.

Proof. Let N be a nondeterministic Turing machine
(NTM), let K = 22

k

be the time bound for N , and let P
with operators O be the encoding of N as a lifted acyclic
HTN problem.

One can calculate exactly how many primitive tasks are
in any decomposition of P , but it is roughly of the form

B = c ·K2 + d ·K +1 for constants c and d, which we can
express as a polynomial sum of 22

i

. Let P ′ be the B-task-
bounded transformation of P .

From the hardness proof of Theorem 6.1 of (Alford et al.
2015), we know: if N can be in an accepting state after K
steps, there is an executable primitive decomposition of P
with B tasks from O, and so P ′ has a TIHTN solution.

Let tn be a non-executable primitive decomposition of the
initial task network, tnI →∗D tn. Since the bounding trans-
formation does not affect the methods, this decomposition
sequence is also legal in P ′ (with operators O′ ∪ Ocount).
Since any insertions of operators fromO′ would put tn over
the limit B, no sequence of insertions can make this task
network executable in P ′. Thus if no run of N is in an ac-
cepting state after K steps, no primitive decomposition of P
is executable, and there is no TIHTN solution to P ′.

Since P ′ has a TIHTN solution iff P has a solution, and
P encodes a 22

k

-bounded NTM, lifted TIHTN planning is
2-NEXPTIME-hard.

The proof is the same for propositional TIHTN problems
using the propositional encoding of 2k time-bounded NTMs
into acyclic HTN problems, so propositional acyclic TIHTN
planning is NEXPTIME-hard.

As a corollary, we obtain NEXPTIME and 2-NEXPTIME
completeness for propositional and lifted TIHTN planning,
respectively.

6 A comparison with HTN complexity classes
Based on the recursion structure classification for HTN
problems (Alford et al. 2012), we now have an extensive
classification of HTN problems by structure and complex-
ity:

• Acyclic problems, discussed earlier, where every decom-
position is guaranteed to be acyclic.

• Tail-recursive problems, where methods can only recurse
through their last task. All acyclic problems are also tail-
recursive.

• Arbitrary-recursive problems, which includes all HTN
problems.

However, by Corollary 1, non-acyclic (i.e., cyclic) decom-
positions can be ignored, limiting the impact of recursion
structure on the complexity of TIHTN planning.

This is not to say that method structure (outside of order-
ing) has no effect on the complexity of TIHTN planning.
For instance, regular TIHTN problems (defined by Erol et
al. (1996) for HTN planning) with a partially ordered ini-
tial task network and partially ordered methods are easier
than non-regular (partially ordered) problems. Regular prob-
lems are a special case of tail-recursive problems, where ev-
ery method is constrained to have at most one non-primitive
task in the method’s network, and that task must be con-
strained to come after all the primitive tasks. Regular prob-
lems have a linear progression bound regardless of whether
the primitive tasks are totally-ordered amongst themselves.
Since acyclic progression is a special case of progression,
regular problems have linear acyclic progression bounds,

Table 2: Comparison of the complexity classes for HTN
planning (completeness results) from (Alford et al. 2015)
with our TIHTN planning results (indicated by TI=yes).

Vars. Ordering TI Recursion Complexity
no total no acyclic PSPACE
no total no regular PSPACE
no total no tail PSPACE
no total no arbitrary EXPTIME
no total yes – PSPACE

no partial no acyclic NEXPTIME
no partial no regular PSPACE
no partial no tail EXPSPACE
no partial no arbitrary undecidable
no partial yes regular PSPACE
no partial yes – NEXPTIME

yes total no acyclic EXPSPACE
yes total no regular EXPSPACE
yes total no tail EXPSPACE
yes total no arbitrary 2-EXPTIME
yes total yes – EXPSPACE

yes partial no acyclic 2-NEXPTIME
yes partial no regular EXPSPACE
yes partial no tail 2-EXPSPACE
yes partial no arbitrary undecidable
yes partial yes regular EXPSPACE
yes partial yes – 2-NEXPTIME

and thus partially ordered regular problems have the same
complexity under TIHTN semantics as totally-ordered regu-
lar problems:

Corollary 7. TIHTN plan-existence for regular problems
is PSPACE-complete when they are propositional, and
EXPSPACE-complete otherwise, regardless of ordering.

There are also times when HTN planning is simpler
than TIHTN planning. Alford et al. (2014) show that HTN
planning for propositional regular problems which are also
acyclic is NP-complete. Since an empty set of methods and
a single primitive task in the initial network is enough to en-
code classical planning problems under TIHTN semantics,
acyclic-regular problems are still PSPACE-hard for propo-
sitional domains and EXPSPACE-hard when lifted.

So, while TIHTN planning is not always easier than HTN
planning, we have shown that its complexity hierarchy is,
in general, both simpler and less sensitive to method struc-
tures. In future work, we want to investigate the plan exis-
tence problem along the further axis of syntactic restrictions
on the task hierarchy and methods: Alford et al. (2015) de-
fines a new restriction on HTN problems, that of constant-
free methods, that forbids mixing constants and variables in
task names appearing in methods. This significantly reduces
the progression bound for lifted partially ordered acyclic and
tail recursive problems, and thus may also impact the com-
plexity of those problems under TIHTN semantics.

7 Conclusions
We studied the plan existence problem for TIHTN planning,
a hierarchical planning framework that allows more flexibil-
ity than standard HTN planning. The complexity varies from
PSPACE-complete for the totally ordered propositional set-
ting to 2-NEXPTIME-complete for TIHTN planning where
variables are allowed and the methods’ task networks may
be only partially ordered.

We showed that totally ordered TIHTN planning has the
same plan existence complexity as classical planning (both
with and without variables). Given that plan existence for
both delete-relaxed propositional TIHTN and classical prob-
lems is in polynomial time (Alford et al. 2014), we hope that
many of the algorithms and heuristics developed for classi-
cal planning can be adapted for totally-ordered TIHTN prob-
lems.

We also provided a new planning technique for TIHTN
planning, called acyclic progression, that let us define prov-
ably efficient TIHTN planning algorithms. We hope it in-
spires the creation of future planners that are both provably
and empirically efficient.

Acknowledgment This work is sponsored in part by OSD
ASD (R&E) and by the Transregional Collaborative Re-
search Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG). The information in this paper
does not necessarily reflect the position or policy of the
sponsors, and no official endorsement should be inferred.

References
Ron Alford, Ugur Kuter, and Dana S Nau. Translating HTNs
to PDDL: A small amount of domain knowledge can go a
long way. In Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 1629–1634. AAAI Press, 2009.
Ron Alford, Vikas Shivashankar, Ugur Kuter, and Dana S
Nau. HTN problem spaces: Structure, algorithms, termina-
tion. In Proc. of the 5th Annual Symposium on Combinato-
rial Search (SoCS), pages 2–9. AAAI Press, 2012.
Ron Alford, Vikas Shivashankar, Ugur Kuter, and Dana S.
Nau. On the feasibility of planning graph style heuris-
tics for HTN planning. In Proc. of the 24th Int. Conf. on
Automated Planning and Scheduling (ICAPS), pages 2–10.
AAAI Press, 2014.
Ron Alford, Pascal Bercher, and David W. Aha. Tight
bounds for HTN planning. In Proc. of the 25th Int. Conf. on
Automated Planning and Scheduling (ICAPS). AAAI Press,
2015.
Gregor Behnke, Daniel Höller, and Susanne Biundo. On
the complexity of HTN plan verification and its implica-
tions for plan recognition. In Proc. of the 25th Int. Conf. on
Automated Planning and Scheduling (ICAPS). AAAI Press,
2015.
Pascal Bercher, Shawn Keen, and Susanne Biundo. Hybrid
planning heuristics based on task decomposition graphs. In
Proc. of the Seventh Annual Symposium on Combinatorial
Search (SoCS), pages 35–43. AAAI Press, 2014.

Susanne Biundo and Bernd Schattenberg. From abstract
crisis to concrete relief (a preliminary report on combining
state abstraction and HTN planning). In Proc. of the 6th Eu-
rop. Conf. on Planning (ECP), pages 157–168. AAAI Press,
2001.
Susanne Biundo, Pascal Bercher, Thomas Geier, Felix
Müller, and Bernd Schattenberg. Advanced user assistance
based on AI planning. Cognitive Systems Research, 12(3-
4):219–236, April 2011. Special Issue on Complex Cogni-
tion.
Kutluhan Erol, James A. Hendler, and Dana S. Nau. UMCP:
A sound and complete procedure for hierarchical task-
network planning. In Proc. of the 2nd Int. Conf. on Arti-
ficial Intelligence Planning Systems (AIPS), pages 249–254.
AAAI Press, 1994.
Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial Intelligence, 76(1):75–88,
1995.
Kutluhan Erol, James A. Hendler, and Dana S. Nau. Com-
plexity results for HTN planning. Annals of Mathematics
and Artificial Intelligence, 18(1):69–93, 1996.
Thomas Geier and Pascal Bercher. On the decidability of
HTN planning with task insertion. In Proc. of the 22nd Int.
Joint Conf. on Artificial Intelligence (IJCAI), pages 1955–
1961. AAAI Press, 2011.
Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne
Biundo. Language classification of hierarchical planning
problems. In Proc. of the 21st Europ. Conf. on Artificial
Intelligence (ECAI), pages 447–452. IOS Press, 2014.
Subbarao Kambhampati, Amol Mali, and Biplav Srivastava.
Hybrid planning for partially hierarchical domains. In Proc.
of the 15th Nat. Conf. on Artificial Intelligence (AAAI),
pages 882–888. AAAI Press, 1998.
Donald E. Knuth. The complexity of songs. SIGACT News,
9(2):17–24, July 1977.
Naiwen Lin, Ugur Kuter, and Evren Sirin. Web service com-
position with user preferences. In Proc. of the 5th Europ.
Semantic Web Conference (ESWC), pages 629–643, Berlin,
Heidelberg, 2008. Springer.
Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter,
J William Murdock, Dan Wu, and Fusun Yaman. SHOP2:
An HTN planning system. Journal of Artificial Intelligence
Research, 20:379–404, 2003.
Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter,
Dan Wu, Fusun Yaman, Héctor Muñoz-Avila, and J. William
Murdock. Applications of SHOP and SHOP2. Intelligent
Systems, IEEE, 20:34–41, March - April 2005.
Vikas Shivashankar, Ron Alford, Ugur Kuter, and Dana
Nau. The GoDeL planning system: a more perfect union
of domain-independent and hierarchical planning. In Proc.
of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 2380–2386. AAAI Press, 2013.

From FOND to Probabilistic Planning: Guiding search for quality policies

Alberto Camacho†, Christian Muise∗, Akshay Ganeshen†, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

∗Department of Computing and Information Systems, University of Melbourne
†{acamacho,akshay,sheila}@cs.toronto.edu, ∗{christian.muise}@unimelb.edu.au

Abstract
We address the class of probabilistic planning problems
where the objective is to maximize the probability of reach-
ing a prescribed goal (MAXPROB). State-of-the-art proba-
bilistic planners, and in particular MAXPROB planners, of-
fer few guarantees with respect to the quality or optimality of
the solutions that they find. The complexity of MAXPROB
problems makes it difficult to compute high quality solu-
tions for big problems, and existing algorithms either do not
scale well, or provide poor quality solutions. We exploit core
similarities between probabilistic and fully observable non-
deterministic (FOND) planning models to extend the state-
of-the-art FOND planner, PRP, to be a sound and sometimes
complete MAXPROB solver that is guaranteed to sidestep
avoidable dead ends. We evaluate our planner, Prob-PRP, on
a selection of benchmarks used in past probabilistic planning
competitions. The results show that Prob-PRP outperforms
previous state-of-the-art algorithms for solving MAXPROB,
and computes substantially more robust policies, at times do-
ing so orders of magnitude faster.

1 Introduction
Planning involves finding action strategies, also called plans,
that lead an agent to a desired goal condition. In scenarios
with exogenous events, or where the effects of an agent’s
actions cannot be accurately modeled, the execution of a
plan may not be fully predictable. In the planning com-
munity, uncertainty in the outcome of actions is modeled as
a variant of the classical planning formalism that incorpo-
rates non-deterministic actions. Two similar models can be
distinguished: fully observable non-deterministic (FOND)
planning, and probabilistic planning. The former assumes
fair non-determinism on the potential effects of the actions,
while the latter breaks this assumption and assigns a prob-
ability distribution over the action outcomes. We address
the subclass of probabilistic problems called MAXPROB,
whose objective is to find policies that maximize the proba-
bility of reaching a prescribed goal (Kolobov et al. 2011).

We reflect on what makes for a good quality policy.
Whereas optimal solutions to MAXPROB problems maxi-
mize the probability of reaching a goal, solutions often have
other properties that are also desirable. Further, in contrast
to online solutions, computing offline solutions makes it pos-
sible to offer guarantees with respect to the quality of solu-
tions.

The state of the art in MAXPROB planning is the on-
line planner Robust-FF (RFF) (Teichteil-Königsbuch, Kuter,
and Infantes 2010). RFF is sound and complete in the all-
outcomes determinization of problems with no dead ends,
but it offers no guarantees with respect to the quality and
optimality of the solutions in the presence of dead ends.

We exploit the core similarities between probabilistic and
FOND planning models to extend the state-of-the-art FOND
planner, PRP, to be a sound offline MAXPROB solver, which
we call Prob-PRP. Prob-PRP prunes the search space by
identifying state-action pairs that lead to undesired states,
making it possible to handle large and probabilistically com-
plex MAXPROB problems. The dead end detection mecha-
nism in Prob-PRP guarantees finding optimal solutions in
domains where all of the dead ends are avoidable.

We compare Prob-PRP with RFF across a variety of
benchmarks from the International Probabilistic Planning
Competition (IPPC). The results show that the quality of
the policies is better for Prob-PRP across the majority of
problems; particularly in domains with avoidable dead ends.
Further, the computation time required is at times orders of
magnitude faster, despite being offline.

Illustrative Example: The River Problem Consider the
River problem introduced in (Little and Thiébaux 2007). In
this problem, the agent has two options to cross a river: (i)
traverse a path of slippery rocks with a 25% chance of suc-
cess, a 25% chance of slipping and falling into the river, and
a 50% chance of reaching a small island. In the latter case,
she can swim towards the other side of the river with an 80%
chance of success and a 20% chance of drowning; (ii) swim
from one side of the river to the other, with a 50% chance of
success, and a 50% chance of falling in.

The optimal solution is for the agent to attempt to traverse
the rocks, and if she falls and survives, to swim from the is-
land. This policy causes the agent to reach the other side
of the river with a 65% probability of success, whereas the
greedy action of swimming has only a 50% chance of suc-
cess. Online replanners (e.g., (Yoon, Fern, and Givan 2007))
may be attracted by the shortest path to the goal (i.e. swim-
ming directly across): once a wrong choice is made, online
replanning approaches have no recourse to undo the bad ac-
tion. This motivates the need for effective offline planning
for MAXPROB problems with dead ends.

2 Preliminaries
We adopt the notation of Mattmüller et al. (2010) and Muise,
McIlraith, and Beck (2012) for non-deterministic SAS+

planning problems, extending it to probabilistic planning
with conditional effects.

A SAS+ probabilistic planning problem is a tuple
〈V, s0, s?,A〉, where V is a finite set of variables v, each
with domain DV . We denote D+

V to be the extended domain
that includes the undefined status,⊥, of v. A partial state (or
simply, a state) is an assignment to variables s : V → D+

V .
If s(v) 6= ⊥, we say that v is defined for s. When every vari-
able is defined for s we say that s is a complete state. The
initial state s0 is a complete state, and the goal state s? is
a partial state. A state s entails a state s′, denoted s |= s′,
when s(v) = s′(v) for all v defined for s′. The state obtained
from applying s′ to s is the updated state s⊕ s′ that assigns
s′(v) when v is defined for s′, and s(v) otherwise.

The actions a ∈ A have the form a = 〈Prea,Eff a〉,
where Prea is a state describing the condition that a state
s needs to entail in order for a to be applicable in s.
Eff a = 〈(p1; Eff 1

a), . . . , (pn; Eff n
a)〉 is a finite set of tu-

ples (pi; Eff i
a) where Σipi = 1. Each effect Eff i

a is a set of
the form {〈cond1, v1, d1〉, . . . , 〈condk, vk, dk〉}, where for
each j the condition condj is a partial state, and vj ∈ V ,
dj ∈ DVi . The result of applying the action a in the par-
tial state s |= Prea with effect Eff i

a is the partial state
Result(s,Eff i

a) = {v = d | 〈cond, v, d〉 ∈ Eff i
a and s |=

cond}. Finally, the progression of s w.r.t. action a and ef-
fect Eff i

a is the updated state Prog(s, a,Eff i
a) = s ⊕

Result(s,Eff i
a).

An action a is applicable in a partial state s when s |=
Prea. With a probability pi, the outcome of a is one
of the effects Eff i

a that leads to the updated state s′ =

Prog(s, a,Eff i
a). The term (s, a, s′) is called a transition,

and has associated transition probability T (s, a, s′) = pi.
A solution to a probabilistic planning problem is a policy

that maps (partial) states into actions with the objective of
reaching a state that entails s?. Given a policy π, we denote
Sπ the set of states in which π is defined. We say that π is
well defined when π(s) is applicable in s for all s ∈ Sπ . A
policy is closed when it is defined in all states, and otherwise
it is said to be a partial policy. A well-defined policy defines
sequences of state-action trajectories s0, a0, s1, a1 . . . where
π(sk) = ak, and sk+1 = Prog(sk, ak,Eff) for some Eff ∈
Eff ak

. A sequence P = a0, a1, . . . of such actions is called
a plan. We associate P (si) with the action ai.

We address the class of probabilistic planning problems
where the objective is to maximize the probability of reach-
ing a state that entails s? (MAXPROB). We refer to this as
the probability of success. The probability of success ignores
action costs, and focuses on goal-achievement. A policy is
optimal when its probability of success is maximal.

2.1 Related Planning Problems
A SAS+ Fully Observable Non-Deterministic (FOND)
planning problem is likewise described as a tuple
〈V, s0, s?,A〉. Nevertheless, in contrast to a probabilistic

planning problem, the FOND model assumes fair non-
determinism with respect to the effects of the actions. As
such, action effects are assumed to be equally likely, so there
are no probabilities, pi associated with the effects of actions
(Muise, McIlraith, and Beck 2012). A solution to a FOND
problem is a policy, usually distinguished according to the
criteria introduced in (Cimatti et al. 2003). Weak solutions
are plans that reach the goal under some sequence of non-
deterministic action outcomes, and strong solutions are poli-
cies that are guaranteed to reach the goal in a bounded num-
ber of transitions. Finally, strong cyclic solutions are poli-
cies that are guaranteed to eventually reach the goal, under
an assumption of fairness – effectively that in the limit, each
action will yield each of its non-deterministic outcomes in-
finitely often.

Markov Decision Processes (MDPs) are another proba-
bilistic planning model. The traditional MDP model intro-
duced in Puterman (1994) associates rewards to state tran-
sitions. MAXREWARD MDPs have either a finite horizon
or apply a discount factor γ < 1, and the solutions attempt
to maximize the expected reward. Stochastic Shortest Path
(SSP) MDPs (Bertsekas and Tsitsiklis 1991) is a class of
goal-oriented probabilistic planning problems. Their solu-
tions attempt to minimize the expected plan length under the
assumption that the goal state is reachable from any state. A
MAXPROB problem can be translated into a goal-oriented
MDP with infinite horizon and discount factor γ = 1 by fix-
ing the rewards to 1 in the goal states, and zero elsewhere
(cf. (Kolobov, Mausam, and Weld 2012))

2.2 State of the Art in MAXPROB Planning
The International Probabilistic Planning Competition
(IPPC) tests the performance of probabilistic planners
periodically. It is notable that none of the winners of past
IPPCs was an offline planner. As Little and Thiébaux
(2007) point out, one of the reasons why online planners
have outperformed offline planners is that the latter simply
cannot handle large instances of complex problems.

The first IPPCs (IPPC-04 and IPPC-06) were dedicated
to solving MAXPROB problems. The benchmark domains
used in these competitions were probabilistically simple
(Little and Thiébaux 2007), and a planner without proba-
bilistic reasoning entitled FF-Replan (Yoon, Fern, and Gi-
van 2007) won the IPPC-04 edition, and outperformed the
participants of the IPPC-06 with only minor changes.

The IPPC-08 adopted more complex benchmark domains
and focused on solving MAXREWARD probabilistic prob-
lems. The winner of the IPPC-08 was, with minor modifica-
tions, the MAXPROB planner Robust-FF (RFF) (Teichteil-
Königsbuch, Kuter, and Infantes 2010). The IPPC-2011
and IPPC-2014 focused on solving MAXREWARD MDPs
rather than goal-oriented probabilistic planning problems.
The winner of these competitions, PROST (Keller and Ey-
erich 2012), works well for reward-based problems, but its
performance suffers somewhat in goal-oriented settings such
as MAXPROB. To the best of our knowledge, RFF is the
state of the art for solving MAXPROB problems.

RFF computes plans in the determinization of the problem
that are used to extend an envelope gradually until the esti-

mated probability of failure during execution is lower than
a threshold parameter ρ. A failure during execution is un-
derstood as either falling into a deadend state, or falling into
a state s that is unhandled by the envelope (in which case,
RFF replans from s). The first envelope computed by RFF is
a deterministic plan returned by a call to FF (Hoffmann and
Nebel 2001); for each reachable state s not considered in the
current envelope, RFF computes a deterministic plan for s
and keeps iterating until the estimated probability of failure
for the policy in the envelope is lower than ρ.

RFF offers optional modes of operation that have the po-
tential to improve its performance. The best-goals strategy
computes the set of states handled by the envelope that are
the most likely to be reached during execution. Then FF is
used to search for plans that lead to the goal, or to states in
the best-goals set. Another mode performs policy optimiza-
tion during the search process. Using dynamic program-
ming, the policy is updated in each state to minimize the
expected cost, assuming the following: for each transition
(s, a, s′), the cost of a is 0 when s′ is a goal state; a fixed
penalty 1/(1 − γ) when s′ is a terminal state; and 1 other-
wise. Alternatively, RFF has a mode for solving MAXRE-
WARD problems that performs policy optimization and uses
the actual transition costs given in the specification of the
problem1.

The policy optimization mechanism is an effort to avoid
falling into terminal states, but it prioritizes the search for
plans that reach a goal state in the lowest number of state
transitions possible (i.e. stochastic shortest paths (Bertsekas
and Tsitsiklis 1991)) that are not necessarily the best qual-
ity MAXPROB solutions. As an example, suppose that RFF
explores two different plans from state s: (i) the first plan π1
has a short path to the goal, but may also fall into a dead end;
(ii) the second plan π2 has no dead ends, but all paths to the
goal are very long. Then, for sufficiently long paths in π2,
the policy optimization process in s selects π1 over π2 even
though the latter policy is of higher quality.

RFF is sound and complete in the all-outcomes deter-
minization of problems with no dead ends, but it offers no
guarantees with respect to the optimality of the solutions
found in the most probable determinization – even in prob-
lems without dead ends.

3 Quality of Solutions
The quality of the solutions to MAXPROB planning prob-
lems has been traditionally measured according to the prob-
ability of success, i.e., the probability of reaching the goal
eventually. In this section we discuss the importance of other
properties that account for good solutions – namely, the size
of the policies and the expected length of the plans. To this
point, there is no uniform theory of utility elicitation for so-
lutions to MAXPROB problems. This paper does not intend
to build that theory, but rather present an algorithm that finds
MAXPROB solutions that maintain a good balance between
the policy size and the expected plan length.

1Personal correspondence with Florent Teichteil-Königsbuch.

3.1 Policy Size
The FOND community has pursued policies that are small in
the number of state-action pairs, and compact in so far as the
policies can exploit partial state representations to capture a
family of states. An obvious advantage of small, compact
policies is that they are easily integrated into simple sys-
tems. While the FOND model often assumes the existence
of either strong or strong cyclic solutions, core methods for
obtaining small compact FOND policies can be applied to
find solutions to probabilistic planning problems.

3.2 Expected Plan Length
Policy search should take into account the state transition
probabilities, so that the expected length of the resulting
plans do not become unnecessarily large.

Relevant work has been done to find stochastic shortest
path solutions to SSP MDPs (e.g. (Bonet and Geffner 2003;
Trevizan and Veloso 2012)). Teichteil-Königsbuch (2012)
proposed the class of Stochastic Safest and Shortest Path
(S3P) problems, that generalizes SSP MDPs and allows for
unavoidable dead ends. Solutions to S3P MDPs attempt to
minimize the expected length of the plans and maximize the
probability of success. Unfortunately, this model is not com-
pletely solved yet. Kolobov, Mausam, and Weld (2012) dis-
tinguishes the class of SSP MDPs with unavoidable dead
ends, and presents a new family of heuristic search al-
gorithms, FRET (Find, Revise, Eliminate Traps). Work in
(Teichteil-Königsbuch, Vidal, and Infantes 2011) extends
the classical planning heuristics hadd and hmax (Bonet and
Geffner 2001) into heuristics for SSP MDPs with dead
ends that, when plugged into graph-based MDP search al-
gorithms, achieve competitive results compared to RFF. Un-
fortunately, none of these algorithms offer guarantees of op-
timality in problems with unavoidable dead ends.

3.3 Example
As an illustrative example, consider the controllers C1 and
C2 in Figure 1, representing the state transitions of two
policies, π1 and π2 respectively, that solve a MAXPROB
problem P . The nodes represent states and the arrows de-
scribe the state transitions, that may be non-deterministic
(e.g., the action π1(s0) = π2(s0) maps s0 into s1 or sg
with a certain probability distribution). Both solutions are
strong cyclic and map s0 into the goal sg eventually, but only
π1 is strong and reaches the goal in a bounded number of
state transitions. The expected length of the plans increases
with the transition probability T (s0, π2(s0), s1). For a suf-
ficiently high value, π1 may be preferred to π2 despite the
fact that it has a greater size. Furthermore, π1 may always
be preferred because the length of its plans are bounded.

4 Approach
Our contribution is to bring state-of-the-art FOND planning
technology to probabilistic planning. We extend the FOND
planner, PRP (Muise, McIlraith, and Beck 2012), to solve
goal-oriented probabilistic planning problems, and we aim
to maximize the probability of success (i.e. computing a so-
lution to the MAXPROB problem).

s0

sg s1

s2

Controller C1

s0

sg s1

Controller C2

Figure 1: Both solutions map the initial state s0 into the goal
state sg eventually, but the size of the policies and the ex-
pected length of the plans is different.

4.1 Background
To the best of our knowledge, PRP is the state of the art
in FOND planning. PRP searches for strong cyclic plans in
a FOND problem, and produces a policy that maps partial
states to actions. Key components of PRP include a mech-
anism to evade avoidable dead ends, and a compact repre-
sentation of the policy in the form of state-action pairs (p, a)
that tell the agent to perform the action a in a state s when s
entails the condition p.

PRP runs a series of calls to Algorithm 1 until a strong
cyclic solution is found, or the algorithm converges. In all
cases, PRP returns the best quality policy found. The Seen
and Open lists manage the states that belong to the incum-
bent policy. More precisely, the Seen list contains the states
that have been processed already, whereas the Open list, ini-
tialized to the initial state s0, contains the states that need to
be processed. In each iteration, a state s from the Open list is
processed. The procedure GENPLANPAIRS processes a non-
goal state s for which a policy is undefined. This involves (i)
computing a plan P for the all-outcomes determinization of
〈V, s, s?,A〉, such that P reaches the goal or a state han-
dled by the policy , and (ii) augmenting the policy with the
state-action pairs from the regression of P. The action P (s)
is added as a rule to the corresponding state-action pair in
s. Processing a non-goal state s that is not in the Seen list
involves adding all potential successors of s by P (s) into
the Open list, so that every reachable state of the policy is
eventually processed.

Algorithm 1 is guaranteed to find a strong cyclic plan
when the problem has no dead ends. When the problem has
dead ends, GENPLANPAIRS may not find a plan for a cer-
tain state s. In that case, PROCESSDEADENDS computes a
minimal partial state p such that s |= p and every s′ |= p is a
dead end. A set of forbidden state-action pairs is computed
by regressing the dead ends through the computed plans. In
the next calls to Algorithm 1, PRP resets the policy and the
forbidden state-action pairs are excluded from search. The
forbidden state-action pairs mechanism ensures complete-
ness of the planner when the dead ends are avoidable.

Theorem 1 ((Muise, McIlraith, and Beck 2012)). PRP re-
turns a strong cyclic policy in problems with avoidable or
no dead ends.

Input: FOND planning task P = 〈V, s0, s?,A〉
Output: Partial policy π

1 InitPolicy();
2 while π changes do
3 Open← {s0} ;
4 Seen← {} ;
5 while Open 6= ∅ do
6 s =Open.pop();
7 if s 6|= s? ∧ s 6∈ Seen then
8 Seen.add(s);
9 if π(s) is undefined then

10 GenPlanPairs(〈V, s, s?,A〉, π);
11 if P (s) is defined then
12 〈p, a〉 = π(s);
13 for e ∈ Effa do
14 Open.add(Prog(s, a, e));

15 ProcessDeadends();
16 return π;

Algorithm 1: Generate Strong Cyclic Plan

The state-action avoidance, and the succinct states rep-
resentations in PRP demonstrate an improved performance
over existing state-of-the-art FOND planners (Muise, McIl-
raith, and Beck 2012). More recently, PRP was extended
for use in FOND problems with conditional action effects
(Muise, McIlraith, and Belle 2014) thus extending the class
of domains that PRP can solve.

Similarly to RFF, Prob-PRP constructs a robust policy
gradually by exploring weak plans. However, PRP does not
store a complete representation of the states, but the portion
of the states relevant to the policy computed via regression.
The partial state representation enhances the possibilities of
GENPLANPAIRS to generate a plan for a (partial) state al-
ready handled by the policy, providing substantial savings
over approaches that use the complete state. Forbidden-state
pairs are an effective mechanism to avoid dead ends. Such
a mechanism is non-existent in RFF, leading to few alterna-
tives to avoid dead ends already added to the envelope.

4.2 From FOND to MAXPROB
Given a MAXPROB problem P , consider the FOND prob-
lem FOND(P) that results from ignoring the transition prob-
abilities in P . The strong cyclic solutions π in FOND(P)
are certainly well-defined policies in P because the condi-
tions s |= Preπ(s) hold equally in P and in FOND(P). Fur-
thermore, all (fair) executions of π in FOND(P) eventually
reach the goal. Therefore, all executions of π in P reach
the goal with probability 1, independently of the probability
distribution on the action effects, and π is also optimal in P .
Conversely, if π is an optimal policy in P that reaches the
goal with probability 1, then every reachable state s has a
weak plan that leads to the goal also in FOND(P), because
π is well defined in the FOND problem. Therefore, π is a
strong cyclic solution in FOND(P).

Lemma 1. LetP be a probabilistic planning problem. If π is
a well-defined policy in FOND(P), then π is a well-defined
policy in P .

Lemma 2. Let P be a MAXPROB planning problem. If π is
a strong cyclic solution for FOND(P), then π is an optimal
solution for P that reaches the goal with probability 1.

Lemma 3. A MAXPROB planning problem P has an op-
timal solution that reaches the goal with probability 1 iff
FOND(P) has a strong cyclic solution.

All strong cyclic solutions in FOND(P) are equally opti-
mal to the MAXPROB problem P . The similarities between
the FOND and MAXPROB formalisms, as well as the equiv-
alence of their solutions under certain conditions, suggest
that existing approaches in FOND planning can be adapted
to solve MAXPROB problems.

4.3 From PRP to Prob-PRP
The compact representation of states in PRP makes it possi-
ble to find small policies for FOND problems. We take ad-
vantage of the core similarities between FOND and MAX-
PROB formalisms, and define Prob-PRP as an extension of
PRP that finds MAXPROB solutions to probabilistic plan-
ning problems and provides limited optimality guarantees.

Definition 1 (Plain Prob-PRP). The plain Prob-PRP algo-
rithm on a MAXPROB problem P is a call to PRP on the
mapped problem FOND(P).

The soundness of PRP (Muise, McIlraith, and Beck
2012), and the result of Lemma 1 guarantee that the solu-
tions found by PRP in FOND(P) are in fact well defined so-
lutions for P (Lemma 4). PRP is guaranteed to find a strong
cyclic solution to FOND(P) whenever one exists (Theorem
1), and FOND(P) has a strong cyclic solution whenever a
proper plan exists for P (Theorem 3). Therefore, PRP is
guaranteed to find a a strong cyclic solution to FOND(P)
iff a plan with probability of success 1 exists for P . The last
condition occurs in domains with avoidable or no dead ends.

Lemma 4. The plain Prob-PRP algorithm is sound.

Theorem 2. The plain Prob-PRP algorithm is guaranteed
to find an optimal solution to MAXPROB problems with
avoidable or no dead ends.

Corollary 1. Given a MAXPROB problem P , if the plain
Prob-PRP algorithm returns a solution where the probabil-
ity of reaching a goal state is less than 1, then P has un-
avoidable dead ends.

The MAXPROB solutions found by Prob-PRP are com-
puted offline, with the advantage that no further computa-
tion is needed during execution. Computing offline solutions
makes it possible to estimate the quality prior to execution
– e.g. using Monte Carlo simulations as done in Prob-PRP–
or even to compute it analytically. A consequence of The-
orem 2 is that, if Prob-PRP returns a solution to P whose
probability of success is lower than 1, then the problem P
necessarily has unavoidable dead ends (Corollary 1).

4.4 Towards Better Quality Solutions
We propose two mechanisms that extend the plain version
of Prob-PRP and potentially improve the quality of the solu-
tions while maintaining the soundness of the solutions and
the validity of Theorem 2.

Full Exploration in Last Iteration The forbidden state-
action pairs mechanism in PRP may reduce the size of the
search space dramatically, and improve the efficiency of the
algorithm in searching for strong cyclic plans (Muise, McIl-
raith, and Beck 2012). This mechanism is also useful in
solving MAXPROB problems with avoidable dead ends, but
the search remains incomplete in domains with unavoidable
dead ends. More precisely, when a state-action pair leads
recognizably to a dead end, it is forbidden from successive
searches. That direction in the search, however, may still
lead to a goal state with non-zero probability.

Based on the previous observation, Prob-PRP performs a
final iteration, where the best incumbent policy is used to
initialize the policy on line 1 of Algorithm 1, and the prob-
lem is solved with forbidden state-action pairs and dead end
detection disabled. The returned policy handles a superset of
the states that it was able to previously, thus improving the
quality of the solution. This final pass optimistically closes
every Open state in a best effort manner.

Exploring Most Likely Plans Non-deterministic plan-
ning algorithms, like RFF or PRP, extend the policy under
construction with plans that map unhandled states to any
state that has been previously handled by the policy. This
mechanism benefits creation of smaller policies, but the sub-
sequent plans to the goal may be unnecessarily large, as
the previous example illustrates. In order to reduce this ef-
fect, Prob-PRP skews the search towards short plans that
have high likelihood. Previously, this method has been used
to search plans in the determinization relaxation that min-
imise the risk of failing (c.f. (Jimenez, Coles, and Smith
2006)). Formally, the likelihood of a state-action plan P =
s0, a0, s1, a1, . . . , an−1, sn is defined as the product:

LP = Πn−1
i=0 T (si, ai, si+1)

The likelihoodLP measures how probable it is that the se-
quence of states s0, s1, . . . , sn are reached when the stochas-
tic plan a0, a2, . . . , an−1 is executed. In certain domains,
like triangle-tireworld or climber, the most probable out-
come of the actions correspond to the desired effects that
lead to the goal situation (Little and Thiébaux 2007). A pri-
ori, in these kinds of domains it seems reasonable to give
preference to exploring the deterministic plans that maxi-
mize the likelihood. Loopy or unnecessarily large plans that
belong to the policy have necessarily lower likelihood than
alternative shorter plans. Subsequently, the expected length
of the plans is potentially low.

Prob-PRP modifies the search process in GENPLAN-
PAIRS performed by PRP, so that the plans that maximize
the likelihood function are given preference to be explored.
Since maximizing LP is equivalent to maximizing the log-
likelihood lP := log(LP) = Σn−1i=0 log(T (si, ai, si+1)), and
the latter expression offers a clear computational advantage,
Prob-PRP maximizes the log-likelihood of the plans instead.

5 Evaluation
We compared the performance of Prob-PRP with RFF in a
selection of benchmark problems from past IPPC competi-
tions. The problems are described using standard PPDDL
files with probabilistic outcomes and occasionally with con-
ditional action effects (Fox and Long 2003). When required,
the goal was modified to request MAXPROB solutions. We
used the client-server architecture MDPSim – used in past
editions of the IPPC – to simulate the execution of the solu-
tions produced by each planner. All experiments were con-
ducted on a Linux PC with an Intel Xeon W3550 CPU
@3.07GHz, limiting the memory usage of each process to
2GB and the run time to 30 minutes.

The probabilistic planner Prob-PRP is implemented as an
extension of the FOND planner PRP, and inherits the ca-
pability to handle problems with universally quantified for-
mulas and conditional effects. We used the configuration
of RFF that reported best results in (Teichteil-Königsbuch,
Kuter, and Infantes 2010), namely, the most probable out-
come determinization (so that the planner can scale to handle
larger instances), and the best goals goal-selection strategy
with policy optimization enabled. We fixed the probability
of failure threshold ρ to 0.2, a number that results in good
policy success rates without compromising the run times.

The results of the tests are shown in Table 1. The so-
lution to each problem was run 100 times. For each plan-
ner, we report the percentage of successful runs, the average
length of the successful plans, the average size of the poli-
cies, and the run times – that include only the computation
time spent on generating the policy, and exclude the domain
pre-processing time (usually negligible). For RFF, the av-
erage number of replans during successful runs needed by
RFF is also reported, where the computation of the initial
policy is counted as a replan.

5.1 General Analysis
Both Prob-PRP and RFF algorithms perform Monte Carlo
simulations to estimate the probability of success of the poli-
cies found. We set the number of Monte Carlo samples to
1000, a number that does not compromise the execution
time significantly and should be, in principle, high enough to
provide sufficiently accurate estimations. We found that the
cutoff mechanism in RFF is insufficient to compute reliable
policies with sufficient guarantees. Indeed, the actual failure
rate of the initial policy obtained by RFF in boxworld-p02
and boxworld-p12 is nearly 50% – clearly higher than ρ –
suggesting that the probability of failure estimated by RFF
is not accurate even with 1000 Monte Carlo samples.

The average number of RFF replans with ρ = 0.2 is lower
than 2 in most of the problems. In practice, decreasing ρ re-
sults in a lower number of replans, but the run times increase
significantly while the success rate of the solutions don’t.
The run times of Prob-PRP are comparable or lower than
those of RFF with ρ = 0.2. More precisely, in many prob-
lems the run time needed by Prob-PRP to compute an offline
solution is lower than the time needed by RFF to compute
even the initial policy.

The size of the solutions found by Prob-PRP are com-
parable to those found by RFF, but it seems that Prob-PRP

RFF Prob-PRP

Problem % L S T R % L S T

blocksworld-p01 100 23,2 18,0 0,02 1,00 100 20,9 17 0,00
blocksworld-p02 100 22,1 18,0 0,02 1,00 100 20,8 17 0,02
blocksworld-p03 100 22,6 18,0 0,02 1,00 100 20,8 17 0,00
blocksworld-p04 100 22,4 18,0 0,02 1,00 100 20,9 17 0,02
blocksworld-p05 100 64,9 60,6 0,72 1,01 100 50,0 43 0,16
blocksworld-p06 100 64,3 59,9 0,69 1,00 100 50,6 43 0,16
blocksworld-p07 100 64,3 60,6 0,69 1,01 100 49,5 43 0,16
blocksworld-p08 100 64,5 60,0 0,69 1,00 100 50,0 43 0,16
blocksworld-p09 100 40,5 38,0 0,67 1,00 100 68,4 61 0,46
blocksworld-p10 100 41,2 39,1 0,68 1,03 100 68,8 61 0,46
blocksworld-p11 100 42,4 38,7 0,66 1,02 100 68,6 61 0,46
blocksworld-p12 100 41,7 38,4 0,68 1,01 100 68,4 61 0,46
blocksworld-p13 0 ∞ 117 16,5 1,00 100 125 107 1,38
blocksworld-p14 0 ∞ 117 16,6 1,00 100 125 107 1,40
blocksworld-p15 0 ∞ 117 16,6 1,00 100 125 107 1,38

boxworld-p01 100 29,4 49,3 0,43 1,27 100 31,3 57 0,06
boxworld-p02 100 29,3 49,2 0,43 1,26 100 31,4 57 0,06
boxworld-p03 100 29,0 47,9 0,38 1,24 100 31,4 57 0,06
boxworld-p04 100 39,4 75,7 1,73 1,31 100 38,6 105 0,24
boxworld-p05 100 39,3 80,9 1,77 1,38 100 38,5 105 0,24
boxworld-p06 100 64,9 166 13,0 1,35 100 68,1 266 2,34
boxworld-p07 100 64,5 160 13,0 1,29 100 68,1 266 2,32
boxworld-p08 100 64,6 125 7,5 1,30 100 62,4 207 1,82
boxworld-p09 100 64,7 132 7,56 1,38 100 62,5 207 1,84
boxworld-p10 100 74,3 199 22,9 1,37 100 102 415 17,2
boxworld-p11 100 73,3 183 22,3 1,27 100 102 415 17,9
boxworld-p12 100 74,1 199 23,3 1,36 100 102 415 18,0
boxworld-p13 0 ∞ 344 35,6 1,94 100 178 906 130
boxworld-p14 0 ∞ 325 34,9 1,83 100 177 906 157
boxworld-p15 0 ∞ 347 35,2 1,96 100 177 906 160

ex-blocksworld-p01 60 8,0 20,8 0,05 1,06 100 8,0 9 0,00
ex-blocksworld-p02 28 12,0 36,8 0,11 1,16 54 14,0 15 0,02
ex-blocksworld-p03 38 10,0 31,8 0,10 1,14 60 10,0 12 0,12
ex-blocksworld-p04 52 14,0 49,5 0,09 1,13 59 32,9 18 0,06
ex-blocksworld-p05 100 6,0 11,6 0,01 1,09 100 6,0 11 0,02
ex-blocksworld-p06 90 12,6 62,2 0,10 1,35 96 20,7 28 0,34
ex-blocksworld-p07 60 12,0 36,2 0,20 1,12 100 12,0 21 0,04
ex-blocksworld-p08 7 24,0 68,9 0,64 1,20 36 30,0 32 0,38
ex-blocksworld-p09 13 25,2 95,7 1,07 1,23 – – – t
ex-blocksworld-p10 2 36,0 76,8 0,97 1,24 3 116 105 14,3
ex-blocksworld-p11 13 32,0 92,7 1,59 1,31 13 93,4 82 7,42
ex-blocksworld-p12 1 38,0 96,6 2,15 1,21 2 91,5 78 6,28
ex-blocksworld-p13 10 59,2 451 5,76 1,45 – – – t
ex-blocksworld-p14 0 0 130 116 1,24 – – – t
ex-blocksworld-p15 9 43,6 172 8,91 1,28 – – – t

schedule-p02 100 59,2 5,00 0,01 1,00 100 51,0 7 0,04
schedule-p03 100 100 5,00 0,01 1,00 100 95,0 7 0,12
schedule-p04 96 57,8 14,3 0,02 1,12 100 46,9 21 0,14
schedule-p05 89 116 14,5 0,03 1,15 100 92,0 16 0,18
schedule-p06 45 364 141 1,42 3,01 – – m –
schedule-p07 36 390 146 1,34 3,11 – – m –
schedule-p08 34 354 146 3,94 3,17 – – m –
schedule-p09 4 402 317 3,17 4,31 – – m –

triangle-tireworld-p01 100 5,5 22,7 0,02 1,07 100 5,5 10 0,00
triangle-tireworld-p02 100 13,2 80,7 0,17 1,32 100 12,0 23 0,00
triangle-tireworld-p03 100 21,8 135 0,66 1,13 100 18,5 38 0,02
triangle-tireworld-p04 100 29,6 248 1,76 1,20 100 25,1 55 0,06
triangle-tireworld-p05 100 37,6 348 3,76 1,12 100 31,5 74 0,10
triangle-tireworld-p06 100 45,6 490 7,98 1,14 100 37,9 95 0,22
triangle-tireworld-p07 100 53,4 714 17,4 1,21 100 44,5 118 0,42
triangle-tireworld-p08 100 61,5 958 36,5 1,19 100 50,9 143 0,72
triangle-tireworld-p09 100 69,5 1222 64,1 1,20 100 57,5 170 1,40
triangle-tireworld-p10 100 77,6 1595 111 1,21 100 64,0 199 2,38

Table 1: Performance of RFF and Prob-PRP. % indicates the
percentage of successful executions; S indicates the size of
the policy; T indicates run-time, in seconds and R indicates
the number of replans in RFF. Dash (–) indicates that the
experiments ran out of time (t) or memory (m).

scales better in some domains. The compact state represen-
tation, and the forbidden-state action mechanisms in Prob-
PRP prove efficient in the triangle-tireworld domain, lead-
ing to solutions that are orders of magnitude smaller, and
computed orders of magnitude faster compared to RFF.

5.2 Analysis of the Probability of Success
We split the analysis of the probability of success between
problems without dead ends, problems with avoidable dead
ends, and problems with non-avoidable dead ends.

Problems without Dead Ends Prob-PRP solves all the
problems without dead ends in lower run times than RFF.
The probabilistic reasoning overhead performed by Prob-
PRP in the blocksworld, a simple domain without dead ends,
does not translate into bigger run times than those in RFF.

We identified a looping behaviour in the solutions
found by RFF to blocksworld-p13, blocksworld-p14, and
blocksworld-p15, most likely originating in the policy op-
timization mechanism. The problem-goals strategy does not
make use of the policy optimization mechanism, but fails
to scale up to handle big problem instances (Teichteil-
Königsbuch, Kuter, and Infantes 2010). We also found that
the cutoff mechanism in RFF is insufficient to compute re-
liable policies with sufficient guarantees. Indeed, the actual
success rate obtained in boxworld-p04 and boxworld-p12 is
significantly lower than the threshold 1− ρ, suggesting that
the probability of failure estimated by RFF is not accurate.

Problems with Avoidable Dead Ends The triangle-
tireworld, introduced in (Little and Thiébaux 2007), requires
a car to drive to a goal location via a number of intermediate
locations. During each move, there is a possibility of get-
ting a flat tire, and only some locations have spare tires. It
is a challenging domain because both the size of the state
space and the number of deadend states increase exponen-
tially with the number of variables in the problem. We used
the variant in which the car cannot carry a tire. The forbid-
den state-action mechanism makes it possible to identify the
causes that lead to dead end states, and reduce the size of
the state space significantly. Prob-PRP is able to optimally
solve big instances of the triangle-tireworld domain orders
of magnitude faster than RFF.

Problems with Unavoidable Dead Ends Neither RFF nor
Prob-PRP offers guarantees on the optimality of the solu-
tions in problems with unavoidable dead ends. As discussed
earlier, RFF has a poor mechanism for backtracking once a
bad plan that leads to a dead end has been explored. The for-
bidden state-action pairs mechanism and the full exploration
in the last iteration performed by Prob-PRP makes it possi-
ble to improve the quality of the solutions relative to RFF in
the exploding-blocksworld and schedule domains.

We again detected a looping behavior in some of the solu-
tions given by RFF to the exploding-blocksworld problems.
Prob-PRP exceeds the time limit (t) of 30 minutes in four in-
stances. In ex-blocksworld-p09, this is not to the run-time it-
self, but to the time needed to decode and process the policy
in a manageable format to be used by MDPSim, thus main-
taining dead end avoidance. In the other instances, Prob-PRP
does not converge within the time limits. Similarly, Prob-
PRP exceeded the memory limits (m) in large instances of
the schedule domain before convergence of the algorithm.
These issues will be fixed by enabling an anytime mode in
Prob-PRP, making it possible to output the best incumbent
policy before the time or memory limits are reached.

5.3 Analysis of the Expected Length of the Plans
The policy optimization mechanism used by RFF prioritizes
the search for plans that reach a goal state in the lowest
number of state transitions possible. The results reported
in Table 1 reflect that, on average, the plan length of the
successful runs of the solutions computed by Prob-PRP are
in the same order of magnitude than those of the solutions
computed by RFF. In this section we evaluate the impact of
the log-likelihood plan maximization strategy used by Prob-
PRP towards the construction of policies with smaller ex-
pected plan length.

We compared the solutions obtained by Prob-PRP with a
version that omits probabilities in the search of deterministic
plans, and considers uniform action costs instead. We refer
to this variation as Prob-PRPuc. Note that this is not the same
as assuming uniformly distributed outcome probabilities: a
plan π has cost equal to its length regardless of the branch-
ing factor of the non-deterministic actions in π, whereas the
branching factor influences the derived log-likelihood cost.

Table 2 shows the quality, run time, size, and expected
plan length of the MAXPROB solutions to the different
probabilistic planning problems obtained by Prob-PRP and
Prob-PRPuc. The overhead in Prob-PRP due to the prob-
abilistic reasoning does not penalize the overall run time
significantly, that remains in the same order of magnitude.
Both algorithms find essentially the same solutions to the
triangle-tireworld problems – where the optimal solutions
w.r.t. success rate extend to stochastic shortest plan solu-
tions quite straightforwardly. In the blocksworld domain,
Prob-PRP obtains smaller policies with, in general, smaller
expected plan length. In the boxworld domain, both algo-
rithms find policies that are similar in size, but the expected
plan length of the solutions found by Prob-PRP is con-
siderably smaller in big problem instances. The exploding-
blocksworld is a domain with many dead end states. In gen-
eral, the size of the policies and the expected length of the
plans found by each algorithm differ. In this domain, the
most likely paths are not necessarily the more robust and
the quality of the solutions do not seem to rely directly on
a likelihood maximization criterion, nor on the election of a
good heuristic to find deterministic plans. Rather, the quality
of the solution appears to depend on a serendipitous election
of the right sequence of actions during the search process.

The inconsistent quality of the plans obtained for the
exploding-blocksworld domain suggests that the heuristic
used by Prob-PRP in the search of deterministic weak
plans is not informative in this domain. We obtained the
best global results using a best-first search with the hFF

heuristic, although the combination of an A? or breadth-
first search with other heuristics is also competitive in cer-
tain problems. In particular, a best-first search with the ad-
ditive heuristic hadd , which is usually informative, leads
to similar results in most of the problems. Remarkably, in
the blocksworld domain, the hadd heuristic performed bet-
ter than the hFF heuristic, generating smaller policies with
smaller expected length. In the last three instances, this con-
figuration finds solutions with 58 states and an expected plan
length of 64 transitions, thus reducing the size and expected
plan length to one half of the results reported in Table 2.

Prob-PRPuc Prob-PRP

problem % T S L % T S L

blocksworld-p01 100 0,02 21 24 100 0,00 17 19
blocksworld-p02 100 0,00 21 24 100 0,02 17 19
blocksworld-p03 100 0,00 21 24 100 0,02 17 19
blocksworld-p04 100 0,00 21 24 100 0,02 17 19
blocksworld-p05 100 0,14 35 39 100 0,18 43 47
blocksworld-p06 100 0,14 35 39 100 0,16 43 47
blocksworld-p07 100 0,14 35 39 100 0,16 43 47
blocksworld-p08 100 0,14 35 39 100 0,16 43 47
blocksworld-p09 100 0,46 71 75 100 0,48 61 65
blocksworld-p10 100 0,44 71 75 100 0,46 61 65
blocksworld-p11 100 0,44 71 75 100 0,46 61 65
blocksworld-p12 100 0,46 71 75 100 0,46 61 65
blocksworld-p13 100 1,38 110 119 100 1,40 107 115
blocksworld-p14 100 1,38 110 119 100 1,44 107 115
blocksworld-p15 100 1,38 110 119 100 1,40 107 115

boxworld-p01 100 0,14 57 156 100 0,06 57 32
boxworld-p02 100 0,16 57 156 100 0,06 57 32
boxworld-p03 100 0,14 57 156 100 0,06 57 32
boxworld-p04 100 0,36 101 86 100 0,26 105 39
boxworld-p05 100 0,34 101 86 100 0,28 105 39
boxworld-p06 100 6,56 269 363 100 2,44 266 69
boxworld-p07 100 6,60 269 363 100 2,44 266 69
boxworld-p08 100 1,44 166 170 100 1,92 207 63
boxworld-p09 100 1,46 166 170 100 1,92 207 63
boxworld-p10 100 9,74 301 328 100 18,2 415 102
boxworld-p11 100 9,84 301 328 100 18,2 415 102
boxworld-p12 100 9,86 301 328 100 18,0 415 102
boxworld-p13 100 576 949 1000+ 100 161 906 178
boxworld-p14 100 507 949 1000+ 100 160 906 178
boxworld-p15 100 586 949 1000+ 100 159 906 178

ex-blocksworld-p01 100 0,00 9 9 100 0,00 9 9
ex-blocksworld-p02 53,9 0,04 15 10 53,9 0,02 15 10
ex-blocksworld-p03 59,3 0,16 11 9 59,7 0,14 12 8
ex-blocksworld-p04 60,1 0,06 16 21 61 0,06 18 21
ex-blocksworld-p05 100 0,02 8 23 100 0,02 11 7
ex-blocksworld-p06 96,3 0,68 25 22 96,8 0,32 28 22
ex-blocksworld-p07 100 1,76 14 31 100 0,04 21 13
ex-blocksworld-p08 39,2 1,00 32 23 36,6 0,38 32 18
ex-blocksworld-p09 22,8 10,3 45 31 10,2 58,7 77 28
ex-blocksworld-p10 10,2 4,08 52 28 4,6 14,0 105 26
ex-blocksworld-p11 9,6 33,8 89 29 19,2 7,20 82 27
ex-blocksworld-p12 – – m – 2,4 5,90 78 17

schedule-p02 100 0,04 7 48 100 0,04 7 48
schedule-p03 100 0,12 7 87 100 0,12 7 87
schedule-p04 100 0,08 16 43 100 0,14 21 46
schedule-p05 100 0,18 16 96 100 0,20 16 95

triangle-tireworld-p01 100 0,00 10 6 100 0,00 10 6
triangle-tireworld-p02 100 0,00 23 12 100 0,00 23 12
triangle-tireworld-p03 100 0,02 38 19 100 0,02 38 19
triangle-tireworld-p04 100 0,06 55 25 100 0,06 55 25
triangle-tireworld-p05 100 0,12 74 32 100 0,12 74 32
triangle-tireworld-p06 100 0,20 95 39 100 0,20 95 39
triangle-tireworld-p07 100 0,32 118 45 100 0,36 118 45
triangle-tireworld-p08 100 0,54 143 52 100 0,62 143 52
triangle-tireworld-p09 100 0,94 170 58 100 1,14 170 58
triangle-tireworld-p10 100 1,56 199 65 100 1,84 199 65

Table 2: Solutions obtained by Prob-PRP using uniform ac-
tion costs and log-prob action costs. % indicates the percent-
age of successful executions; T indicates run time, in sec-
onds; S indicates the size of the policy; and L indicates the
average length of the plans.

6 Extended Evaluation
In this section we introduce the benefits of a planner to be
robust to small probability perturbations and different order-
ings used in the declaration of the actions.

6.1 Robustness to Probability Perturbations
The probabilistic planning model specifies the probability
distribution of the outcomes of the actions, and is assumed
to be known by the planner. In many real problems, however,
these probabilities are unknown, or not known with com-
plete accuracy. Ideally, the probability of success of a good

solution is robust to small fluctuations in these probabilities.
In practice, the search space explored by probabilistic algo-
rithms exhibit phase transitions that change the structure of
the solutions found. These phase transitions are most evident
when the most probable outcome of the action changes.

In this section we evaluate the robustness of the solutions
in the face of small deviations in the transition probabilities
declared in the triangle-tireworld model. In this domain, the
probability of a flat tire after moving the car is 0.5. We in-
formed the planners with a slightly inaccurate probability,
0.45, breaking the uniform non-determinism of the action
move-car. Strong solutions to the problem need to consider
the faulty effect, that is no longer the most probable out-
come. For that reason, we configured RFF to use the all-
outcomes determinization.

RFF Prob-PRP

problem % sol % sim % sol % sim

triangle-tireworld-p01 56.7 53.4 100 100
triangle-tireworld-p02 16.8 12.9 100 100
triangle-tireworld-p03 4.9 3.2 100 100
triangle-tireworld-p04 1.8 0.9 100 100
triangle-tireworld-p05 0.5 0.2 100 100
triangle-tireworld-p06 0.0 0.0 100 100
triangle-tireworld-p07 0.0 0.0 100 100
triangle-tireworld-p08 0.1 0.0 100 100
triangle-tireworld-p09 0.0 0.1 100 100
triangle-tireworld-p10 0.0 0.0 100 100

Table 3: Quality of the solutions in the triangle-tireworld
domain when the probability of having a flat tire is perturbed
from 0.5 to 0.45.

Table 3 shows the probability of success for solutions
computed by RFF and Prob-PRP. The columns % sol and %
sim in Table 3 indicate the probability of success when the
environment model corresponds, respectively, to the model
given to the planner, or to the original model.

The solutions found by RFF are not optimal anymore.
Even when using the all-outcomes determinization, FF
skews the search towards the shortest, but also optimistic
plans that go through unsafe locations not equipped with a
spare. Therefore, the envelope constructed by RFF does not
converge to an optimal policy.

The success rate of the solutions found by RFF drops dra-
matically from the 100% achieved in the original domain de-
scription, and the performance in the simulation has an even
lower percentage of success. On the other hand, since the
triangle-tireworld domain has avoidable dead ends, Prob-
PRP is guaranteed to find a strong cyclic independent of the
transition probabilities of the model.

6.2 Robustness to Action Orderings
For evaluation purposes, we swapped the order in the decla-
ration of the (equally probable) effects of the action move-
car. In the new model, the first effect is optimistic and con-
siders that the car’s tire will not become flat, whereas the
second effect is pessimistic and considers that the car’s tire
will become flat. With this ordering, the deterministic plans
computed by FF in the most probable determinization of the
problem are optimistic and not robust. As a consequence,
RFF consistently fails to find robust policies, and the quality

of the solutions drops dramatically reaching a failure rate of
100% in the fourth instance. On the other hand, Prob-PRP is
guaranteed to find optimal solutions to problems with avoid-
able dead ends regardless of the order used in the declaration
of the actions and probability fluctuations.

7 Summary and Discussion
We introduced Prob-PRP, an algorithm that extends the
state-of-the-art FOND planner PRP to compute solutions to
MAXPROB problems. Prob-PRP is sound and complete for
problems with avoidable dead ends. Probabilistic planning
in the presence of avoidable and/or unavoidable dead ends
is a challenging and important task (Kolobov, Mausam, and
Weld 2012). We detailed a number of related approaches.
Perhaps most similar to Prob-PRP’s use of partial state poli-
cies and forbidden state-action pairs are the “basis func-
tions” and “nogoods” computed by the GOTH planner and
SixthSense algorithm (Kolobov and Weld 2010). Key dis-
tinctions include how Prob-PRP uses and updates the policy
during the search for a plan, and how our dead ends are com-
puted and used as forbidden state-action pairs.

MAXPROB solutions found by Prob-PRP are often opti-
mal, and outperform the solutions found by RFF. We exam-
ined different properties that make for a good quality pol-
icy. Prob-PRP’s solutions nicely balance their compactness
and the expected length of the plans. Moreover, Prob-PRP
demonstrates better scalability than RFF, and produces of-
fline solutions. Computing offline solutions makes it possi-
ble to estimate the probability of success prior to execution,
thus offering a better guarantee of the policy’s quality than
the solutions computed by online planners. Moreover, the
guarantees on the optimality of the solutions in Prob-PRP
makes it robust to small variations in the transition probabil-
ities such as those found from an imprecise planning model.

We found that different search techniques for the deter-
ministic subsolver – namely, a combination of breadth-first
search, best-first search, A?, different heuristics, and uni-
form or probabilistic costs – offer similar results that are
sometimes not of high quality. Whether the selection of an
effective heuristic or search algorithm will significantly im-
prove the results in these types of domains remains an open
question. In future work we will explore these and other re-
lated issues associated with finding high-quality policies for
such non-deterministic domains.

Establishing the correspondence of the computational
core that is shared by FOND and probabilistic planning en-
ables advances in either discipline to be exploited by the
other. In this paper we demonstrated this by exploiting com-
pact policy representations, relevance reasoning, and dead
end avoidance developed within the FOND community and
used these to advance the state of the art in probabilistic
planning. Moving forward, we aim to inspire new methods
for solving FOND problems using some of the insights from
probabilistic planning, such as sample-based search.
Acknowledgements: The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and from Australian
Research Council (ARC) discovery grant DP130102825.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research
16(3):580–595.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
Convergence of Real-Time Dynamic Programming. In ICAPS, 12–
21.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147:35–84.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:263–312.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in proba-
bilistic domains using a deterministic numeric planner. PlanSIG.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Planning
Based on UCT. ICAPS.
Kolobov, A., and Weld, D. S. 2010. SixthSense: Fast and reliable
recognition of dead ends in MDPs. Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuris-
tic search for generalized stochastic shortest path MDPs. ICAPS
130–137.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of goal-
oriented MDPs with dead ends. In Proceedings of the 28th Confer-
ence on Uncertainty in Artificial Intelligence, 438–447.
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs. replan-
ning. ICAPS Workshop on IPC: Past, Present and Future.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P. 2010.
Pattern database heuristics for fully observable nondeterministic
planning. In ICAPS, 105–112.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved Non-
deterministic Planning by Exploiting State Relevance. In ICAPS,
172–180.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-deterministic
planning with conditional effects. In ICAPS, 370–374.
Puterman, M. 1994. Markov Decision Processes: Discrete Dy-
namic Programming. New York: Wiley.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010. In-
cremental plan aggregation for generating policies in MDPs. In
Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1, number 1, 1231–1238.
Teichteil-Königsbuch, F.; Vidal, V.; and Infantes, G. 2011. Extend-
ing Classical Planning Heuristics to Probabilistic Planning with
Dead-Ends. AAAI 1017–1022.
Teichteil-Königsbuch, F. 2012. Stochastic Safest and Shortest Path
Problems. AAAI 1825–1831.
Trevizan, F., and Veloso, M. 2012. Short-Sighted Stochastic Short-
est Path Problems. ICAPS.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline for
probabilistic planning. In ICAPS, 352–359.

A Heuristic Estimator based on Cost Interaction

Yolanda E-Martı́n1,2 and Marı́a D. R-Moreno1 and David E. Smith3

1 Departamento de Automática. Universidad de Alcalá. Ctra Madrid-Barcelona, Km. 33,6 28871 Alcalá de Henares (Madrid), Spain.
{yolanda,mdolores}@aut.uah.es

2 Universities Space Research Association. 615 National Ave, Suite 220, Mountain View, CA 94043
3 Intelligent Systems Division. NASA Ames Research Center. Moffett Field, CA 94035-1000

david.smith@nasa.gov

Abstract

In planning with action costs, heuristic estimators are
commonly used to guide the search towards lower cost
plans. Some admissible cost-based heuristics are weak
(non-informative), while others are expensive to com-
pute. In contrast, non-admissible cost-based heuristics
are in general more informative, but may overestimate
the computed cost, yielding non-optimal plans. This
paper introduces a domain-independent non-admissible
heuristic for planning with action costs that computes
more accurate cost estimates. This heuristic is based on
cost propagation in a plan graph, but uses interaction
to compute information about the relationships between
pairs of propositions and pairs of actions to calculate
more accurate cost estimates. We show the trade-off
between the solution quality and the planning perfor-
mance when applying this heuristic in classical plan-
ning. This heuristic is expensive for planning, but we
demonstrate that it is quite useful for goal recognition.

Introduction
In planning with action costs, heuristic estimators are
commonly used to guide the search towards lower cost
plans. Some admissible cost-based heuristics, like the max
heuristic hmax (Bonet and Geffner, 2001), are weak (non-
informative), while others, like the higher-order heuristics
hm (Haslum and Geffner, 2000), are expensive to compute.
In contrast, non-admissible cost-based heuristics, like the
additive heuristic hadd (Bonet and Geffner, 2001) and the
set-additive heuristic hsa (Keyder and Geffner, 2007), are
more informative and have shown good performance in time
and solution quality. However, they may overestimate the
computed cost in some cases, yielding non-optimal plans.

In this paper, we introduce a domain-independent non-
admissible heuristic for planning with action costs that com-
putes more accurate cost estimates. This heuristic is based
on cost propagation in a plan graph, but we use interac-
tion (Bryce and Smith, 2006) to compute information about
the relationships between pairs of propositions and pairs of
actions, yielding more accurate cost estimates. We show the
trade-off between the solution quality and the planning per-
formance when applying this heuristic in classical planning.
This heuristic is expensive for planning, but we demonstrate
it is quite worthwhile for goal recognition.

This paper begins with a review of cost propagation in
a plan graph. Then, we introduce interaction and its use
in cost propagation in a plan graph. Then we describe two
cost-based heuristic estimators and evaluate their accuracy.
We present an empirical study of the heuristics in classical
planning and goal recognition.

Cost propagation in a plan graph
Plan graphs (Blum and Furst, 1997) provide an optimistic
method to estimate the set of achievable propositions, and
the set of feasible actions, for a particular starting state and
goal state. They have been commonly used to compute
heuristic distance estimates between states and goals and,
recently, to compute estimates of the cost that propositions
can be achieved, and an action can be performed. Propa-
gation of cost estimates in a plan graph is a technique that
has been used in a number of planning systems (Bonet, Lo-
erincs, and Geffner, 1997; Nguyen, Kambhampati, and Ni-
genda, 2002; Do and Kambhampati, 2002). The computa-
tion of cost estimates starts from the initial conditions and
works progressively forward through each successive layer
of the plan graph. For level 0 it is assumed that the cost of
the propositions is zero. With this assumption, the propa-
gation starts by computing the cost of the actions at level
zero. In general, the cost of performing an action a at level l
with a set of preconditions Pa is equal to the cost of achiev-
ing its preconditions. This may be computed in two dif-
ferent ways: (1) Maximization: the cost of an action is
equal to the cost of reaching its costliest precondition, i.e.,
cost(a) = maxxi∈Pa

cost(xi), (2) Summation: the cost of
an action is equal to the cost of reaching all its precondi-
tions, i.e., cost(a) =

∑
xi∈Pa

cost(xi). The first method
is admissible since it underestimates the cost of an action.
This allows for dependence among the preconditions of an
action. In contrast, the second method is inadmissible since
it assumes independence among all preconditions of an ac-
tion. As a consequence, the cost may be underestimated, if
some of the preconditions interfere with each other, or over-
estimated, if some of the preconditions are achieved by a
common action.

The cost of achieving a proposition x at level l, achieved
by actions Ax at the preceding level, is the minimum
cost among all a ∈ Ax. It is defined as cost(x) =
mina∈Ax

[cost(a) + Costa], where Costa is the cost of ap-

plying the action a.
Taking the above calculations into consideration, a cost-

plan graph is built in the same way that an ordinary planning
graph is created. The construction process finishes when
two consecutive proposition layers are identical and there is
quiescence in cost for every proposition and action in the
plan graph. On completion, each possible goal proposition
has an estimated cost.

Our work focuses on computing more accurate estimates
of cost by introducing the concept of interaction in the cost
propagation in a plan graph. This primarily impacts the cal-
culation of cost for sets of preconditions, although the con-
sequences propagate through to propositions. We describe
the calculation and use of interaction in the next section.

Interaction
Interaction is a value that represents how more or less costly
it is that two propositions or actions are established together
instead of independently. This concept is a generalization
of the mutual exclusion concept used in classical planning
graphs. Formally, the optimal Interaction, I∗, considers n-
ary interaction relationships among propositions and among
actions (p0 to pn) in the plan graph, and it is defined as:

I∗(p0, ..., pn) = cost∗(p0∧...∧pn)−(cost∗(p0)+...+cost∗(pn))
(1)

where the term cost∗(p0 ∧ ... ∧ pn) is the minimum cost
among all the possible plans that achieve all the members
in the set. Computing I∗ would be computationally pro-
hibitive. As a result, we limit the calculation of these values
to pairs of propositions and pairs of actions in each level of
a plan graph – in other words, binary interaction:

I∗(p, q) = cost∗(p ∧ q)− (cost∗(p) + cost∗(q)) (2)

It has the following features:

I∗(p, q) is





< 0 if p and q are synergistic
= 0 if p and q are independent
> 0 if p and q interfere

In other words, I provides information about the degree
of interference or synergy between pairs of propositions and
pairs of actions in a plan graph. When 0 < I(p, q) < ∞ it
means that there is some interference between the best plans
for achieving p and q so it is harder (more costly) to achieve
them both than to achieve them independently. In the ex-
treme case, I =∞, the propositions or actions are mutually
exclusive. Similarly, I(p, q) < 0 (synergy) means that the
cost of establishing both p and q is less than the sum of the
costs for establishing the two independently. However, this
cost cannot be less than the cost of establishing the most dif-
ficult of p and q. As a result I(p, q) is bounded below by
−min[cost(p), cost(q)].

Instead of computing mutex information, the new cost
propagation technique computes interaction information be-
tween all pairs of propositions and all pairs of actions at each
level. Interaction is taken into account in the cost propaga-
tion, which establishes a better estimation of the cost for two
propositions or two actions performed at the same time.

The computation of cost and interaction information be-
gins at level zero of the plan graph and sequentially proceeds

Figure 1: A cost plan graph level with cost and interaction
calculation and propagation.

to higher levels. For level zero it is assumed that (1) the cost
of each proposition at this level is 0, and (2) the interaction
between each pair of propositions at this level is 0, which
means independence between propositions. Neither of these
assumptions are essential, but they are adopted here for sim-
plicity.

Computing action cost and interaction
The cost and interaction information of a proposition layer
at a given level of the plan graph is used to compute the
cost and the interaction information for the subsequent ac-
tion layer. Considering an action a at level l with a set of
preconditions Pa, the cost of an action is approximated as
the cost that all the preconditions are achieved plus the in-
teraction between all pairs of preconditions:

cost∗(a) = cost∗(Pa) ≈
∑

xi∈Pa

cost(xi) +
∑

(xi,xj)∈Pa
j>i

I(xi, xj)

(3)

As an example, consider one level of the cost-plan graph
shown in Figure 1. There are three propositions r, s, and
t with costs 5, 3, and 2 respectively, and interaction values
I(r, s) = 0, I(r, t) = −1, and I(s, t) = 2. There are two
actions A and B, which have cost 1. The number above
the propositions and actions are the costs computed for each
one during the cost propagation process (those highlighted
are the cost that we will compute in this section). For this
example, the costs of actions A and B are:

cost(A) ≈ cost(r) + cost(s) + I(r, s) = 5 + 3 = 8

cost(B) ≈ cost(s) + cost(t) + I(s, t) = 3 + 2 + 2 = 7

The next step is to compute the interaction between actions,
which is defined as follows:

I∗(a, b) =





∞ if a and b are mutex by inconsistent effects
or interference

cost∗(a ∧ b)− cost∗(a)− cost∗(b) otherwise

where cost∗(a ∧ b) is defined to be cost(Pa ∪ Pb). This is
approximated as in (3) by:

cost(Pa ∪ Pb) ≈
∑

xi∈Pa∪Pb

cost(xi) +
∑

(xi,xj)∈Pa∪Pb
j>i

I(xi, xj)

If the actions are mutex by inconsistent effects, or inter-
ference, then the interaction is∞. Otherwise, the interaction

above simplifies to:

I(a, b) ≈
∑

xi∈Pa−Pb
xj∈Pb−Pa

I(xi, xj)−
[∑

xi∈Pa∩Pb

cost(xi) +

∑

(xi,xj)∈Pa∩Pb
j>i

I(xi, xj)

]

For the example in Figure 1, the interaction between actions
A and B reduces to:

I(A,B) ≈ I(r, t)− cost(s) = −1− 3 = −4

The fact that I(A,B) = −4 means that there is some
degree of synergy between both actions. This synergy comes
from the fact that they have a common precondition s.

Computing proposition cost and interaction
The next step consists of calculating the cost of the propo-
sitions at the next level. In this calculation, all the possible
actions at the previous level that achieve each proposition
are considered. We make the usual optimistic approxima-
tion that the least expensive action can be used. Therefore,
the cost of a proposition is the minimum over the costs of all
the actions that can achieve the proposition. More formally,
for a proposition x at level l, achieved by actions Ax at the
preceding level, the cost is calculated as:

cost∗(x) = min
a∈Ax

[cost(a) + Costa] (4)

In our example, the cost of proposition y of the graph is:

cost(y) = min[cost(A) + CostA, cost(B) + CostB]

= min[8 + 1, 7 + 1] = 8

Finally, the interaction between a pair of propositions x
and y is computed. In order to compute the interaction be-
tween two propositions at a level l, all possible ways of
achieving those propositions at the previous level are con-
sidered. In other words, all the actions that achieve the pair
of propositions are considered. Suppose thatAx and Ay are
the sets of actions that achieve propositions x and y respec-
tively at level l. The interaction between x and y is then:

I∗(x, y) = cost∗(x ∧ y)− cost∗(x)− cost∗(y)

= min
a∈Ax
b∈Ay

{
cost(a ∧ b)

}
− cost∗(x)− cost∗(y)

≈ min





min
a∈Ax∩Ay

cost(a) + Costa

min
a∈Ax−Ay
b∈Ay−Ax



cost(a) + Costa+
cost(b) + Costb+
I(a, b)








−cost(x)− cost(y)

In our simple example, consider the calculation of the
interaction between x and y where the possible ways to

achieve both are performing A or A and B. Only the first of
these possibilities is considered, since In this case,Ax−Ay
is empty. The interaction is therefore simply:

I(x, y) ≈ [cost(A) + CostA]− cost(x)− cost(y)

= [8 + 1]− 9− 8 = −8

Heuristic estimator based on interactions
The cost-plan graph described in the previous section in-
cludes, for each proposition and action in the plan graph, an
approximate cost of achievement. These cost estimates may
be used as heuristic estimators. The next subsections de-
scribe two different methods that make use of this informa-
tion to compute heuristic estimates. The first method com-
putes the estimated cost using the information given in the
plan graph, while the second one builds a relaxed plan where
the propagated cost information is taken into account in the
relaxed-plan construction.

The hI heuristic
The hI heuristic is based directly on the cost and interac-
tion information computed in the cost-plan graph. It de-
fines the estimated cost of achieving a (conjunctives) goal
G = {g1, ..., gn} as:

hI = cost(G) ≈
∑

gi∈G

[
cost(gi) +

∑

(gi,gj)∈G
j<i

I(gi, gj)

]
(5)

The interaction information helps to compute more ac-
curate estimates of cost when subgoals interfere with each
other. However, the fact that the interaction computation is
binary makes the heuristic hI non-admissible. Therefore,
the estimated cost is an approximation of the optimal cost.
Essentially, when all the preconditions of each action are
independent of each other, the heuristic hI reduces to the
heuristic hadd. Otherwise, hI will be greater or less than
hadd depending on whether the interaction is negative or
positive.

The hIrp heuristic

The hIrp heuristic is based on computing a relaxed plan with
the use of cost information in the plan graph. The more
sophisticated strategy is to make use of cost and interaction
information in the plan graph when selecting actions for the
relaxed plan. In particular, to achieve a particular subgoal
at a level l, the relaxed plan construction chooses the action
that minimizes the cost of achieving the goal at level l. The
sum of the costs of the actions in the relaxed plan π provides
an estimate of cost for the goal. It is defined as:

hIrp = cost(π) =
∑

ai∈π
Costai (6)

Like the heuristic hI , the heuristic hIrp is non-admissible.

Accuracy Evaluation
The previous section describes two inadmissible heuristics
based on a cost-plan graph with interactions. To evaluate
the accuracy of these heuristics, we compare estimated cost
against the optimal cost for a suite of problems. The optimal
cost of each problem is computed using the optimal planner
HSP∗f (Haslum, 2008), which was allowed to run for an un-
limited amount of time. In addition to the hI and hIrp heuris-
tics, the evaluation is done for hadd and haddrp , which are the
versions without interaction. In these cases, the cost-plan
graph is built using traditional cost propagation. Likewise,
the evaluation is done for the set-additive heuristic hsa. In
addition, we did the evaluation using the satisficing planners
LPG (Gerevini, Saetti, and Serina, 2003), SGPlan6 (Chen,
W., and Chih-Wei, 2006), and MetricFF (Hoffmann, 2003).
LPG is run using LPG-speed (LPGs) that computes the
first solution, and LPG-quality (LPGq) that computes the
best solution. MetricFF is run under its three different ap-
proaches that perform cost minimization using weighted A∗
(MetricFF3), A∗ε (MetricFF4), and enforced hill-climbing
then A∗ε (MetricFF5). The experiments were conducted on
an Intel Xeon CPU E5-1650 processor running at 3.20GHz
with 32 GB of RAM in a time limit of 1800s.

Table 1 shows the results of this evaluation on 8 planning
domains with 15 problems each. For each approach in each
domain, each column shows the following measures:

• r is the ratio of the estimated cost to the optimal cost per
problem.

• M is the mean of the ratio among the solved problems.
• σ is the standard deviation of the ratio among the solved

problems.

The symbol “-” means the approach does not solve the
problem within the time limit. Bold values symbolized the
closer and lower variance cost estimate. In the Blocksword
and Elevator domains, hI computes cost estimates that
are considerably closer to the optimal and more consistent
(lower variance) than the actual costs computed by the satis-
ficing planners LPGs, LPGq , SGPlan6, and MetricFF. In the
Logistics domain, hI computes cost estimates as accurate as
MetricFF3, which computes the closest and most consistent
solution among the evaluated planners. In the rest of the do-
mains, hI generates better estimates than hadd and haddrp , but
not as good as hsa and the better satisficing planners. For
the hIrp heuristic, in the Intrusion and Kitchen domains, it
computes cost estimates equal to the optimal cost. In the
Blocks, Campus, Floortile, and Logistics domains, hIrp com-
putes cost estimates that are better than the costs computed
by some of the satisficing planners. In the Elevator domain,
it computes poor cost estimates, but in Pegsol it does slightly
better than hI .

Overall, hI computes cost estimates with lower variance
and closer to the optimal cost than cost estimates computed
by hadd in all the domains except Logistics. haddrp and hIrp
have similar behaviors. Our hypothesis is that while con-
structing the cost-relaxed plan, the algorithm only considers
the actions that minimize the cost, but not the interactions
between/among them. Those selected actions might be the

same as the ones where the interaction during cost propaga-
tion is not considered. As a result, using interaction infor-
mation in relaxed plan extraction might give a more accurate
estimate of cost.

hI Heuristics in Planning
As a result of the increased accuracy and stability of the
above-described hI heuristics, it is natural to try to use them
for planning purposes. The MetricFF planner (Hoffmann,
2003) was modified to incorporate these heuristics. The
search strategy remains the same. For purposes of this test,
the A∗ε strategy was chosen. The only difference is the suc-
cessors evaluation of the current state, which is based on the
cost estimate computed by the hI or hIrp heuristic. The best
successor is the one with the lowest cost. Four variations of
the MetricFF planner are compared:

• MetricFFI : hI as heuristic function (equation (5)), and
cost propagation through the plan graph considering in-
teraction information.

• MetricFFadd: hadd as heuristic function, and cost propa-
gation through the plan graph not considering interaction
information.

• MetricFFI
rp: hIrp as heuristic function (equation (6)), and

cost propagation through the plan graph considering in-
teraction information.

• MetricFFadd
rp : hIrp as heuristic function, and cost propa-

gation through the plan graph not considering interaction
information.

We have tested an additional strategy, namely MetricFFI
k,

which uses the hI heuristic function and cost propagation
through the plan graph considering interaction information
in only the first k levels of the search process, and then hadd
heuristic for the rest of the search. Because the hI heuristic
is expensive to compute, and heuristics tend to be less ac-
curate earlier in the search, we wanted to find out if the hI
heuristic could benefit the search process, but limit compu-
tation by only using it for a limited number of levels of the
search.

Tables 2 and 3 show the results of an accuracy evaluation
on the same 8 planning domains used in the previous sec-
tion. For each approach, each row shows an average of M
and σ among all the domains. The MetricFFI

k planner has
been tested with k = 1 up to 4. In general, the 8 planner
variations reach solutions very close to the optimal. As we
expected, MetricFFI and MetricFFI

rp solution qualities are
slightly better than the ones generated by MetricFFadd and
MetricFFadd

rp . For MetricFFI
k, when k = 2 or k = 4 the tech-

nique generates closer and more consistent cost estimates
than for any other k value tested and any MetricFF variation.
However, for k = 2 the technique is faster than for k = 4.
For computational time, Figure 2 shows a scatter plot, where
each dot in the plot represents the relationship between
MetricFFadd

rp and MetricFFI , and between MetricFFadd
rp and

MetricFFI
2 for each tested problem. (We chose to compare

these three planner since they show better performance in
terms of accuracy.) In general, MetricFFI and MetricFFI

2 are

Table 1: Accuracy evaluation among different planning and heuristic techniques.

Domain Approach r M σp01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

Blocks

LPGs 1.33 1.18 1 1.21 1.08 1 1 1.1 1.15 1 1 1 1.16 1.34 1.53 1.14 0.155
LPGq 1 1 1 1.21 1.25 1 1 1 1 1 1 1 1 1.13 1 1.039 0.081

SGPlan 1 1 1 1 1 1 1 1 1 1 1 1 2.33 1 2.68 1.201 0.517
MetricFF3 1 1 1 1 1.25 1 1 1 1 1 1 1 1 1.26 1.18 1.046 0.094
MetricFF4 1.08 1 1 1.21 1.37 1 1 1 1.15 1.8 1 1 1.16 1.39 3.5 1.311 0.623
MetricFF5 1.41 1.75 1.35 1.21 1.45 1.8 1.75 1.1 1.15 1.8 1.37 1.37 1.16 1.47 1.34 1.435 0.231

hsa 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108
hI 1 1.12 1 1.1 1.2 1 1 0.75 1 1 1 1 1 1.04 1.15 1.025 0.099
hadd 1.16 1.37 1.35 1.21 1.2 1 1 1.7 0.7 1 1.37 1.37 0.66 1.08 1.15 1.158 0.259
hIrp 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108
haddrp 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108

Campus

LPGs 1.35 1.1 1.43 1.12 1 1.35 1.18 1.07 1.28 1.25 1.07 1.03 1.21 1.14 1.25 1.193 0.124
LPGq 1 1.07 1.12 1 1.12 1.07 1.12 1.07 1.28 1 1.18 1.03 1 1.03 1.31 1.096 0.096

SGPlan 1 1 1 1 1 1.14 1 1 1 1 1 1 1 1 1 1.009 0.035
MetricFF3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
MetricFF4 1.85 1.25 1.37 1.37 1.37 1.71 1.56 1.33 1.85 1.43 1.33 1.07 1.14 1.14 1.37 1.413 0.233
MetricFF5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

hsa 0.85 0.92 0.87 0.81 0.87 0.85 0.75 1 0.85 0.87 1 0.96 0.92 0.92 0.81 0.888 0.068
hI 1 0.89 1 1 1 1 1.12 0.92 1 1 0.92 0.89 0.96 0.96 1 0.979 0.055
hadd 2.5 2.67 2.93 2.81 2.68 2.64 2.68 2.81 2.5 2.93 2.81 2.71 2.53 2.53 2.81 2.707 0.141
hIrp 1 0.92 1 1 0.93 1 0.87 1 1 1 1 1.1 0.92 0.92 1 0.98 0.051
haddrp 0.85 0.92 0.87 0.81 1.06 0.85 0.75 1 0.85 0.87 1 1.07 0.92 0.92 0.81 0.907 0.09

Elevator

LPGs 1.6 1.4 2.11 1.28 1.09 1.33 - 1.53 1 1.26 2.33 2.638 1.94 2.52 2.88 1.781 0.595
LPGq 1.9 1.8 2.11 1.28 1 1.08 - 1.06 1 1.36 1.8 1.42 1.94 2.19 2.76 1.624 0.514

SGPlan 1.2 1 1.33 1.28 1.09 1.08 - 1.06 1.2 1.21 1.46 1.47 1.15 2.04 2.05 1.333 0.323
MetricFF3 - - - - - - - - - - - - - - - - -
MetricFF4 3.2 3.6 2 2.71 1.9 3.75 - 4.2 1.1 4.21 - - - - - 2.964 1.04
MetricFF5 2 1.8 1.66 1.28 1.27 1.08 - 1.73 1.2 1.31 2.33 1.94 1.73 2.52 1.7 1.686 0.411

hsa 0.8 0.8 1.11 0.85 0.9 0.83 - 1 1 0.78 1.06 0.84 0.94 0.95 1 0.922 0.1
hI 0.7 1.8 1 1.85 0.72 0.75 - 1 1.3 0.73 0.66 0.57 0.94 0.85 0.94 0.990 0.384
hadd 2.2 2.8 2.55 3.14 2.45 2.16 0 2.13 2 2.26 5.2 3.52 4 4.71 4.35 3.107 1.031
hIrp 1.7 2.2 1.77 1.71 1.72 1.5 - 1.46 1.6 1.42 1.73 1.68 1.68 1.57 1.76 1.681 0.18
haddrp 1.7 2.4 1.77 1.14 1.72 1.5 0 1.46 1.6 1.42 1.73 1.68 1.68 1.57 1.7 1.651 0.263

Floortile

LPGs 1 1.36 1.32 1.53 1.76 4.94 2 4.55 5.46 7.65 7.79 5.2 4.74 4.32 4.16 3.855 2.177
LPGq 1 1 2.84 1 1.58 1.5 1.16 1.4 1.55 1.44 1.18 1.64 - 1.42 1.13 1.421 0.45

SGPlan 1 1.36 1.8 2.06 1.52 1.944 1.54 1.5 1.72 1.65 1.37 1.49 1.43 1.78 1.47 1.58 0.252
MetricFF3 1 1 1 1.4 1 1 1.29 - 1.09 - - - - - - 1.097 0.148
MetricFF4 1 1 3.16 1.93 3.08 - - - - - - - - - - 2.036 0.951
MetricFF5 1 1.72 2.4 1.53 1.64 - - - - - - - - - - 1.661 0.448

hsa 1.2 1.09 0.92 1 0.88 0.86 0.75 1.01 0.8 1.03 0.86 0.83 1.15 0.91 0.94 0.951 0.125
hI 1 1 1.12 0.86 1 1 0.83 0.33 0.66 0.16 0.29 0.09 0.12 0.48 0.25 0.614 0.366
hadd 1.2 1.27 1.04 1.2 1.02 1.02 1 1.28 1.04 1.66 1.18 1.41 1.85 1.19 1.27 1.246 0.233
hIrp 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.86 0.76 0.75 0.81 0.92 0.88 0.954 0.164
haddrp 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164

Intrusion
others 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
hI 1 1 1 1 1 1 1 1 0.9 1 1 1 1 1 1 0.993 0.024
hadd 1 1.33 1.25 1.33 1.25 1.22 1.33 1.25 1.5 1.28 1.25 1.25 1.25 1.25 1.28 1.269 0.097

Kitchen

others 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
LPGs 1 1 1 1 1 1 1 1 1.3 1.3 1 1 1 1 1.3 1.06 0.12
LPGq 1.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.004 0.016

SGPlan 1.06 1.06 1.06 1.06 1.13 1.13 1.13 1.13 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.192 0.103
MetricFF5 1.04 1.04 1.04 1.04 1 1 1 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.104 0.09

hI 0.97 0.97 0.97 0.97 1 1 1 1 1 1 1 1 1 1 1 0.994 0.009
hIrp 1.06 1.06 1.06 1.06 1 1 1 1 1 1 1 1 1 1 1 1.017 0.028

Logistic

LPGs 1.14 1.25 1.41 1.58 1.28 1.36 1.08 1.2 1 1.16 2.25 1.77 1 1.4 1.07 1.333 0.321
LPGq 1.21 1.08 1.08 1 1 1.27 1.41 1 1.08 1.16 1.5 1.22 1 1 1.3 1.156 0.156

SGPlan 1 1 1.16 1.16 1 1.18 1.16 1.2 1 1 1 1.22 1.16 1 1 1.084 0.091
MetricFF3 1.07 1 1 1.16 1.07 1 1 1 1 1 1 1 1 1 1 1.02 0.045
MetricFF4 1.35 1.08 2.91 1.83 1.35 1.63 1.08 1 1.75 1.08 1.08 1 1.08 1.3 2.23 1.453 0.525
MetricFF5 1.14 1.08 1.08 1.08 1.07 1.18 1 1 1.08 1.08 1.08 1.44 1.08 1.6 1.23 1.15 0.158

hsa 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126
hI 0.92 1.08 1 1.08 0.92 0.72 1 1 1 1 1.08 0.88 1 1.2 0.76 0.979 0.116
hadd 0.71 1.16 1 1 0.71 0.81 1 1 1 1 1 1 1 1 0.84 0.95 0.118
hIrp 1 1.16 1 1.16 1 1 1 1 1 1 1.16 1 1 1.2 0.84 1.036 0.092
haddrp 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126

Pegsol

LPGs 1 1 1 1.5 1.25 2 1.66 - 1.26 2.05 - 1.29 - - 1.79 1.438 0.374
LPGq 1 1 1 1 1 1.25 1 1.05 1.26 1.55 - 1.04 - - - 1.106 0.171

SGPlan 1 1 1 1 1.25 1.5 1.33 - 1.2 - 1.14 - - - 1.5 1.192 0.19
MetricFF3 1 1 1 1 1.25 1.75 1 1.83 1.4 1.83 1.28 1 1.33 1.57 1.5 1.317 0.309
MetricFF4 1 1 1 1.5 1.25 1.75 1.33 1.83 1.6 1.66 1.28 1.25 1.33 1.42 1.37 1.373 0.254
MetricFF5 1 1 1 1.5 1.25 1.75 2 1.83 1.6 1.66 1.28 1.25 1.33 1.42 1.37 1.418 0.297

hsa 1 0.8 1.25 1.25 1 2 1.33 1.5 1.8 1.16 1.28 1.12 1 1.28 1.25 1.269 0.299
hI 1.5 0.53 0.33 4.41 0.33 0.41 6.44 1.66 0.46 0.22 0.76 0.29 2.81 1.09 0.29 1.439 1.747
hadd 7.5 1.2 1.75 2.25 2.75 4 7.33 1.83 3 2.5 2 2.37 1.66 2.14 2.25 2.97 1.853
hIrp 2 0.86 1.33 1.25 1.25 1.25 2.33 1.16 1.86 1.22 1.33 0.87 0.88 1.33 1.45 1.361 0.401
haddrp 2.5 1 1.25 1.25 1.75 1.75 3 1.16 2 1.33 1.14 0.87 0.88 1.42 1.37 1.514 0.58

slower than MetricFFadd
rp . However, there are several prob-

lems where MetricFFadd
rp does not find the solution within

the given time, unlike MetricFFI and MetricFFI
2. It is also

noticeable that the use of the hI heuristic in only the first two

Table 2: Accuracy evaluation among different MetricFF
variations based on hI , hadd, hIrp, and haddrp heuristics.

Approach MetricFFI MetricFFadd MetricFFI
rp MetricFFadd

rp

M 1.006 1.013 1.088 1.015
σ 0.019 0.034 0.145 0.02

levels of the search process benefits the performance. It gen-
erates equal quality results and is a bit faster than MetricFFI .

Table 3: Accuracy evaluation among different k values.

Approach MetricFFI
1 MetricFFI

2 MetricFFI
3 MetricFFI

4

M 1.015 1.005 1.006 1.005
σ 0.026 0.017 0.019 0.016

In general, HSP∗f takes less time to solve a problem than
any MetricFF variation we evaluated. One of the reasons
might be the difference in the search algorithm, IDA∗ versus
A∗ε . We have not done comparisons between heuristics in
HSP∗f because the code for HSP∗f is not well documented
and we have not been successful at incorporating different
heuristics.

Figure 2: Time comparison among MetricFFadd
rp , MetricFFI ,

and MetricFFI
2.

While the computational overhead of full hI is high and
does not usually pay off during the actual search process,
this heuristic is extremely useful for goal recognition, which
we discuss in the next section.

hI Heuristics in Goal Recognition
Ramı́rez (2010; 2012), defines a goal recognition problem to
be a tuple T = 〈P,G, O, Pr〉 where P is a planning domain
and initial conditions, G is a set of possible goals or hypothe-
ses, O is the observed action sequence O = o1, ..., on, and
Pr is the prior probability distribution over the goals in G.
The solution to a plan recognition problem is a probability
distribution over the set of goals G ∈ G giving the relative

likelihood of each goal. These posterior goal probabilities
P (G|O) can be characterized using Bayes Rule as:

Pr(G|O) = αPr(O|G)Pr(G) (7)

where α is a normalizing constant, Pr(G) is the prior dis-
tribution over G ∈ G, and Pr(O|G) is the likelihood of
observing O when the goal is G. Ramı́rez goes on to char-
acterize the likelihood Pr(O|G) in terms of cost differences
for achieving G under two conditions: complying with the
observations O, and not complying with the observations
O. More precisely, Ramı́rez characterizes the likelihood,
Pr(O|G), in terms of a Boltzman distribution:

Pr(O|G) =
e[−β∆(G,O)]

1 + e[−β∆(G,O)]
(8)

where β is a positive constant and ∆(G,O) is the cost
difference between achieving the goal with and without the
observations:

∆(G,O) = Cost(G|O)− Cost(G|O) (9)

Putting equations (7) and (8) together yields:

Pr(G|O) = α
e[−β∆(G,O)]

1 + e[−β∆(G,O)]
Pr(G) (10)

By computing ∆(G,O) for each possible goal, equa-
tion 10 can be used to compute a probability distribution
over those goals. The two costs necessary to compute ∆ can
be found by optimally solving the two planning problems
G|O and G|O. Ramı́rez shows how the constraints O and O
can be compiled into the goals, conditions and effects of the
planning problem so that a standard planner can be used to
find plans for G|O and G|O.

A significant drawback to the Ramı́rez approach is the
computational cost of calling a planner twice for each possi-
ble goal. This makes the approach impractical for real-time
goal recognition, such as for a robot observing a human,
and trying to assist or avoid conflicts. Using hI we show
how to quickly infer a probability distribution over the pos-
sible goals using the framework of Ramirez. To compute
Cost(G|O), the cost-plan graph is pruned considering the
sequence of observed actions. Consequently, cost estimates
for goals with and without the observations are quickly com-
puted, and a probability distribution over those goals is in-
ferred.

Incremental Plan Recognition
Jigui and Minghao (2007) developed a framework for plan
recognition that narrows the set of possible goals by in-
crementally pruning a plan graph as actions are observed.
The approach consists of building a plan graph to determine
which actions and which propositions are true (1), false (-
1), or unknown (0) given the observations. For level zero,
it is assumed the initial state is true: each proposition has
value 1. In addition, when an action is observed at a level it
gets value 1. The process incrementally builds a plan graph

and updates it level by level. The values of propositions and
actions are updated according to the following rules:

1. An action in the plan graph gets value -1 when any of its
preconditions or any of its effects is -1.

2. An action in the plan graph gets value 1 when it is the sole
producer of an effect that has value 1, noop included.

3. A proposition in the plan graph gets value -1 when all of
its consumers or all of its producers are -1, noop included.

4. A proposition in the plan graph gets value 1 when any of
its consumers or any of its producers is 1, noop included.

The process results in a plan graph where each proposi-
tion and each action is labeled as 1, -1, or 0. Those propo-
sitions and actions identified as -1 can be ignored for plan
recognition purposes, meaning that these are pruned from
the resulting plan graph.

This technique assumes we know the time at which each
action has been observed. To relax this assumption, we de-
veloped a modified version of this pruning technique. Like
Ramı́rez and Geffner (2010), we assume that the sequence
of actions is sequential. Initially, an earliest time step (ets)
i is assigned to each action o in the observed sequence. The
ets is given by the order of each action in the observed se-
quence. That is, given (o0, o1, ..., oi), the ets for each action
is: ets(o0)=0, ets(o1)=1, ets(o2)=2, etc. When the pruning
process starts, we establish that an observed action o may be
observed at the assigned level i if all its preconditions are
true (value 1) and/or unknown (value 0), and they are not
mutually exclusive at level i− 1. Otherwise, the action can-
not be executed at that level, which results in an update of
the ets of each remaining action in the observed sequence.
The result of this updating is that each observed action is as-
sumed to occur at the earliest possible time consistent with
both the observation sequence and the constraints found in
constructing the plan graph, using the interaction informa-
tion. To illustrate this propagation and pruning technique,
consider a simple problem with three operators:

A : y → z

B : y →,¬y, t
C : t→ k,¬t (11)

Suppose the sequence of observed actions is A and C, with
initial ets 0 and 1 respectively. As a result of the propaga-
tion, z must be true (have value 1) at level 1 because A was
observed. Since A and B are mutex, B and its effects t and
¬y are false (have value -1) at level 0. C is initially assumed
to be at level 1, but this cannot be the case because its pre-
condition t is false at level 0. Therefore, the ets for C is
updated to 2. At level 2, k and ¬t must be true because C
was observed. (This results in t being true at level 1.) Since
A and C, and B and C are mutex, A, B, ¬y, and t are not
possible (have value -1) at level 2. B is unknown (has value
0) at level 1 since there is not enough information to deter-
mine whether it is true or false. The proposition y is true
at level 0 since the initial state is assumed to be true, and is
unknown at level 1 because there is not enough information
to determine whether it is true or false. However, it is false
at level 2 due to the mutex relation between C and noop-y.
Proposition z is true at each level since there are no opera-
tors in the domain that delete it.

Figure 3: A plan graph with status values of propositions
and actions

Fast Goal Recognition
The union of the plan graph cost estimation and the observa-
tion pruning techniques results in a heuristic approach that
allows fast estimation of cost differences ∆(G,O), giving
us probability estimates for the possible goals G ∈ G. The
steps are:

1. Build a plan graph for the problem P (domain plus initial
conditions) and propagate cost and interaction informa-
tion through this plan graph according to the technique
early described.

2. For each (possibly conjunctive) goal G ∈ G estimate the
Cost(G) from the plan graph using equation (5).

3. Prune the plan graph, based on the observed actions O,
using the technique early described.

4. Compute new cost and interaction estimates for this
pruned plan graph, considering only those propositions
and actions labeled 0, or 1.

5. For each (possibly conjunctive) goal G ∈ G estimate the
Cost(G|O) from the cost and interaction estimates in the
pruned plan graph, again using equation (5). The pruned
cost-plan graph may discard propositions or/and actions
in the cost-plan graph necessary to reach the goal. This
constraint provides a way to discriminate possible goals.
However, it may imply that 1) the real goal is discarded, 2)
the calculated costs are less accurate. Therefore, compu-
tation ofCost(G|O) has been developed under two strate-
gies:

(a) Cost(G|O) is computed using the pruned cost-plan
graph.

(b) Cost(G|O) is computed after the pruned cost-plan
graph is expanded to quiescence again. This will rein-
troduce any pruned goals that are still possible given
the observations.

6. For each goal G ∈ G, compute ∆(G,O), and using equa-
tion (10) compute the probability Pr(G|O) for the goal
given the observations.

To illustrate this computation, consider again actions A,
B, and C from equation (11), and the plan graph shown in
Figure 3. Suppose that A, B, and C have costs 2, 1, and 3
respectively, and that the possible goals are g1 = {z, k} and
g2 = {z, t}. Propagating cost and interaction information
through the plan graph, we get Cost(t) = 1, Cost(z) =
2, Cost(k) = 4, and interaction values I(k, t) = ∞ and
I(k, z) = 0 at level 3. Now consider the hypothesis g1 =
{z, k}; in order to compute Cost(k∧z), we use the cost and
interaction information propagated through the plan graph.
In order to compute Cost(k ∧ z|O), the cost and interaction
information is propagated again only in those actions with
status 1 and 0. In our example, these costs are:

Cost(k ∧ z) ≈ Cost(z) + Cost(k) + I(k, z) = 2 + 4 + 0 = 6

Cost(k∧ z|O) ≈ Cost(k) +Cost(z) + I(k, z) = 4 + 2− 1 = 5

Thus, the cost difference is:

∆(g1, O) = Cost(g1|O)− Cost(g1) = 5− 6 = −1

As a result:

Pr(O|g1) =
e−(−1)

1 + e−(−1)
= 0.73

For the hypothesis g2 = {z, t}, the plan graph dismisses
this hypothesis as a solution because once the plan graph is
pruned, propositions t and z are labeled as -1. Therefore:

Cost(k ∧ t|O) ≈ Cost(k) + Cost(t) + I(k, t) =∞
So:

Pr(O|g2) =
e−∞

1 + e−∞
=

0

1
= 0

If we expand the pruned cost-plan graph until quiescence
again, the solution is still the same because A and B are
permanently mutually exclusive.

Assuming uniform priors, Pr(G), after normalizing the
probabilities, we get that Pr(g1|O) = 1 and Pr(g2|O) = 0,
so the goal g1 is certain in this simple example, given the
observations of actions A and C.

Experimental Results
We conducted an experimental evaluation on planning do-
mains used by Ramı́rez: BlocksWord, Intrusion, Kitchen,
and Logistics. Each domain has 15 problems. The hypothe-
ses set and actual goal for each problem were chosen at ran-
dom with the priors on the goal sets assumed to be uniform.
For each problem in each of the domains, we ran the LAMA
planner (Richter and Westphal, 2010) to solve the problem
for the actual goal. The set of observed actions for each
recognition problem was taken to be a subset of this plan so-
lution, ranging from 100% of the actions, down to 10% of
the actions.

Ramı́rez evaluates his technique using an optimal planner
HSP∗f , and LAMA, a satisficing planner that is used in two
modes: as a greedy planner that stops when it finds the first
plan (LAMAG), and as a planner that returns the best plan
found in a given time limit (LAMA). For purposes of this
test, Ramı́rez technique is also evaluated using the heuristic
hsa, which was used in (Ramı́rez and Geffner, 2009). Like
our technique, this requires no search since the cost is given

by a heuristic function. We compare our goal recognition
technique, GR, against Ramı́rez’s technique for those three
planners and hsa, on the aforementioned domains, using a
range of time limits from 5 seconds up to 1800 seconds. We
present three variations of our technique, with and without
extension of the plan graph after pruning:
• GRI : cost propagation in a plan graph considers interac-

tion information.
• GRIE: same as above, but the pruned cost-plan graph is

expanded until quiescence.
• GRadd: traditional cost propagation in a plan graph.

Table 4 summarizes the results. For each planner, each
column shows average performance over the 15 problems
in each domain. The first row in the table represents the
optimal solution where HSP∗f (HSP∗fu) was allowed to run
for an unlimited amount of time. The other rows represent
different measures of quality and performance:
• T shows the average time in seconds taken for solving the

problems.
• Q shows the fraction of times the actual goal was among

the goals found to be the most likely.
• S shows the spread, that is, the average number of goals

in G that were found to be the most likely.
• Q20 and Q50 show the fraction of times the actual goal is

in the top 20% and top 50% of the ranked goals. Although
Q might be less than 1 for some problem, Q20 or Q50

might be 1, indicating that the actual goal was close to the
top.

• d is the mean distance between the probability scores
produced for all the goal candidates, and the probability
scores produced by gHSP∗fu. More precisely, if the set of
possible goals is {G1, ..., Gn}, a method produces proba-
bilities {e1, ..., en} for those goals, and gHSP∗fu produces
{p1, ..., pn}, d is defined as:

d = 1/n

n∑

i=1

|ei − pi| (12)

The use of an optimal planner like HSP∗fu is generally
impractical for real-time goal recognition on any non-trivial
domain. Surprisingly, LAMA does not perform any better
on the harder domains, and the solution quality is uneven.
Greedy LAMA is much faster, but still no faster than HSP∗fu
in the blocks world domain. The hsa heuristic (Ramı́rez and
Geffner, 2009) for approximating costs is quite fast, but the
cost estimates are not very accurate, leading to poor quality
results for goal recognition. The GRI heuristic is also quite
fast, but yields much better results. On the harder domains,
it is two orders of magnitude faster than HSP∗fu, LAMA, or
Greedy LAMA, and yields results of comparable quality to
both LAMA and Greedy LAMA for the higher observation
percentages.

Conclusions and Future Work
This paper presents a heuristic estimator hI based on a cost-
plan graph and interaction information to compute more ac-
curate cost estimates. This heuristic provides cost estimates

Table 4: Goal recognition with random observations
Domain Blocks Intrusion Kitchen Logistics

Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗fu
T 558.08 419.45 379.81 357.94 357.94 447.41 281.12 151.37 3.58 3.55 480.51 171.08 49.62 37.93 37.92 36.26 32.46 14.08 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 1603.24 1522.96 1260.6 1077.62 1082.15 92.85 89.01 64.97 17.57 17.48 26.33 26.2 20.45 20.3 20.3 45.17 41.71 26.53 11.38 11.39
Q 0.33 0.8 0.8 0.93 1 0.93 1 1 1 1 0.73 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1.13 3.86 10.4 10.93 0.93 1 1.06 4.46 4.6 0.73 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 1 1 1 1 1 0.93 1 1 1 1 0.73 1 1 1 1 1 1 0.93 1 1
Q50 1 1 1 1 1 0.93 1 1 1 1 0.73 1 1 1 1 1 1 1 1 1

d 0.24 0.316 0.192 0.048 0.068 1.739 1.12 0.095 7×10−6 7×10−6 0.358 3×10−3 0.016 0.012 0.012 0.019 0.673 1.051 0.956 0.956

LAMAG

T 849.08 840.76 814.95 803.04 809.01 3.32 2.63 2.21 2.08 2.08 0.42 0.36 0.33 0.32 0.32 5.47 4.95 4.5 4.33 4.36
Q 0.93 0.8 0.73 0.66 0.46 0 0.4 1 1 1 0.73 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1 1.2 3 6.2 4.2 0 0.4 1.13 4.46 4.6 0.73 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.93 1 1 1 1 0 0.4 1 1 1 0.73 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.93 1 1 1 1 0 0.4 1 1 1 0.73 1 1 1 1 1 1 0.93 0.86 0.86

d 0.068 0.34 0.404 0.322 0.341 1.86 1.12 0.108 7×10−6 7×10−6 0.358 3×10−3 0.016 0.012 0.012 0.019 0.675 1.179 1.063 1.063

hsa

T 1.04 0.89 0.81 0.81 0.8 0.7 0.46 0.39 0.35 0.36 0.066 0.049 0.044 0.045 0.046 0.61 0.55 0.51 0.51 0.51
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.13 0.06 0.13 0.06 0.06
S 20.26 20.26 20.26 20.26 20.26 16.66 16.66 16.66 16.66 16.66 3 3 3 3 3 2.8 1.86 1.93 1 1

Q20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.86 0.86 0.86
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.86 0.86 0.86

d 0.092 0.087 0.062 0.035 0.035 0.123 0.124 0.119 0.075 0.073 0.443 0.436 0.284 0.226 0.226 0.123 0.117 0.099 0.074 0.074

GRI

T 1.007 1.029 1.265 1.452 1.452 0.885 0.493 0.212 0.209 0.21 0.261 0.195 0.140 0.135 0.135 0.886 1.015 1.19 1.266 1.271
Q 1 0.66 0.4 0.13 0.13 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.86 0.53 0.6 0.6
S 1.06 0.8 1.06 1.73 1.73 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1 1.26 1.6 2.46 2.46

Q20 1 0.66 0.53 0.46 0.46 1 1 1 0.93 0.93 1 1 1 1 1 1 0.93 0.66 0.73 0.73
Q50 1 0.73 0.73 0.8 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 0.149 0.962 0.751 0.336 0.336 3.2×10−4 0.055 0.872 0.241 0.241 3.98×10−4 0.036 0.107 0.192 0.192 0.264 0.786 1.163 0.718 0.718

GRIE

T 9.936 8.211 4.542 3.696 3.687 1.293 1.191 0.996 0.743 0.738 0.287 0.266 0.230 0.193 0.193 7.535 4.24 3.016 2.842 2.834
Q 0.46 0.53 0.46 0.13 0.13 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.66 0.66 0.6 0.6
S 1.26 1.13 1.86 1.73 1.73 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1.13 1.4 1.8 2.8 2.8

Q20 0.46 0.73 0.66 0.4 0.4 1 1 1 0.93 0.93 1 1 1 1 1 0.86 0.8 0.8 0.73 0.73
Q50 0.46 0.8 0.86 0.8 0.8 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 0.86 0.86

d 1.094 1.025 0.742 0.358 0.358 3.2×10−4 0.055 0.872 0.241 0.241 3.98×10−4 0.036 0.107 0.192 0.192 0.387 0.943 1.107 0.771 0.771

GRadd

T 0.761 0.609 0.643 0.782 0.783 0.886 0.491 0.196 0.192 0.193 0.258 0.191 0.136 0.128 0.129 0.806 0.405 0.448 0.508 0.51
Q 1 0.46 0.46 0.46 0.46 1 1 1 1 0.93 1 1 1 1 1 1 0.4 0.46 0.6 0.6
S 1 0.53 1.2 2.06 2.06 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1 1 2.13 2.93 2.93

Q20 1 0.46 0.6 0.6 0.6 1 1 1 1 0.93 1 1 1 1 1 1 0.46 0.6 0.66 0.66
Q50 1 0.46 0.6 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 0.53 0.73 0.8 0.8

d 0.088 1.084 1.036 1.004 1.004 0.151 0.764 1.25 0.311 0.285 2×10−6 0.038 5×10−6 0.022 0.022 0.011 1.196 1.29 0.899 0.899

that are substantially closer to the optimal and more consis-
tent. Regardless of the quality estimates generated by hI ,
its use in classical planning does not pay off because of the
computational overhead. However, it is very useful for goal
recognition to infer probability estimates for the possible
goals.

Acknowledgments
This work was funded by the JCCM project PEII-2014-
015A, USRA, and NASA Ames Research Center.

References
Blum, A., and Furst, M. 1997. Fast planning through planning

graph analysis. AI 90:281—300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search. JAIR

129:5—33.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and fast

action selection mechanism for planning. In AAAI’97.
Bryce, D., and Smith, D. E. 2006. Using interaction to compute

better probability estimates in plan graphs. In ICAPS’06 Work-
shop on Planning Under Uncertainty and Execution Control for
Autonomous Systems.

Chen, Y.; W., W. B.; and Chih-Wei, H. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan. JAIR
26:323—369.

Do, M., and Kambhampati, S. 2002. Planning graph-based heuris-
tics for cost-sensitive temporal planning. In AIPS’02. Toulouse,
France.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs in LPG. JAIR
20:239—290.

Haslum, P., and Geffner, H. 2000. Admissible heuristic for optimal
planning. In AIPS’00.

Haslum, P. 2008. Additive and reversed relaxed reachability heuris-
tics revisited. In IPC-08.

Hoffmann, J. 2003. The Metric-FF planning system: Translating
“ignoring delete lists” to numeric state variables. JAIR 20:291—
341.

Jigui, S., and Minghao, Y. 2007. Recognizing the agent’s goals
incrementally: planning graph as a basis. In Frontiers of Com-
puter Science in China 1(1):26—36.

Keyder, E., and Geffner, H. 2007. Heuristics for planning with
action costs. In CAEPIA’07.

Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002. Planning
graph as the basis for deriving heuristics for plan synthesis by
state space and csp search. AI 135(1-2):73—123.

Ramı́rez, M., and Geffner, H. 2009. Plan recognition as planning.
In IJCAI’09.

Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recognition
using off-the-shelf classical planners. In AAAI’10.

Ramı́rez, M. 2012. Plan Recognition as Planning. Ph.D. Disserta-
tion, Universitat Pompeu Fabra, Barcelona, Spain.

Richter, S., and Westphal, M. 2010. The LAMA planner: guiding
cost-based anytime planning with landmarks. JAIR 39:127—
177.

Red-Black Planning: A New Tractability Analysis and Heuristic Function

Daniel Gnad and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, hoffmann}@cs.uni-saarland.de

Abstract
Red-black planning is a recent approach to partial delete re-
laxation, where red variables take the relaxed semantics (ac-
cumulating their values), while black variables take the reg-
ular semantics. Practical heuristic functions can be gener-
ated from tractable sub-classes of red-black planning. Prior
work has identified such sub-classes based on the black causal
graph, i. e., the projection of the causal graph onto the black
variables. Here, we consider cross-dependencies between
black and red variables instead. We show that, if no red vari-
able relies on black preconditions, then red-black plan gen-
eration is tractable in the size of the black state space, i. e.,
the product of the black variables. We employ this insight
to devise a new red-black plan heuristic in which variables
are painted black starting from the causal graph leaves. We
evaluate this heuristic on the planning competition bench-
marks. Compared to a standard delete relaxation heuristic,
while the increased runtime overhead often is detrimental, in
some cases the search space reduction is strong enough to re-
sult in improved performance overall.

Introduction
In classical AI planning, we have a set of finite-domain state
variables, an initial state, a goal, and actions described in
terms of preconditions and effects over the state variables.
We need to find a sequence of actions leading from the initial
state to a goal state. One prominent way of addressing this is
heuristic forward state space search, and one major question
in doing so is how to generate the heuristic function automat-
ically, i. e., just from the problem description without any
further human user input. We are concerned with that ques-
tion here, in satisficing planning where no guarantee on plan
quality needs to be provided. The most prominent class of
heuristic functions for satisficing planning are relaxed plan
heuristics (e. g. (McDermott 1999; Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Gerevini, Saetti, and Serina
2003; Richter and Westphal 2010)).

Relaxed plan heuristics are based on the delete (or mono-
tonic) relaxation, which assumes that state variables accu-
mulate their values, rather than switching between them.
Optimal delete-relaxed planning still is NP-hard, but satis-
ficing delete-relaxed planning is polynomial-time (Bylander
1994). Given a search state s, relaxed plan heuristics gen-
erate a (not necessarily optimal) delete-relaxed plan for s,
resulting in an inadmissible heuristic function which tends

to be very informative on many planning benchmarks (an
explicit analysis has been conducted by Hoffmann (2005)).

Yet, like any heuristic, relaxed plan heuristics also have
significant pitfalls. A striking example (see, e. g., (Coles
et al. 2008; Nakhost, Hoffmann, and Müller 2012; Coles
et al. 2013)) is “resource persistence”, that is, the inabil-
ity to account for the consumption of non-replenishable
resources. As variables never lose any “old” values, the
relaxation pretends that resources are never actually con-
sumed. For this and related reasons, the design of heuris-
tics that take some deletes into account has been an active
research area from the outset (e. g. (Fox and Long 2001;
Gerevini, Saetti, and Serina 2003; Helmert 2004; van den
Briel et al. 2007; Helmert and Geffner 2008; Coles et al.
2008; Keyder and Geffner 2008; Baier and Botea 2009;
Keyder, Hoffmann, and Haslum 2012; Coles et al. 2013;
Keyder, Hoffmann, and Haslum 2014). We herein continue
the most recent approach along these lines, red-black plan-
ning as introduced by Katz et al. (2013b).

Red-black planning delete-relaxes only a subset of the
state variables, called “red”, which accumulate their values;
the remaining variables, called “black”, retain the regular
value-switching semantics. The idea is to obtain an inad-
missible yet informative heuristic in a manner similar to re-
laxed plan heuristics, i. e. by generating some (not necessar-
ily optimal) red-black plan for any given search state s. For
this to make sense, such red-black plan generation must be
sufficiently fast. Therefore, after introducing the red-black
planning framework, Katz et al. embarked on a line of work
generating red-black plan heuristics based on tractable frag-
ments. These are characterized by properties of the pro-
jection of the causal graph – a standard structure capturing
state variable dependencies – onto the black variables (Katz,
Hoffmann, and Domshlak 2013a; Katz and Hoffmann 2013;
Domshlak, Hoffmann, and Katz 2015). Cross-dependencies
between black and red variables were not considered at all
yet. We fill that gap, approaching “from the other side” in
that we analyze only such cross-dependencies. We ignore
the structure inside the black part, assuming that there is a
single black variable only; in practice, that “single variable”
will correspond to the cross-product of the black variables.

Distinguishing between (i) black-precondition-to-red-
effect, (ii) red-precondition-to-black-effect, and (iii) mixed-
red-black-effect dependencies, and assuming there is a sin-

gle black variable, we establish that (i) alone governs the
borderline between P and NP: If we allow type (i) depen-
dencies, deciding red-black plan existence is NP-complete,
and if we disallow them, red-black plan generation is
polynomial-time. Katz et al. also considered the single-
black-variable case. Our hardness result strengthens theirs
in that it shows only type (i) dependencies are needed. Our
tractability result is a major step forward in that it allows to
scale the size of the black variable, in contrast to Katz et al.’s
algorithm whose runtime is exponential in that parameter.
Hence, in contrast to Katz et al.’s algorithm, ours is practical.
It leads us to a new red-black plan heuristic, whose painting
strategy draws a “horizontal line” through the causal graph
viewed as a DAG of strongly connected components (SCC),
with the roots at the top and the leaves at the bottom. The
part above the line gets painted red, the part below the line
gets painted black, so type (i) dependencies are avoided.

Note that, by design, the black variables must be “close to
the causal graph leaves”. This is in contrast with Katz et al.’s
red-black plan heuristics, which attempt to paint black the
variables “close to the causal graph root”, to account for the
to-and-fro of these variables when servicing other variables
(e. g., a truck moving around to service packages). Indeed, if
the black variables are causal graph leaves, then provably no
information is gained over a standard relaxed plan heuristic
(Katz, Hoffmann, and Domshlak 2013b). However, in our
new heuristic we paint black leaf SCCs, as opposed to leaf
variables. As we point out using an illustrative example,
this can result in better heuristic estimates than a standard
relaxed plan, and even than a red-black plan when painting
the causal graph roots black. That said, in the International
Planning Competition (IPC) benchmarks, this kind of struc-
ture seems to be rare. Our new heuristic often does not yield
a search space reduction so its runtime overhead ends up
being detrimental. Katz et al.’s heuristic almost universally
performs better. In some cases though, our heuristic does
reduce the search space dramatically relative to standard re-
laxed plans, resulting in improved performance.

Preliminaries
Our approach is placed in the finite-domain representa-
tion (FDR) framework. To save space, we introduce FDR
and its delete relaxation as special cases of red-black plan-
ning. A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I, G〉. V B is a set of black state variables and
V R is a set of red state variables, where V B ∩ V R = ∅ and
each v ∈ V := V B ∪ V R is associated with a finite domain
D(v). The initial state I is a complete assignment to V , the
goal G is a partial assignment to V . Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
dition and effect. We often refer to (partial) assignments as
sets of facts, i. e., variable-value pairs v = d. For a partial
assignment p, V(p) denotes the subset of V instantiated by
p. For V ′ ⊆ V(p), p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset s[v] ⊆
D(v), where |s[v]| = 1 for all v ∈ V B. An action a is ap-
plicable in state s if pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)).
Applying a in s changes the value of v ∈ V(eff(a)) ∩ V B to
{eff(a)[v]}, and changes the value of v ∈ V(eff(a))∩V R to

s[v] ∪ {eff(a)[v]}. The resulting state is denoted sJaK. By
sJ〈a1, . . . , ak〉K we denote the state obtained from sequential
application of a1, . . . , ak. An action sequence 〈a1, . . . , ak〉
is a plan if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Π is a finite-domain representation (FDR) planning task
if V = V B, and is a monotonic finite-domain representa-
tion (MFDR) planning task if V = V R. Optimal planning
for MFDR tasks is NP-complete, but satisficing planning
is polynomial-time. The latter can be exploited for deriv-
ing (inadmissible) relaxed plan heuristics, denoted hFF here.
Generalizing this to red-black planning, the red-black relax-
ation of an FDR task Π relative to a variable painting, i. e. a
subset V R to be painted red, is the RB task ΠRB

V R = 〈V \V R,

V R, A, I, G〉. A plan for ΠRB
V R is a red-black plan for Π.

Generating optimal red-black plans is NP-hard regardless of
the painting simply because we always generalize MFDR.
The idea is to generate satisficing red-black plans and thus
obtain a red-black plan heuristic hRB similarly as for hFF.
That approach is practical if the variable painting is chosen
so that satisficing red-black plan generation is tractable (or
sufficiently fast, anyway).

A standard means to identify structure, and therewith
tractable fragments, in planning is to capture dependencies
between state variables in terms of the causal graph. This
is a digraph with vertices V . An arc (v, v′) is in CGΠ

if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a)) ∪ V(pre(a))] × V(eff(a)).

Prior work on tractability in red-black planning (Katz,
Hoffmann, and Domshlak 2013b; 2013a; Domshlak, Hoff-
mann, and Katz 2015) considered (a) the “black causal
graph” i. e. the sub-graph induced by the black variables
only, and (b) the case of a single black variable. Of these,
only (a) was employed for the design of heuristic functions.
Herein, we improve upon (b). Method (a) is not of immedi-
ate relevance to our technical contribution, but we compare
to it empirically, specifically to the most competitive heuris-
tic hMercury as used in the Mercury system that participated in
IPC’14 (Katz and Hoffmann 2014). That heuristic exploits
the tractable fragment of red-black planning where the black
causal graph is acyclic and every black variable is “invert-
ible” in a particular sense. The painting strategy is geared at
painting black the “most influential” variables, close to the
causal graph roots.

Example 1 As an illustrative example, we use a simpli-
fied version of the IPC benchmark TPP. Consider Figure 1.
There is a truck moving along a line l1, . . . , l7 of locations.
The truck starts in the middle; the goal is to buy two units of
a product, depicted in Figure 1 (a) by the barrels, where one
unit is on sale at each extreme end of the road map.

Concretely, say the encoding in FDR is as follows. The
state variables are T with domain {l1, . . . , l7} for the truck
position; B with domain {0, 1, 2} for the amount of product
bought already; P1 with domain {0, 1} for the amount of
product still on sale at l1; and P7 with domain {0, 1} for the
amount of product still on sale at l7. The initial state is as
shown in the figure, i. e., T = l3, B = 0, P1 = 1, P7 = 1.
The goal is B = 2. The actions are:

T

P1 P7

B

(a) (b)

Figure 1: Our running example (a), and its causal graph (b).

• move(x, y): precondition {T = lx} and effect {T = ly},
where x, y ∈ {1, . . . , 7} such that |x − y| = 1.

• buy(x, y, z): precondition {T = lx, Px = 1, B = y} and
effect {Px = 0, B = z}, where x ∈ {1, 7} and y, z ∈
{0, 1, 2} such that z = y + 1.

The causal graph is shown in Figure 1 (b). Note that the
variables pertaining to the product, i. e. B, P1, P7, form a
strongly connected component because of the “buy” actions.

Consider first the painting where all variables are red,
i. e., a full delete relaxation. A relaxed plan then ignores
that, after buying the product at one of the two locations l1
or l7, the product is no longer available so we have to move
to the other end of the line. Instead, we can buy the product
again at the same location, ending up with a relaxed plan of
length 5 instead of the 11 steps needed in a real plan.

Exactly the same problem arises in hMercury: The only “in-
vertible” variable here is T . But if we paint only T black,
then the red-black plan still is the same as the fully delete-
relaxed plan (the truck does not have to move back and forth
anyhow), and we still get the same goal distance estimate 5.

Now say that we paint T red, and paint all other vari-
ables black. This is the painting our new heuristic function
will use. We can no longer cheat when buying the product,
i. e., we do need to buy at each of l1 and l7. Variable T is
relaxed so we require 6 moves to reach both these locations,
resulting in a red-black plan of length 8.

Tractability Analysis
We focus on the case of a single black variable. This has
been previously investigated by Katz et al. (2013b), but
scantly only. We will discuss details below; our contribu-
tion regards a kind of dependency hitherto ignored, namely
cross-dependencies between red and black variables:

Definition 1 Let Π = 〈V B, V R, A, I, G〉 be a RB planning
task. We say that v, v′ ∈ V B ∪ V R have different colors if
either v ∈ V B and v′ ∈ V R or vice versa. The red-black
causal graph CGRB

Π of Π is the digraph with vertices V and
those arcs (v, v′) from CGΠ where v and v′ have different
colors. We say that (v, v′) is of type:

(i) BtoR if v ∈ V B, v′ ∈ V R, and there exists an action
a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).

(ii) RtoB if v ∈ V R, v′ ∈ V B, and there exists an action
a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).

(iii) EFF else.

We investigate the complexity of satisficing red-black
planning as a function of allowing vs. disallowing each of

the types (i) – (iii) of cross-dependencies individually. We
completely disregard the inner structure of the black part
of Π, i. e., the subset V B of black variables may be arbi-
trary. The underlying assumption is that these variables will
be pre-composed into a single black variable. Such “pre-
composition” essentially means to build the cross-product of
the respective variable domains (Seipp and Helmert 2011).
We will refer to that cross-product as the black state space,
and state our complexity results relative to the assumption
that |V B| = 1, denoting the single black variable with vB.
In other words, our complexity analysis is relative to the size
|D(vB)| of the black state space, as opposed to the size of the
input task. From a practical perspective, which we elaborate
on in the next section, this makes sense provided the variable
painting is chosen so that the black state space is “small”.

Katz et al. (2013b) show in their Theorem 1, henceforth
called “KatzP”, that satisficing red-black plan generation is
polynomial-time in case |D(vB)| is fixed, via an algorithm
that is exponential only in that parameter. They show in their
Theorem 2, henceforth called “KatzNP”, that deciding red-
black plan existence is NP-complete if |D(vB)| is allowed
to scale. They do not investigate any structural criteria dis-
tinguishing sub-classes of the single black variable case. We
close that gap here, considering the dependency types (i) –
(iii) of Definition 1. The major benefit of doing so will be a
polynomial-time algorithm for scaling |D(vB)|.

Switching each of (i) – (iii) on or off individually yields
a lattice of eight sub-classes of red-black planning. It turns
out that, as far as the complexity of satisficing red-black plan
generation is concerned, this lattice collapses into just two
classes, characterized by the presence or absence of depen-
dencies (i): If arcs of type BtoR are allowed, then the prob-
lem is NP-complete even if arcs of types RtoB and EFF are
disallowed. If arcs of type BtoR are disallowed, then the
problem is polynomial-time even if arcs of types RtoB and
EFF are allowed. We start with the negative result:

Theorem 1 Deciding red-black plan existence for RB plan-
ning tasks with a single black variable, and without CGRB

Π
arcs of types RtoB and EFF, is NP-complete.

Proof: Membership follows from KatzNP. (Plan length with
a single black variable is polynomially bounded, so this
holds by guess-and-check.)

d0 d1 d2 dn

x1

¬x1

x2

¬x2

x3

¬x3

xn

¬xn

. . .

Figure 2: Illustration of the black variable vB in the SAT
reduction in the proof of Theorem 1.

We prove hardness by a reduction from SAT. Consider a
CNF formula φ with propositional variables x1, . . . , xn and
clauses c1, . . . , cm. Our RB planning task has m Boolean
red variables vR

i , and the single black variable vB has do-
main {d0, . . . , dn} ∪ {xi, ¬xi | 1 ≤ i ≤ n}. In the initial
state, all vR

j are set to false and vB has value d0. The goal
is for all vR

j to be set to true. The actions moving vB have

Algorithm NoBtoR-Planning:
R := I[V R]∪ RedFixedPoint(AR)
if G[V R] ⊆ R and BlackReachable(R, I[vB], G[vB]) then

return “solvable” /* case (a) */
endif
R := I[V R]∪ RedFixedPoint(AR ∪ ARB)
if G[V R] ⊆ R then

for a ∈ ARB s.t. pre(a) ⊆ R do
if BlackReachable(R, eff(a)[vB], G[vB]) then

return “solvable” /* case (b) */
endif

endfor
endif
return “unsolvable”

Figure 3: Algorithm used in the proof of Theorem 2.

preconditions and effects only on vB, and are such that we
can move as shown in Figure 2, i. e., for 1 ≤ i ≤ n: from
di−1 to xi; from di−1 to ¬xi; from xi to di; and from ¬xi to
di. For each literal l ∈ cj there is an action allowing to set
vR

j to true provided vB has the correct value, i. e., for l = xi

the precondition is vB = xi, and for l = ¬xi the precondi-
tion is vB = ¬xi. This construction does not incur any RtoB
or EFF dependencies. The paths vB can take correspond ex-
actly to all possible truth value assignments. We can achieve
the red goal iff one of these paths visits at least one literal
from every clause, which is the case iff φ is satisfiable. �

The hardness part of KatzNP relies on EFF dependencies.
Theorem 1 strengthens this in showing that these dependen-
cies are not actually required for hardness.

Theorem 2 Satisficing plan generation for RB planning
tasks with a single black variable, and without CGRB

Π arcs
of type BtoR, is polynomial-time.

Proof: Let Π = 〈{vB}, V R, A, I, G〉 as specified. We can
partition A into the following subsets:

• AB := {a ∈ A | V(eff(a)) ∩ V B = {vB}, V(eff(a)) ∩
V R = ∅} are the actions affecting only the black variable.
These actions may have red preconditions.

• AR := {a ∈ A | V(eff(a)) ∩ V B = ∅, V(eff(a)) ∩ V R 6=
∅} are the actions affecting only red variables. As there
are no CGRB

Π arcs of type BtoR, the actions in AR have no
black preconditions.

• ARB := {a ∈ A | V(eff(a)) ∩ V B = {vB}, V(eff(a)) ∩
V R 6= ∅} are the actions affecting both red variables and
the black variable. As there are no CGRB

Π arcs of type
BtoR, the actions in ARB have no black preconditions.

Consider Figure 3. By RedFixedPoint(A′) for a subset A′ ⊆
A of actions without black preconditions, we mean all red
facts reachable using only A′, ignoring any black effects.
This can be computed by building a relaxed planning graph
over A′. By BlackReachable(R, d, d′) we mean the question
whether there exists an AB path moving vB from d to d′,
using only red preconditions from R.

Clearly, NoBtoR-Planning runs in polynomial time. If
it returns “solvable”, we can construct a plan πRB for Π
as follows. In case (a), we obtain πRB by any sequence
of AR actions establishing RedFixedPoint(AR) (there are
neither black preconditions nor black effects), and attach-
ing a sequence of AB actions leading from I[vB] to G[vB].
In case (b), we obtain πRB by: any sequence of AR ac-
tions establishing RedFixedPoint(AR ∪ ARB) (there are no
black preconditions); attaching the ARB action a success-
ful in the for-loop (which is applicable due to pre(a) ⊆ R
and V(pre(a)) ∩ V B = ∅); and attaching a sequence of AB

actions leading from eff(a)[vB] to G[vB]. Note that, after
RedFixedPoint(AR ∪ ARB), only a single ARB action a is
necessary, enabling the black value eff(a)[vB] from which
the black goal is AB-reachable.

If there is a plan πRB for Π, then NoBtoR-Planning re-
turns “solvable”. First, if πRB does not use any ARB action,
i. e. πRB consists entirely of AR and AB actions, then case (a)
will apply because RedFixedPoint(AR) contains all we can
do with the former, and BlackReachable(R, I[vB], G[vB])
examines all we can do with the latter. Second, say πRB

does use at least one ARB action. RedFixedPoint(AR ∪ARB)
contains all red facts that can be achieved in Π, so in particu-
lar (*) RedFixedPoint(AR ∪ ARB) contains all red facts true
along πRB. Let a be the last ARB action applied in πRB. Then
πRB contains a path from eff(a)[vB] to G[vB] behind a. With
(*), pre(a) ⊆ R and BlackReachable(R, eff(a)[vB], G[vB])
succeeds, so case (b) will apply. �

In other words, if (a) no ARB action is needed to solve
Π, then we simply execute a relaxed planning fixed point
prior to moving vB. If (b) such an action is needed, then
we mix ARB with the fully-red ones in the relaxed plan-
ning fixed point, which works because, having no black pre-
conditions, once an ARB action has become applicable, it
remains applicable. Note that the case distinction (a) vs.
(b) is needed: When making use of the “large” fixed point
RedFixedPoint(AR ∪ARB), there is no guarantee we can get
vB back into its initial value afterwards.

Example 2 Consider again our illustrative example (cf.
Figure 1), painting T red and painting all other variables
black. Then vB corresponds to the cross-product of vari-
ables B, P1, and P7; AB contains the “buy” actions, AR

contains the “move” actions, and ARB is empty.
The call to RedFixedPoint(AR) in Figure 3 results in R

containing all truck positions, R = {T = l1, . . . , T = l7}.
The call to BlackReachable(R, I[vB], G[vB]) then succeeds
as, given we have both truck preconditions T = l1 and T =
l7 required for the “buy” actions, indeed the black goal B =
2 is reachable. The red-black plan extracted will contain a
sequence of moves reaching all of {T = l1, . . . , T = l7},
followed by a sequence of two “buy” actions leading from
I[vB] = {B = 0, P1 = 1, P2 = 1} to G[vB] = {B = 2}.

Theorem 2 is a substantial improvement over KatzP in
terms of the scaling behavior in |D(vB)|. KatzP is based
on an algorithm with runtime exponential in |D(vB)|. Our
NoBtoR-Planning has low-order polynomial runtime in that

parameter, in fact all we need to do is find paths in a graph
of size |D(vB)|. This dramatic complexity reduction is ob-
tained at the price of disallowing BtoR dependencies.

Heuristic Function
Assume an input FDR planning task Π. As indicated, we
will choose a painting (a subset V R of red variables) so that
BtoR dependencies do not exist, and for each search state
s generate a heuristic value by running NoBtoR-Planning
with s as the initial state. We describe our painting strategy
in the next section. Some words are in order regarding the
heuristic function itself, which diverges from our previous
theoretical discussion – Figure 3 and Theorem 2 – in several
important aspects.

While the previous section assumed that the entire black
state space is pre-composed into a single black variable vB,
that assumption was only made for convenience. In practice
there is no need for such pre-composition. We instead run
NoBtoR-Planning with the BlackReachable(R, d, d′) calls
implemented as a forward state space search within the pro-
jection onto the black variables, using only those black-
affecting actions whose red preconditions are contained in
the current set of red facts R. This is straightforward, and
avoids having to generate the entire black state space up
front – instead, we will only generate those parts actually
needed during red-black plan generation as requested by the
surrounding search. Still, of course for this to be feasible we
need to keep the size of the black state space at bay.

That said, actually what we need to keep at bay is not
the black state space itself, but its weakly connected compo-
nents. As the red variables are taken out of this part of the
problem, chances are that the remaining part will contain
separate components.

Example 3 In our running example, say there are several
different kinds of products, i. e. the truck needs to buy a goal
amount of several products. (This is indeed the case in the
TPP benchmark suite as used in the IPC.) The state vari-
ables for each product then form an SCC like the variables
B, P1, P7 in Figure 1 (b), mutually separated from each
other by taking out (painting red) the central variable T .

We can decompose the black state space, handling each
connected component of variables V B

c ⊆ V B separately.
When calling BlackReachable(R, d, d′), we do not call a
single state space search within the projection onto V B, but
call one state space search within the projection onto V B

c ,
for every component V B

c . The overall search is successful if
all its components are, and in that case the overall solution
path results from simple concatenation.

We finally employ several simple optimizations: black
state space results caching, stop search, and optimized red-
black plan extraction. The first of these is important as
the heuristic function will be called on the same black
state space many times during search, and within each call
there may be several questions about paths from d to d′

through that state space. The same pairs d and d′ may re-
appear many times in the calls to BlackReachable(R, d, d′),
so we can avoid duplicate effort simply by caching these

results. Precisely, our cache consists of pairs (d, d′)
along with a black path π(d, d′) from d to d′. (In pre-
liminary experiments, caching the actual triples (R, d, d′)
led to high memory consumption.) Whenever a call to
BlackReachable(R, d, d′) is made, we check whether (d, d′)
is in the cache, and if so check whether π(d, d′) works given
R, i. e., contains only actions whose red preconditions are
contained in R. If that is not so, or if (d, d′) is not in the
cache at all yet, we run the (decomposed) state space search,
and in case of success add its result to the cache.

Stop search is the same as already used in (and found to be
important in) Katz et al.’s previous work on red-black plan
heuristics. If the red-black plan πRB generated for a search
state s is actually executable in the original FDR input plan-
ning task, then we terminate search immediately and output
the path to s, followed by πRB, as the solution.

Finally, the red-black plans πRB described in the proof
of Theorem 2 are of course highly redundant in that they
execute the entire red fixed points, as opposed to establish-
ing only those red facts Rg ⊆ R required by the red goal
G[V R], and required as red preconditions on the solution
black path found by BlackReachable(R, d, d′). We address
this straightforwardly following the usual relaxed planning
approach. The forward red fixed point phase is followed by
a backward red plan extraction phase, in which we select
supporters for Rg and the red subgoals it generates.

Painting Strategy
Given an input FDR planning task Π, we need to choose our
painting V R such that the red-black causal graph CGRB

Π has
no BtoR dependencies. A convenient view for doing so is
to perceive the causal graph CGΠ as a DAG D of SCCs in
which the root SCCs are at the top and the leaf SCCs at the
bottom: Our task is then equivalent to drawing a “horizontal
line” anywhere through D, painting the top part red, and
painting the bottom part black. We say that such a painting
is non-trivial if the bottom part is non-empty.

Example 4 In our running example, the only non-trivial
painting is the one illustrated in Figure 4.

T

P1 P7

B

top (red)
bottom (black)

Figure 4: The painting in our running example.

If there are several different kinds of products as de-
scribed in Example 3, then the state variables for each prod-
uct form a separate component in the bottom part. If there
are several trucks, then the “horizontal line” may put any
non-empty subset of trucks into the top part.

We implemented a simple painting strategy accommodat-
ing the above. The strategy has an input parameter N impos-
ing an upper bound on the (conservatively) estimated size of
the decomposed black state space. Starting with the DAG D

without preferred operators with preferred operators
N = N =

domain # hMercury hFF 0 1k 10k 100k 1m 10m hMercury hFF 0 1k 10k 100k 1m 10m

Logistics00 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
Logistics98 35 35 26 23 23 23 23 23 23 35 35 32 32 32 32 32 32
Miconic 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150
ParcPrinter08 30 30 26 30 30 30 30 30 30 30 26 30 30 30 30 30 30
ParcPrinter11 20 20 12 20 20 20 20 20 20 20 12 20 20 20 20 20 20
Pathways 30 11 11 8 10 10 10 10 10 30 20 23 23 23 23 23 23
Rovers 40 27 23 23 23 24 26 25 24 40 40 40 40 40 40 40 40
Satellite 36 36 30 26 26 26 26 25 26 36 36 35 35 35 35 35 35
TPP 30 23 22 18 18 18 18 18 19 30 30 30 30 30 30 30 30
Woodworking08 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Woodworking11 20 20 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20
Zenotravel 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20∑

469 430 397 395 397 399 401 399 400 469 447 458 458 458 458 458 458

Table 1: Coverage results. All heuristics are run with FD’s greedy best-first search, single-queue for configurations without
preferred operators, double-queue for configurations with preferred operators. The preferred operators are taken from hFF in all
cases (see text).

of SCCs over the original causal graph, and with the empty
set V B of black variables, iterate the following steps:

1. Set the candidates for inclusion to be all leaf SCCs Vl ⊆
V in D.

2. Select a Vl where
∏

v∈V ′ |D(v)| is minimal.

3. Set V ′ := V B ∪ Vl and find the weakly connected com-
ponents V B

c ⊆ V ′.

4. If
∑

V B
c

∏
v∈V B

c
|D(v)| ≤ N , set V B := V ′, remove Vl

from D, and iterate; else, terminate.

Example 5 In our running example, this strategy will result
in exactly the painting displayed in Figure 4, provided N
is choosen large enough to accommodate the variable sub-
set {B, P1, P7}, but not large enough to accommodate the
entire set of variables.

If there are several different kinds of products, as in the
IPC TPP domain, then N does not have to be large to ac-
commodate all products (as each is a separate component),
but would have to be huge to accommodate any truck (which
would reconnect all these components). Hence, for a broad
range of settings of N , we end up painting the products black
and the trucks red, as desired.

Note that our painting strategy may terminate with the
trivial painting (V B = ∅), namely if even the smallest can-
didate Vl breaks the size bound N . This will happen, in par-
ticular, on all input tasks Π whose causal graph is a single
SCC, unless N is large enough to accommodate the entire
state space. Therefore, in practice, we exclude input tasks
whose causal graph is strongly connected.

Experiments
Our techniques are implemented in Fast Downward (FD)
(Helmert 2006). For our painting strategy, we experiment
with the size bounds N ∈ {1k, 10k, 100k, 1m, 10m} (“m”
meaning “million”). We run all IPC STRIPS benchmarks,

precisely their satisficing-planning test suites, where we ob-
tain non-trivial paintings. This excludes domains whose
causal graphs are strongly connected, and it excludes do-
mains where even the smallest leaf SCCs break our size
bounds. It turns out that, given this, only 9 benchmark do-
mains qualify, 3 of which have been used in two IPC editions
so that we end up with 12 test suites.

As our contribution consists in a new heuristic function,
we fix the search algorithm, namely FD’s greedy best-first
search with lazy evaluation, and evaluate the heuristic func-
tion against its closest relatives. Foremost, we compare to
the standard relaxed plan heuristic hFF, which we set out to
improve upon. More specifically, we compare to two imple-
mentations of hFF: the one from the FD distribution, and our
own heuristic with size bound N = 0. The former is more
“standard”, but differs from our heuristic even in the case
N = 0 because these are separate implementations that do
not coincide exactly in terms of tie breaking. As we shall
see, this seemingly small difference can significantly affect
performance. To obtain a more precise picture of which dif-
ferences are due to the black variables rather than other de-
tails, we use N = 0, i. e. “our own” hFF implementation, as
the main baseline. We also run hMercury, as a representative
of the state of the art in alternate red-black plan heuristics.

A few words are in order regarding preferred operators.
As was previously observed by Katz et al., hMercury yields
best performance when using the standard preferred oper-
ators extracted from hFF: The latter is computed as part of
computing hMercury anyhow, and the standard preferred oper-
ators tend to work better than variants Katz et al. tried trying
to exploit the handling of black variables in hMercury. For our
own heuristics, we made a similar observation, in that we
experimented with variants of preferred operators specific to
these, but found that using the standard preferred operators
from hFF gave better results. This is true despite the fact
that our heuristics do not compute hFF as part of the process.
The preferred operators are obtained by a separate call to
FD’s standard implementation of hFF, on every search state.
Hence, in what follows, all heuristics reported use the exact

same method to generate preferred operators.
Table 1 shows coverage results. Observe first that, in

terms of this most basic performance parameter, hMercury

dominates all other heuristics, across all domains and re-
gardless whether or not preferred operators are being used.
Recall here that, in contrast to our heuristics which paint
black the variables “close to the causal graph leaves”,
hMercury uses paintings that paint black the variables “close
to the causal graph roots”. Although in principle the former
kind of painting can be of advantage as illustrated in Ex-
ample 1, as previously indicated the latter kind of painting
tends to work better on the IPC benchmarks. We provide
a per-instance comparison of hMercury against our heuristics,
in Rovers and TPP which turn out to be the most interesting
domains for these heuristics, further below (Table 3). For
now, let’s focus on the comparison to the baseline, hFF.

Note first the influence of tie breaking: Without preferred
operators, N = 0 has a dramatic advantage over hFF in Parc-
Printer, and smaller but significant disadvantages in Logis-
tics98, Pathways, Satellite, and TPP. With preferred oper-
ators, the coverage differences get smoothed out, because
with the pruning the instances become much easier to solve
so the performance differences due to the different heuris-
tics do not affect coverage as much anymore. The upshot is
that only the advantage in ParcPrinter, but none of the dis-
advantages, remain. As these differences have nothing to do
with our contribution, we will from now on not discuss hFF

as implemented in FD, and instead use the baseline N = 0.
Considering coverage as a function of N , observe that,

with preferred operators, there are no changes whatsoever,
again because with the pruning the instances become much
easier to solve. Without preferred operators, increasing N
and thus the black part of our heuristic function affects cov-
erage in Pathways, Rovers, Satellite, TPP, and Woodwork-
ing11. With the single exception of Satellite for N = 1m,
the coverage change relative to the baseline N = 0 is pos-
itive. However, the extent of the coverage increase is small
in almost all cases. We now examine this more closely, con-
sidering more fine-grained performance parameters.

Table 2 considers the number of evaluated states during
search, and search runtime, in terms of improvement factors
i. e. the factor by which evaluations/search time reduce rel-
ative to the baseline N = 0. As we can see in the top half
of the table, the (geo)mean improvement factors are almost
consistently greater than 1 (the most notable exception being
Pathways), i. e., there typically is an improvement on aver-
age (although: see below). The actual search time, on the
other hand, almost consistently gets worse, with a very pro-
nounced tendency for the “improvement factor” to be < 1,
and to decrease as a function of N . The exceptions in this
regard are Rovers, and especially TPP where, quite contrary
to the common trend, the search time improvement factor
grows as a function of N . This makes sense as Rovers and
TPP clearly stand out as the two domains with the highest
evaluations improvement factors.

Per-instance data sheds additional light on this. In Logis-
tics, Miconic, ParcPrinter, Pathways, and Zenotravel, almost
all search space reductions obtained are on the smallest in-
stances, where N is large enough to accommodate the entire

domain # 1k 10k 100k 1m 10m

evaluations
Logistics00 28 1.00 1.05 1.43 3.71 3.71
Logistics98 23 1.00 0.98 1.01 1.22 1.35
Miconic 150 1.24 1.41 1.86 2.18 3.12
ParcPrinter08 30 1.07 1.38 1.52 1.52 1.71
ParcPrinter11 20 1.00 1.03 1.08 1.08 1.09
Pathways 8 0.71 0.71 0.71 0.88 0.88
Rovers 19 1.60 1.95 5.10 5.84 5.16
Satellite 25 1.04 1.83 1.61 2.18 2.40
TPP 17 1.83 3.76 5.90 20.89 27.54
Woodworking08 30 1.54 2.06 2.06 2.06 2.06
Woodworking11 19 1.08 1.68 1.76 1.76 1.76
Zenotravel 20 1.14 1.14 0.87 1.13 2.27

search time
Logistics00 28 1.00 1.00 0.94 0.59 0.59
Logistics98 23 1.00 1.00 0.93 0.80 0.58
Miconic 150 0.73 0.73 0.70 0.63 0.44
ParcPrinter08 30 1.00 1.00 1.00 1.00 0.44
ParcPrinter11 20 1.00 0.95 0.96 0.96 0.23
Pathways 8 0.97 0.97 0.96 0.96 0.93
Rovers 19 1.44 1.74 2.01 1.56 0.87
Satellite 25 0.87 1.07 0.90 0.63 0.24
TPP 17 0.98 1.39 1.78 3.75 4.67
Woodworking08 30 0.94 0.86 0.86 0.86 0.86
Woodworking11 19 0.87 0.65 0.67 0.67 0.67
Zenotravel 20 1.00 1.00 0.95 0.78 0.43

Table 2: Improvement factors relative to N = 0. Per-
domain geometric mean over the set of instances commonly
solved for all values of N . Without preferred operators.

state space and hence, trivially, the number of evaluations
is 1. On almost all larger instances of these domains, the
search spaces are identical, explaining the bad search time
results previously observed. In Satellite and Woodworking,
the results are mixed. There are substantial improvements
also on some large instances, but the evaluations improve-
ment factor is always smaller than 6, with the single excep-
tion of Woodworking08 instance p24 where for N ≥ 10k it
is 17.23. In contrast, in Rovers the largest evaluations im-
provement factor is 4612, and in TPP it is 17317.

Table 3 shows per-instance data on Rovers and TPP,
where our techniques are most interesting. We also in-
clude hMercury here for a detailed comparison. N = 1k and
N = 100k are left out of the table for lack of space, and
as these configurations are always dominated by at least one
other value of N here. With respect to the behavior against
the baseline N = 0, clearly in both domains drastic eval-
uations and search time improvements can be obtained. It
should be said though that there is an unfortunate tendency
for our red-black heuristics to have advantages in the smaller
instances, rather than the larger ones. This is presumably be-
cause, in smaller instances (even disregarding the patholog-
ical case where the entire state space fits into the black part
of our heuristic) we have a better chance to capture complex
variable interactions inside the black part, and hence obtain
substantially better heuristic values.

With respect to hMercury, the conclusion can only be that
the previous approach to red-black plan heuristics – painting

N =

hMercury 0 10k 1m 10m
E T E T E T E T E T

Rovers

p01 5 0.1 35 0.1 31 0.1 1 0.1 1 0.1
p02 6 0.1 6 0.1 1 0.1 1 0.1 1 0.1
p03 1 0.1 62 0.1 112 0.1 1 0.1 1 0.1
p04 1 0.1 17 0.1 21 0.1 1 0.1 1 0.1
p05 119 0.1 114 0.1 170 0.1 117 0.1 117 0.1
p06 304 0.1 543 0.1 485 0.1 485 0.1 285 0.6
p07 70 0.1 331 0.1 334 0.1 162 1.5 175 7.1
p08 116 0.1 1742189 46.3 451078 15.4 603 0.1 1929 28.2
p09 358 0.1 2773 0.1 1792 0.1 2120 0.1 2120 0.1
p10 578 0.1 441 0.1 441 0.1 244 0.4 244 0.4
p11 1047 0.1 85832 2.7 85787 3.1 85787 3.1 85787 3.1
p12 6 0.1 606 0.1 958 0.1 301 0.3 698 0.4
p13 25037 2.13 1944 0.1 2578 0.1 2882 0.3 2882 0.3
p14 294 0.1 5161720 208.5 1467 0.1 732 0.2 1119 0.8
p15 1035 0.1 – – 5024 0.3 3520 1.5 4782 3.3
p16 358 0.1 – – 11895 0.6 11895 0.6 11895 0.6
p17 1139 0.1 – – – – 3340 0.3 3340 0.3
p18 2156 0.19 93372 6.6 47472 3.6 47472 3.6 48620 6.0
p19 180979 22.08 370650 38.3 452905 47.7 470758 47.7 470758 47.3
p20 – – 1782100 233.1 – – 1828671 248.3 1828671 248.0
p22 3674 0.63 2478919 339.2 1707251 237.1 1707251 232.4 1707251 236.0
p23 24347 5.77 – – – – – – – –
p25 1 0.1 2677 0.3 31890 4.5 31248 4.2 44688 5.8
p26 7338129 1418.16 117583 13.7 83724 11.7 7263721 974.8 – –
p27 61575 13.73 – – 6737329 1158.0 6737329 1138.6 6737329 1148.3
p28 6346 1.95 1066434 223.8 15321 3.8 18002 4.3 18002 4.3
p29 8409 2.71 1298473 251.4 – – – – – –
p30 – – 5940371 1134.0 333303 108.0 – – – –
p34 60144 38.59 – – – – – – – –

TPP

p01 1 0.1 5 0.1 1 0.1 1 0.1 1 0.1
p02 1 0.1 9 0.1 1 0.1 1 0.1 1 0.1
p03 1 0.1 13 0.1 1 0.1 1 0.1 1 0.1
p04 1 0.1 17 0.1 17 0.1 1 0.1 1 0.1
p05 1 0.1 22 0.1 25 0.1 25 0.1 25 0.1
p06 38 0.1 107 0.1 46 0.1 46 0.1 46 0.1
p07 1672 0.1 1756 0.1 68 0.1 68 0.1 68 0.1
p08 2462 0.1 2534 0.1 71 0.1 71 0.1 71 0.1
p09 6753 0.28 2963 0.1 299 0.1 121 0.1 121 0.1
p10 24370 1.24 10712 0.5 1061 0.1 147 0.1 147 0.1
p11 15519 1.3 1610504 99.8 56090 4.0 93 0.1 93 0.1
p12 54852 4.37 1340734 91.3 699377 55.7 109 0.1 109 0.1
p13 38205 3.5 40291 3.5 40291 3.5 472 0.1 475 0.1
p14 57981 7.37 35089 3.6 35089 3.6 552 0.1 555 0.1
p15 52722 7.32 22842 2.4 22842 2.5 70467 8.1 283 0.1
p16 298618 77.47 247304 49.6 247304 48.4 112610 19.6 253727 38.0
p17 2660716 774.05 – – – – – – 1611051 671.4
p18 264855 77.25 – – – – – – – –
p19 1957381 639.02 1710323 509.3 1710323 508.8 1710323 505.6 – –
p20 – – – – – – – – 4161990 1272.4
p21 811226 578.23 – – – – – – – –
p22 652741 372.74 – – – – – – – –
p23 1329626 902.09 2432228 1362.0 2432228 1365.3 2432228 1367.6 2432228 1370.7
p24 1253699 801.71 – – – – – – – –

Table 3: Evaluations and search time in Rovers and TPP. “E”
evaluations, “T” search time. Without preferred operators.

variables “close to the root” black, as opposed to painting
variables “close to the leaves” black as we do here – works
better in practice. There are rare cases where our new heuris-
tics have an advantage, most notably in Rovers p20, p26,
p30, and TPP p5–p17, p19, p20. But overall, especially on
the largest instances, hMercury tends to be better. We remark
that, with preferred operators switched on, the advantage of
hMercury tends to be even more pronounced because the few
cases that are hard for it in Table 3 become easy.

A few words are in order regarding plan quality, by which,
since we only consider uniform action costs in the exper-
iments, we mean plan length. Comparing our most in-
formed configuration, N = 10m, to our pure delete re-
laxed baseline, i. e. our heuristic with N = 0, it turns out
that the value of N hardly influences the quality of the plans
found. Without using preferred operators, the average per-
domain gain/loss of one configuration over the other is al-

ways < 3%. The only domain where solution quality dif-
fers more significantly is TPP, where the generated plans for
N = 10m are 23.3% shorter on average than those with
N = 0. This reduces to 10% when preferred operators are
switched on. In the other domains, not much changes when
enabling preferred operators; the average gain/loss per do-
main is less than 4.4%.

Comparing our N = 10m configuration to hMercury, hav-
ing preferred operators disabled, the plan quality is only
slightly different in most domains (< 3.1% gain/loss on av-
erage). Results differ more significantly in Miconic and TPP.
In the former, our plans are 25% longer than those found us-
ing hMercury; in the latter, our plans are 25% shorter. En-
abling preferred operators does not change much, except
in Woodworking, where our plans are on average 19.1%
(16.5%) shorter in the IPC’08 (IPC’11) instance suites.

Conclusion
Our investigation has brought new insights into the interac-
tion between red and black variables in red-black planning.
The practical heuristic function resulting from this can, in
principle, improve over standard relaxed plan heuristics as
well as known red-black plan heuristics. In practice – as
far as captured by IPC benchmarks – unfortunately such im-
provements are rare. We believe this is a valuable insight for
further research on red-black planning. It remains to be seen
whether our tractability analysis can be extended and/or ex-
ploited in some other, more practically fruitful, way. The
most promising option seems to be to seek tractable spe-
cial cases of black-to-red (BtoR) dependencies, potentially
by restrictions onto the DTG (the variable-value transitions)
of the black variable weaker than the “invertibility” criterion
imposed by Katz et al.

Acknowledgments. We thank Carmel Domshlak for discus-
sions. We thank the anonymous reviewers, whose comments
helped to improve the paper. This work was partially sup-
ported by the German Research Foundation (DFG), under
grant HO 2169/5-1, and by the EU FP7 Programme under
grant agreement 295261 (MEALS).

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 10–17. AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds. 2012. Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12).
AAAI Press.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
relaxed planning graph’lp heuristic for numeric planning do-
mains. In Rintanen et al. (2008), 52–59.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research
46:343–412.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. In Nebel, B., ed., Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-01),
445–450. Seattle, Washington, USA: Morgan Kaufmann.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen et al. (2008), 140–
147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. In IPC 2014 planner
abstracts, 43–47.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th AAAI Confer-
ence on Artificial Intelligence (AAAI’13), 489–495. Belle-
vue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI-08), 588–592. Patras, Greece: Wiley.

Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet et al. (2012), 128–136.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research
50:487–533.
McDermott, D. V. 1999. Using regression-match graphs
to control search in planning. Artificial Intelligence 109(1-
2):111–159.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Bonet et al. (2012), 181–189.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds.
2008. Proceedings of the 18th International Conference
on Automated Planning and Scheduling (ICAPS’08). AAAI
Press.
Seipp, J., and Helmert, M. 2011. Fluent merging for classi-
cal planning problems. In ICAPS 2011 Workshop on Knowl-
edge Engineering for Planning and Scheduling, 47–53.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP’07), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.

From Fork Decoupling to Star-Topology Decoupling

Daniel Gnad and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, hoffmann}@cs.uni-saarland.de

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Abstract

Fork decoupling is a recent approach to exploiting problem
structure in state space search. The problem is assumed to
take the form of a fork, where a single (large) center compo-
nent provides preconditions for several (small) leaf compo-
nents. The leaves are then conditionally independent in the
sense that, given a fixed center path πC , the compliant leaf
moves – those leaf moves enabled by the preconditions sup-
plied along πC – can be scheduled independently for each
leaf. Fork-decoupled state space search exploits this through
conducting a regular search over center paths, augmented
with maintenance of the compliant paths for each leaf indi-
vidually. We herein show that the same ideas apply to much
more general star-topology structures, where leaves may sup-
ply preconditions for the center, and actions may affect sev-
eral leaves simultaneously as long as they also affect the cen-
ter. Our empirical evaluation in planning, super-imposing star
topologies by automatically grouping the state variables into
suitable components, shows the merits of the approach.

Introduction
In classical AI planning, large deterministic transition sys-
tems are described in terms of a set of finite-domain state
variables, and actions specified via preconditions and ef-
fects over these state variables. The task is to find a se-
quence of actions leading from a given initial state to a
state that satisfies a given goal condition. Factored plan-
ning is one traditional approach towards doing so effectively.
The idea is to decouple the planning task into subsets, fac-
tors, of state variables. In localized factored planning (Amir
and Engelhardt 2003; Brafman and Domshlak 2006; 2008;
2013; Fabre et al. 2010), two factors interact if they are af-
fected by common actions, and a global plan needs to com-
ply with these cross-factor interactions. In hierarchical fac-
tored planning (e. g. (Knoblock 1994; Kelareva et al. 2007;
Wang and Williams 2015)), the factors are used within a
hierarchy of increasingly more detailed abstraction levels,
search refining abstract plans as it proceeds down the hierar-
chy, and backtracking if an abstract plan has no refinement.

Both localized and hierarchical factored planning have
traditionally been viewed as the resolution of complex inter-
actions between (relatively) small factors. In recent work,
Gnad and Hoffmann (2015) (henceforth: GH) proposed to
turn this upside down, fixing a simple interaction profile the

factoring should induce, at the cost of potentially very large
factors. They baptize this approach target-profile factoring,
and develop a concrete instance where the target profile is a
fork: a single (large) center factor provides preconditions for
several (small) leaf factors, and no other cross-factor inter-
actions are present. They introduce a simple and quick fac-
toring strategy which, given an arbitrary input planning task,
analyzes the state variable dependencies and either outputs a
fork factoring, or abstains if the relevant stucture is not there
(the task can then be handed over to other methods).

Say the factoring strategy does not abstain. We then face,
not a general planning problem, but a fork planning prob-
lem. GH’s key observation is that these can be solved via
fork-decoupled state space search: The leaves are condition-
ally independent in the sense that, given a fixed center path
πC , the compliant leaf moves – those leaf moves enabled by
the preconditions supplied along πC – can be scheduled in-
dependently for each leaf. This can be exploited by search-
ing only over center paths, and maintaining the compliant
paths separately for each leaf, thus avoiding the enumera-
tion of state combinations across leaves. GH show that this
substantially reduces the number of reachable states in (non-
abstained) planning benchmarks, almost always by at least
1 − 2 orders of magnitude, up to 6 orders of magnitude in
one domain (TPP). They show how to connect to classical
planning heuristics, and to standard search methods, guaran-
teeing plan optimality under the same conditions as before.

We herein extend GH’s ideas to star-topology structures,
where the center still supplies preconditions for the leaves,
but also the leaves may supply preconditions for the center,
and actions may affect several leaves simultaneously as long
as they also affect the center. The connection to standard
heuristics and search methods remains valid. We run exper-
iments on the planning competition benchmarks.

We place our work in the planning context for the direct
connection to GH. However, note that trying to factorize a
general input problem, and having to abstain in case the
saught structure is not present, really is an artefact of the
general-planning context. Star-topology decoupling applies,
in principle, to the state space of any system that naturally
has a star topology. As star topology is a classical design
paradigm in many areas of CS, such systems abound.

Preliminaries
We use a finite-domain state variable formalization of plan-
ning (e. g. (Bäckström and Nebel 1995; Helmert 2006)). A
finite-domain representation planning task, short FDR task,
is a quadruple Π = 〈V, A, I, G〉. V is a set of state vari-
ables, where each v ∈ V is associated with a finite domain
D(v). We identify (partial) variable assignments with sets
of variable/value pairs. A complete assignment to V is a
state. I is the initial state, and the goal G is a partial assign-
ment to V . A is a finite set of actions. Each action a ∈ A
is a triple 〈pre(a), eff(a), cost(a)〉 where the precondition
pre(a) and effect eff(a) are partial assignments to V , and
cost(a) ∈ R0+ is the action’s non-negative cost.

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
sJaK. We also use this notation for partial states p: by pJaK
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of applying
a sequence of (respectively applicable) actions is denoted
sJ〈a1, . . . , an〉K. A plan for Π is an action sequence s.t.
G ⊆ IJ〈a1, . . . , an〉K. The plan is optimal if its summed-
up cost is minimal among all plans for Π.

The causal graph of a planning task captures state
variable dependencies (e. g. (Knoblock 1994; Jonsson and
Bäckström 1995; Brafman and Domshlak 2003; Helmert
2006)). We use the commonly employed definition in the
FDR context, where the causal graph CG is a directed graph
over vertices V , with an arc from v to v′, which we de-
note (v → v′), if v 6= v′ and there exists an action a ∈ A
such that (v, v′) ∈ [V(eff(a)) ∪ V(pre(a))] × V(eff(a)). In
words, the causal graph captures precondition-effect as well
as effect-effect dependencies, as result from the action de-
scriptions. A simple intuition is that, whenever (v → v′) is
an arc in CG, changing the value of v′ may involve chang-
ing that of v as well. We assume for simplicity that CG is
weakly connected (this is wlog: else, the task can be equiv-
alently split into several independent tasks).

We will also need the notion of a support graph, SuppG,
similarly as used e. g. by Hoffmann (2011). SuppG is like
CG except its arcs are only those (v → v′) where there exists
an action a ∈ A such that (v, v′) ∈ V(pre(a)) × V(eff(a)).
In words, the support graph captures only the precondition-
effect dependencies, not effect-effect dependencies. This
more restricted concept will be needed to conveniently de-
scribe our notion of star topologies, for which purpose the
effect-effect arcs in CG are not suitable.

As an illustrative example, we will consider a simple
transportation-like FDR planning task Π = 〈V, A, I, G〉
with one package p and two trucks tA, tB , defined as fol-
lows. V = {p, tA, tB} where D(p) = {A, B, l1, l2, l3}
and D(tA) = D(tB) = {l1, l2, l3}. The initial state is
I = {p = l1, tA = l1, tB = l3}, i. e., p and tA start at
l1, and tB starts at l3. The goal is G = {p = l3}. The
actions (all with cost 1) are truck moves and load/unload:

{t, f}

p1 p2 p3 p4 p5

m1 m2 m3

{c(o1),s(o1)

t(o1),w(o1)}
{c(o2),s(o2)

t(o2),w(o2)}
{c(o3),s(o3)

t(o3),w(o3)}

Figure 1: (Gnad and Hoffmann 2015) Possible fork factor-
ings in transportation with fuel consumption (left), and job-
planning problems (right).

• move(x, y, z): precondition {tx = y} and effect {tx =
z}, where x ∈ {A, B} and {y, z} ∈ {{l1, l2}, {l2, l3}}.

• load(x, y): precondition {tx = y, p = y} and effect {p =
x}, where x ∈ {A, B} and y ∈ {l1, l2, l3}.

• unload(x, y): precondition {tx = y, p = x} and effect
{p = y}, where x ∈ {A, B} and y ∈ {l1, l2, l3}.

The causal graph and support graph of this task are identical.
Their arcs are (tA → p) and (tB → p).

Fork Decoupling
We give a brief summary of fork decoupling, in a form suit-
able for describing our extension to star topologies.

Definition 1 (Fork Factoring (GH)) Let Π be an FDR task
with variables V . A factoring F is a partition of V into
non-empty subsets F , called factors. The interaction graph
IG(F) of F is the directed graph whose vertices are the fac-
tors, with an arc (F → F ′) if F 6= F ′ and there exist v ∈ F
and v′ ∈ F ′ such that (v → v′) is an arc in CG.

F is a fork factoring if |F| > 1 and there exists FC ∈ F
s.t. the arcs in IG(F) are exactly {(FC → FL) | FL ∈ F \
{FC}}. FC is the center of F , and all other factors FL ∈
FL := F \ {FC} are leaves. We also consider the trivial
factoring where FC = V and FL = ∅, and the pathological
factoring where FC = ∅ and FL = {V }.

The only cross-factor interactions in a fork factoring con-
sist in the center factor establishing preconditions for actions
moving individual leaf factors. We use the word “center”,
instead of GH’s “root”, to align the terminology with star
topologies. Regarding the trivial and pathological cases, in
the former decoupled search simplifies to standard search,
and in the latter the entire problem is pushed into the single
“leaf”. Note that, when we say that F is a fork factoring, we
explicitly exclude these cases.

In our example, we will consider the fork factoring where
FC = {tA, tB} and the single leaf is FL = {p}.

Given an arbitrary FDR task Π as input, as pointed out
by GH, a fork factoring – if one exists, which is the case
iff the causal graph has more than one strongly connected
component (SCC) – can be found automatically based on
a simple causal graph analysis. We describe GH’s strategy
later, in the experiments, along with our own generalized
strategies. For illustration, Figure 1 already shows factorings
that GH’s strategy may find, on practical problems akin to
planning benchmarks. On the left, a truck t with fuel supply
f transports packages p1, . . . , pn. On the right, objects oi

are independent except for sharing the machines.
We need some terminology, that we will use also for star

topologies later on. Assume an FDR task Π = 〈V, A, I, G〉
and a fork factoring F with center FC and leaves FL ∈ FL.

We refer to the actions AC affecting the center as center ac-
tions, notation convention aC , and to all other actions as leaf
actions, notation convention aL. For the set of actions af-
fecting one particular FL ∈ FL, we write AL|F L . As F is a
fork factoring, the center actions AC have preconditions and
effects only on FC . The leaf actions AL|F L have precondi-
tions only on FC ∪ FL, and effects only on FL. The sets
AC and AL|F L form a partition of the original action set A.

A center path is a sequence of center actions applicable
to I; a leaf path is a sequence of leaf actions applicable to
I when ignoring preconditions on the center. Value assign-
ments to FC are center states, notated sC , and value assign-
ments to any FL ∈ FL are leaf states, notated sL. For the
leaf states of one particular FL ∈ FL, we write SL|F L ,
and for the set of all leaf states we write SL. A center state
sC is a goal center state if sC ⊇ G[FC], and a leaf state
sL ∈ SL|F L is a goal leaf state if sL ⊇ G[FL].

The idea in fork-decoupling is to augment a regular search
over center paths with maintenance of cheapest compliant
leaf paths for each leaf. A leaf path πL = 〈aL

1 , . . . , aL
n〉

complies with center path πC if we can schedule the aL
i at

monotonically increasing points alongside πC so that each
aL

i is enabled in the respective center state. Formally:

Definition 2 (Fork-Compliant Path (GH)) Let Π be an
FDR task, F a fork factoring with center FC , and πC a
center path traversing center states 〈sC

0 , . . . , sC
n 〉. For a leaf

path πL = 〈aL
1 , . . . , aL

m〉, an embedding into πC is a mono-
tonically increasing function t : {1, . . . , m} 7→ {0, . . . , n}
so that, for every i ∈ {1, . . . , m}, pre(aL

i)[FC] ⊆ sC
t(i).

We say that πL fork-complies with πC , also πL is πC-fork-
compliant, if an embedding exists.

Where the center path in question is clear from context,
or when discussing compliant paths in general, we will omit
“πC” and simply talk about compliant leaf paths.

In our example, πL = 〈load(A, l1)〉 complies with the
empty center path, and πL = 〈load(A, l1), unload(A, l2)〉
complies with the center path πC = 〈move(A, l1, l2)〉. But
πL = 〈load(A, l1), unload(A, l3)〉 does not comply with πC

as the required precondition tA = l3 is not established on
πC . And πL = 〈load(A, l1), unload(A, l2), load(A, l2),
unload(A, l1)〉 does not comply with πC as the last precon-
dition tA = l1 does not appear behind tA = l2 on πC .

The notion of compliant paths is a reformulation of plans
for the original input planning task Π, in the following sense.
Say π is a plan for Π, and say πC is the sub-sequence of
center actions in π. Then πC is a center path. For each leaf
FL ∈ FL, say πL is the sub-sequence of AL|F L actions in
π. Then πL is a leaf path, and is πC-fork-compliant because
π schedules πL along with πC in a way so that its center
preconditions are fulfilled. Vice versa, if a center path πC

reaches a goal center state, and can be augmented with πC-
fork-compliant leaf paths πL reaching goal leaf states, then
the embedding of the πL into πC yields a plan for Π. Hence
the plans for Π are in one-to-one correspondence with cen-
ter paths augmented with compliant leaf paths.

GH define the fork-decoupled state space Θφ, in which
each fork-decoupled state s is a pair 〈center(s), prices(s)〉
of a center state center(s) along with a pricing function

prices(s) : SL 7→ R0+ ∪ {∞}. The paths in Θφ corre-
spond to center paths, i. e., the fork-decoupled initial state
Iφ has center(Iφ) = I[FC], and the transitions over cen-
ter states are exactly those induced by the center actions.
The pricing functions are maintained so that, for every cen-
ter path πC ending in fork-decoupled state s, and for ev-
ery leaf state sL, prices(s)[sL] equals the cost of a cheap-
est πC-fork-compliant leaf path πL ending in sL. The fork-
decoupled goal states are those s where center(s) is a goal
center state, and, for every FL ∈ FL, at least one goal leaf
state sL ∈ SL|F L has a finite price prices(s)[sL] < ∞.
Once a fork-decoupled goal state s is reached, a plan for Π
can be extracted by augmenting the center path πC leading
to s with cheapest πC-fork-compliant goal leaf paths, i. e.,
leaf paths ending in goal leaf states. Observe that this plan is
optimal subject to fixing πC , i. e., the cheapest possible plan
for Π when comitting to exactly the center moves πC .

Say πC = 〈move(A, l1, l2), move(B, l3, l2),
move(B, l2, l3)〉 in our example, traversing the fork-
decoupled states s0, s1, s2, s3. Then prices(s0)[p = l1]
= 0, prices(s0)[p = A] = 1, prices(s1)[p = l2] = 2,
prices(s2)[p = B] = 3, and prices(s3)[p = l3] = 4. To
extract a plan for Π from the fork-decoupled goal state s3,
we trace back the compliant leaf path supporting p = l3 and
embed it into πC . The resulting plan loads p onto tA, moves
tA to l2, unloads p, moves tB to l2, loads p onto t2, moves
tB to l3, and unloads p.

The core of GH’s construction is the maintenance of pric-
ing functions. For forks, this is simple enough to be de-
scribed in a few lines within the definition of Θφ. For star
topologies, we need to substantially extend this construction,
so we hone in on it in more detail here. We reformulate it in
terms of compliant path graphs, which capture all possible
compliant graphs for a leaf FL given a center path πC :

Definition 3 (Fork-Compliant Path Graph) Let Π be an
FDR task, F a fork factoring with center FC and leaves FL,
and πC a center path traversing center states 〈sC

0 , . . . , sC
n 〉.

The πC-fork-compliant path graph for a leaf FL ∈ FL,
denoted CompGφ(πC , FL), is the arc-labeled weighted di-
rected graph whose vertices are the time-stamped leaf states
{sL

t | sL ∈ SL|F L , 0 ≤ t ≤ n}, and whose arcs are:

(i) sL
t

aL

−−→ s′L
t with weight c(aL) whenever sL, s′L ∈

SL|F L and aL ∈ AL|F L such that pre(aL)[FC] ⊆ sC
t ,

pre(aL)[FL] ⊆ sL, and sLJaLK = s′L.
(ii) sL

t
0−→ sL

t+1 with weight 0 for all sL ∈ SL|F L and
0 ≤ t < n.

In words, the πC-fork-compliant path graph includes a
copy of the leaf states at every time step 0 ≤ t ≤ n along
the center path πC . Within each t, the graph includes all
leaf-state transitions enabled in the respective center state.
From each t to t + 1, the graph has a 0-cost transition for
each leaf state. Consider again the example, and the center
path πC = 〈move(A, l1, l2)〉. The πC-fork-compliant path
graph for the package is shown in Figure 2.1

1Note that CompGφ(πC , F L) contains redundant parts, not
reachable from the initial leaf state I[F L], i. e., (p = l1)0 in the

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

0 0 0 0 0

(un)load(A, l2) (un)load(B, l3)

Figure 2: The fork-compliant path graph for πC =
〈move(A, l1, l2)〉 in our illustrative example.

The πC-fork-compliant leaf path πL = 〈load(A, l1),
unload(A, l2)〉 can be embedded by starting at (p = l1)0,
following the arc labeled load(A, l1) to (p = A)0, follow-
ing the 0-arc to (p = A)1, and following the arc labeled
unload(A, l2) to (p = l2)1. The non-compliant leaf path
πL = 〈load(A, l1), unload(A, l2), load(A, l2), load(A, l1)〉
cannot be embedded, as (un)load(A, l2) appears only at
t = 1, while load(A, l1) is not available anymore at t ≥ 1.

Lemma 1 Let Π be an FDR task, F a fork factoring with
center FC and leaves FL, and πC a center path. Let FL ∈
FL, and sL ∈ SL|F L . Then the cost of a cheapest πC-fork-
compliant leaf path πL ending in sL equals the cost of a
cheapest path from I[FL]0 to sL

n in CompGφ(πC , FL).

Proof: Given a πC-fork-compliant leaf path πL =
〈aL

1 , . . . , aL
m〉, we can schedule each aL

i as a (i) arc in
CompGφ(πC , FL) at the time step t(i) assigned by the
embedding. Connecting the resulting partial paths across
time steps using the (ii) arcs, we get a path π from I[FL]0
to sL

n in CompGφ(πC , FL), whose cost equals that of
πL. Vice versa, given a path π from I[FL]0 to sL

n in
CompGφ(πC , FL), remove the time indices of the vertices
on π, and remove the arcs crossing time steps. This yields
a πC-fork-compliant leaf path πL ending in sL, whose cost
equals that of π. So the πC-fork-compliant leaf paths ending
in sL are in one-to-one correspondence with the paths from
I[FL]0 to sL

n in CompGφ(πC , FL), showing the claim. �

To prepare our extension in the next section, we now re-
formulate the fork-decoupled state space Θφ. Each fork-
decoupled state s is a center path πC(s), associated for ev-
ery leaf FL ∈ FL with the πC-fork-compliant path graph
CompGφ(πC(s), FL). The fork-decoupled initial state Iφ

is the empty center path πC(Iφ) = 〈〉. The successor states
s′ of s are exactly the center paths extending πC(s) by one
more center action. The fork-decoupled goal states are those
s where πC(s) ends in a center goal state, and for every
FL ∈ FL there exists a goal leaf state sL ∈ SL|F L s.t.
sL

|πC(s)| is reachable from I[FL]0 in CompGφ(πC(s), FL).
This formulation is different from GH’s, but is equivalent

given Lemma 1: Instead of maintaining the pricing func-
tions prices(s) explicitly listing the costs of cheapest πC-
fork-compliant paths, we maintain the fork-compliant path
graphs CompGφ(πC(s), FL), from which these same costs
can be obtained in terms of standard graph distance.

figure. This is just to keep the definition simple, in practice one
can maintain only the reachable part of CompGφ(πC , F L).

Star-Topology Decoupling
We now extend the concepts of compliant paths, and compli-
ant path graphs, to handle star topologies instead of forks. A
star topology is one where the center may interact arbitrarily
with each leaf, and even effect-effect dependencies across
leaves are allowed so long as they also affect the center:

Definition 4 (Star Factoring) Let Π be an FDR task, and
let F be a factoring. The support-interaction graph
SuppIG(F) of F is the directed graph whose vertices are
the factors, with an arc (F → F ′) if F 6= F ′ and there exist
v ∈ F and v′ ∈ F ′ such that (v → v′) is an arc in SuppG.
F is a star factoring if |F| > 1 and there exists FC ∈ F s.t.
the following two conditions hold:
(1) The arcs in SuppIG(F) are contained in {(FC →

FL), (FL → FC) | FL ∈ F \ {FC}}.
(2) For every action a, if there exist FL

1 , FL
2 ∈ F \ {FC}

such that FL
1 6= FL

2 and V(eff(a)) ∩ FL
1 6= ∅ as well as

V(eff(a)) ∩ FL
2 6= ∅, then V(eff(a)) ∩ FC 6= ∅.

FC is the center of F , and all other factors FL ∈ FL :=
F \ {FC} are leaves.

A star factoring F is strict if the arcs in IG(F) are con-
tained in {(FC → FL), (FL → FC) | FL ∈ F \ {FC}}.

We cannot characterize star factorings in terms of just the
causal graph, because the effect-effect arcs in that graph are
inserted for all variable pairs in the effect: If there is an arc
between two leaves, we cannot distinguish whether or not
the same action also affects the center. In contrast, in a strict
star factoring every action affects at most one leaf, which
can be characterized in terms of just the causal graph. Hence
strict star factorings are interesting from a practical perspec-
tive, allowing different/simpler factoring strategies.

Obviously, Definition 4 generalizes Definition 1. Per-
haps less obvious is how far this generalization carries. As
pointed out, an FDR task has a fork factoring iff its causal
graph has more than one SCC. In contrast, every FDR task
has a star factoring. In fact, any partition of the variables
into two non-empty subsets is a star factoring: Calling one
half of the variables the “center”, and the other the “leaf”,
we have a (strict) star factoring, as Definition 4 does not ap-
ply any restrictions if there is a single leaf only.2 That said, it
is not clear whether single-leaf factorings are useful in prac-
tice. We get back to this when discussing our experiments.

To illustrate, consider what we will refer to as the no-
empty example, where we forbid “empty truck moves”. This
is as before, except the precondition of move(x, y, z) is no
longer {tx = y}, but is {tx = y, p = x}: A truck can only
move if the package is currently inside it. The causal graph
arcs now are not only (tA → p) and (tB → p) as before,
but also (p → tA) and (p → tB). Hence there exists no fork
factoring. But our previous factoring with FC = {tA, tB}
and the single leaf FL = {p} is now a strict star factoring.

2Observe also that Definition 4 (2) can always be enforced
wlog, simply by introducing redundant effects on F C . However,
actions affecting F C are those our search must branch over, so this
is just another way of saying “cross-leaf effects can be tackled by
centrally branching over the respective actions”. Doing so weakens
the decoupling obtained, and for now we do not consider it.

To define compliance, we will be using the same ter-
minology as before, i. e. center actions/paths and leaf ac-
tions/paths. These concepts are (mostly) defined as before,
however their behavior is more complicated now.

The notions of center/leaf states, and of goal center/leaf
states, remain the same. The center actions AC are still all
those actions affecting the center, and the leaf actions AL|F L

for FL ∈ FL are still all those actions affecting FL. How-
ever, AC and AL|F L are no longer disjoint, as the same
action may affect both AC and AL|F L .

A leaf path still is a sequence of leaf actions applicable to
I when ignoring all center preconditions. The notion of cen-
ter path changes, as now there may be leaf preconditions;
we ignore these, i. e., a center path is now a sequence of
center actions applicable to I when ignoring all leaf pre-
conditions. As center and leaf paths may overlap, we need
to clarify where to account for the cost of the shared actions.
Our search, as we explain in a moment, views all AC actions
as part of the center, so we account for their costs there. To
that end, the cost of a leaf path πL now is the summed-up
cost of its (AL|F L \ AC) actions. By construction, these
actions do not affect any factor other than FL itself.

We will define star-compliant paths, and star-compliant
path graphs CompGσ(πC(s), FL), below. For an overview
before delving into these details, consider first the star-
decoupled state space Θσ . A star-decoupled state s is a cen-
ter path πC(s) associated for every leaf FL ∈ FL with the
πC-star-compliant path graph CompGσ(πC(s), FL). The
star-decoupled initial state Iσ is the empty center path
πC(Iσ) = 〈〉. The star-decoupled goal states are those
s where πC(s) ends in a center goal state, and for every
FL ∈ FL there exists a goal leaf state sL ∈ SL|F L s.t.
sL

|πC(s)| is reachable from I[FL]0 in CompGσ(πC(s), FL).
The definition of successor states s′ of a star-decoupled

state s changes more substantially. For forks, these simply
were all center paths extending πC(s) by one more center
action aC . This worked due to the absence of leaf precondi-
tions: by definition of “center path”, pre(aC) was satisfied at
the end of πC(s). Given a star factoring instead, the succes-
sor states s′ still result from extending πC(s) by one more
center action aC , but restricted to those aC whose leaf pre-
conditions can be satisfied at the end of πC(s). Namely, we
require that, for every FL ∈ FL, there exists sL ∈ SL|F L

such that pre(aC)[FL] ⊆ sL and sL
|πC(s)| is reachable from

I[FL]0 in CompGσ(πC(s), FL).
In our original example, the star-decoupled ini-

tial state has two successors, from move(A, l1, l2)
and move(B, l3, l2). In the no-empty example, only
move(A, l1, l2) is present: Its precondition p = A is reach-
able from I[FL]0 given the empty center path. But that is
not so for the precondition p = B of move(B, l3, l2).

Like for forks, we first identify a notion of compliant
paths which captures how plans for the input task Π can be
understood as center paths augmented with compliant leaf
paths; and we then capture compliant paths in terms of com-
pliant path graphs. However, the notion of “compliance” is
now quite a bit more complicated. Given center path πC and
leaf path πL, we require that (1) the sub-sequences of shared

actions in πL and πC coincide, and (2) in between, we can
schedule πL at monotonically increasing points alongside
πC s.t. (2a) the center precondition of each leaf action holds
in the respective center state and (2b) the FL precondition
of each center action holds in the respective leaf state.

Definition 5 (Star-Compliant Path) Let Π be an FDR
task, F a star factoring with center FC and leaves FL, and
πC a center path. Let πL be a leaf path for FL ∈ FL.
We say that πL star-complies with πC , also πL is πC-star-
compliant, if the following two conditions hold:
(1) The sub-sequence of AC actions in πL coincides with

the sub-sequence of AL|F L actions in πC .
(2) Assume, for ease of notation, dummy AC ∩ AL|F L ac-

tions added to start and end in each of πC and πL. For
every pair 〈a, a′〉 of subsequent AC ∩ AL|F L actions in
πL and πC , there exists an embedding at 〈a, a′〉.

Here, denote the sub-sequence of πC between a and a′ (not
including a and a′ themselves) by 〈aC

1 , . . . , aC
n 〉, and the FC

states it traverses by 〈sC
0 , . . . , sC

n 〉. Denote the sub-sequence
of πL between a and a′ by 〈aL

1 , . . . , aL
m〉, and the FL states

it traverses by 〈sL
0 , . . . , sL

m〉. An embedding at 〈a, a′〉 then
is a monotonically increasing function t : {1, . . . , m} 7→
{0, . . . , n} so that both:
(a) For every i ∈ {1, . . . , m}, pre(aL

i)[FC] ⊆ sC
t(i).

(b) For every t ∈ {1, . . . , n}, pre(aC
t)[FL] ⊆ sL

i(t) where
i(t) := max{i | t(i) < t} (with max ∅ := 0).

To illustrate this, consider our no-empty example, the
center path πC = 〈move(A, l1, l2)〉, and the leaf path
πL = 〈load(A, l1), unload(A, l2)〉. Definition 5 (1) is triv-
ially fulfilled because the sub-sequences it refers to are
both empty. For Definition 5 (2), we assume dummy
shared actions, πC = 〈a, move(A, l1, l2), a

′〉 and πL =
〈a, load(A, l1), unload(A, l2), a

′〉. The only pair of subse-
quent shared actions then is 〈a, a′〉. We need to find an em-
bedding t : {1, 2} 7→ {0, 1} of 〈aL

1 = load(A, l1), a
L
2 =

unload(A, l2)〉 traversing FL states 〈sL
0 = {p = l1}, sL

1 =
{p = A}, sL

2 = {p = l2}〉, into 〈aC
1 = move(A, l1, l2)〉

traversing FC states 〈sC
0 = {tA = l1}, sC

1 = {tA =
l2}〉. Given their center preconditions, we must sched-
ule load(A, l1) before move(A, l1, l2) and unload(A, l2) be-
hind move(A, l1, l2). So the only possibility is t(1) :=
0, t(2) := 1. Indeed, that is an embedding: For Defini-
tion 5 (2a), pre(aL

1)[FC] = {tA = l1} ⊆ sC
t(1) = sC

0 , and
pre(aL

2)[FC] = {tA = l2} ⊆ sC
t(2) = sC

1 . For Definition 5
(2b), i(1) = max{i | t(i) < 1} = 1 because t(1) = 0 i. e.
aL
1 = load(A, l1) is scheduled before aC

1 = move(A, l1, l2).
So pre(aC

1)[FL] = {p = A} ⊆ sL
i(1) = sL

1 as required.
Despite the much more complex definition, the correspon-

dence of compliant paths to plans for the original input plan-
ning task Π is as easily seen as for fork factorings. Say π is
a plan for Π. The sub-sequence πC of center actions in π
is a center path. For a leaf FL ∈ FL, the sub-sequence πL

of AL|F L actions in π is a leaf path. The sub-sequence of
AC ∩ AL|F L actions in πL coincides by construction with
the sub-sequence of AC ∩ AL|F L actions in πC , so we ful-
fill Definition 5 (1). Furthermore, between any pair of subse-
quent shared actions, all FC preconditions of πL, and all FL

preconditions of πC , must be satisfied because π is a plan,
so we can read off an embedding fulfilling Definition 5 (2),
and πL is πC-star-compliant. Vice versa, say center path πC

ends in a goal center state, and can be augmented for every
FL ∈ FL with a πC-star-compliant leaf path πL ending in a
goal leaf state. Note that, if an action a affects more than one
leaf, by the definition of star factorings a must also affect the
center, so by Definition 5 (1) the sub-sequences of such ac-
tions are synchronized via πC : They must be identical for
every leaf involved, and correspond to the same action oc-
curences in πC . Hence, sequencing all actions in πC and
every πL according to the embeddings, we get an executable
action sequence π achieving the overall goal in Π. Recall,
finally, that we defined the cost of leaf paths to account only
for those actions affecting just the leaf in question and noth-
ing else. So, in both directions above, the cost of π equals
the summed-up cost of the center path and leaf paths. We
get that the plans for Π are in one-to-one correspondence
with center paths augmented with compliant leaf paths.

We finally show how to capture πC-star-compliant paths
in terms of the weighted graphs CompGσ(πC(s), FL) we
maintain alongside search over center paths in Θσ:

Definition 6 (Star-Compliant Path Graph) Let Π be an
FDR task, F a star factoring with center FC and leaves
FL, and πC = 〈aC

1 , . . . , aC
n 〉 a center path traversing cen-

ter states 〈sC
0 , . . . , sC

n 〉. The πC-star-compliant path graph
for a leaf FL ∈ FL, denoted CompGσ(πC , FL), is the arc-
labeled weigthed directed graph whose vertices are {sL

t |
sL ∈ SL|F L , 0 ≤ t ≤ n}, and whose arcs are as follows:

(i) sL
t

aL

−−→ s′L
t with weight c(aL) whenever sL, s′L ∈

SL|F L and aL ∈ AL|F L \ AC s.t. pre(aL)[FC] ⊆ sC
t ,

pre(aL)[FL] ⊆ sL, and sLJaLK = s′L.

(ii) sL
t

0−→ s′L
t+1 with weight 0 whenever sL, s′L ∈ SL|F L

s.t. pre(aC
t)[FL] ⊆ sL and sLJaC

t K = s′L.
Item (i) is a benign change of Definition 3. Exactly as

before, within each time step t the arcs correspond to those
leaf-only actions whose center precondition is enabled at t.
The only difference is that we need to explicitly exclude ac-
tions aL affecting also the center (which for fork factorings
cannot happen anyway). Item (ii) differs more substantially.
Intuitively, whereas for fork factorings the t → t + 1 arcs
simply stated that whichever leaf state we achieved before
will survive the center action aC

t (which could neither rely
on, nor affect, the leaf), these arcs now state that the sur-
viving leaf states are only those which comply with aC

t ’s
precondition, and will be mapped to possibly different leaf
states by aC

t ’s effect. Note that, if aC
t has no precondition

on FL, then all leaf states survive, and if aC
t has no effect on

FL, then all leaf states remain the same at t+1. If both is the
case, then we are back to exactly the arcs (ii) in Definition 3.

For our no-empty task and πC = 〈move(A, l1, l2)〉, the
πC-star-compliant path graph is as shown in Figure 3.

Note the (only) difference to Figure 2: From time 0 to
time 1, the only (ii) arc we have now is that from (p = A)0
to (p = A)1. This is because move(A, l1, l2) now has pre-
condition p = A, so all other values of p do not comply with
the center action being applied at this time step.

(p = A)0 (p = B)0 (p = l1)0 (p = l2)0 (p = l3)0

(p = A)1 (p = B)1 (p = l1)1 (p = l2)1 (p = l3)1

(un)load(A, l1) (un)load(B, l3)

0

(un)load(A, l2) (un)load(B, l3)

Figure 3: The star-compliant path graph for πC =
〈move(A, l1, l2)〉 in our no-empty example.

Lemma 2 Let Π be an FDR task, F a star factoring with
center FC and leaves FL, and πC a center path. Let FL ∈
FL, and sL ∈ SL|F L . Then the cost of a cheapest πC-star-
compliant leaf path πL ending in sL equals the cost of a
cheapest path from I[FL]0 to sL

n in CompGσ(πC , FL).
Proof: Consider first a πC-star-compliant leaf path πL =
〈aL

1 , . . . , aL
m〉 for leaf FL ∈ FL. By Definition 5 (1),

the AC ∩ AL|F L sub-sequences in πC and πL coincide.
Scheduling these at the respective time steps t → t + 1 in
CompGσ(πC , FL), corresponding (ii) arcs must be present
by construction. In between each pair of such actions, by
Definition 5 we have embeddings t mapping the respective
sub-sequence of πL to that of πC . Schedule each πL ac-
tion at its time step assigned by t. Then corresponding (i)
arcs must be present by Definition 5 (2a). By Definition 5
(2b), if a πC action here relies on an FL precondition, then
the corresponding leaf state satisfies that precondition so we
have the necessary (ii) arc. Overall, we obtain a path π from
I[FL]0 to sL

n in CompGσ(πC , FL), and clearly the cost of π
accounts exactly for the FL-only actions on πL, as needed.

Vice versa, consider any path π from I[FL]0 to sL
n in

CompGσ(πC , FL). Removing the time indices of the ver-
tices on π, and removing those (ii) arcs sL

t
0−→ s′L

t+1 where
sL

t = s′L
t+1, clearly we obtain a πC-star-compliant leaf path

πL ending in sL, whose cost equals that of π.
So the πC-star-compliant leaf paths ending in sL are in

one-to-one correspondence with the paths from I[FL]0 to
sL

n in CompGσ(πC , FL), showing the claim. �
Overall, goal paths in the star-decoupled state space

Θσ correspond to center goal paths augmented with star-
compliant leaf goal paths, which correspond to plans for the
original planning task Π, of the same cost. So (optimal)
search in Θσ is a form of (optimal) planning for Π.

Heuristic Search
GH show how standard classical planning heuristics,
and standard search algorithms, can be applied to fork-
decoupled search. All these concepts remain intact for star
topologies; one issue requires non-trivial attention. (For
space reasons, we omit details and give a summary only.)

A heuristic for Θσ is a function from star-decoupled states
into R0+ ∪ {∞}. The star-perfect heuristic, hσ∗, assigns
to any s the minimum cost for completing s, i. e., reaching
a star-decoupled goal state plus embedding compliant goal
leaf paths. A heuristic h is star-admissible if h ≤ hσ∗.

Given an FDR task Π and a star-decoupled state s, one can
construct an FDR task Πσ(s) so that computing any admissi-
ble heuristic h on Πσ(s) delivers a star-admissible heuristic

value for s. Πσ(s) is like Π except for the initial state (center
state of s, initial state for the leaves), and that new actions
are added allowing to achieve each leaf state at its price in s.

Star-decoupled goal states are, as GH put it, goal states
with price tags: Their path cost accounts only for the cen-
ter moves, and we still have to pay the price for the goal
leaf paths. In particular, hσ∗ is not 0 on star-decoupled goal
states. We can obtain a standard structure Θ′ for search as
follows. Introduce a new goal state G. Give every star-
decoupled goal state s an outgoing transition to G whose
cost equals the summed-up cost of cheapest compliant goal
leaf paths in s. Given a heuristic h for Θσ, set h(G) := 0.

The generalization to star-decoupling incurs one impor-
tant issue, not present in the special case of fork factor-
ings. If center moves require preconditions on leaves, then
we should “buy” these preconditions immediately, putting
their price into the path cost g, because otherwise we lose
information during the search. For illustration, in our no-
empty example, say the goal is tA = l2 instead of p =
l3, and consider the star-decoupled state s after applying
move(A, l1, l2). Then tA = l2 is true, g = 1, and h∗ on
the compiled FDR task Πσ(s) returns 0 because the goal
is already true. But hσ∗(s) = 1 and the actual cost of the
plan is 2: We still need to pay the price for the precon-
dition p = A of move(A, l1, l2). This is not captured in
Πσ(s) because it is needed prior to s only. The solution
is to perceive this “price” as a “cost” already committed to.
In our modified structure Θ′, when applying a center ac-
tion aC to star-decoupled state s, we set the local cost of
aC (its cost specifically at this particular position in Θ′) to
cost(aC

t)+
∑

F L g(FL). Here, g(FL) is the minimum over
the price in s of those sL ∈ SL|F L that satisfy aC’s pre-
condition. Intuitively, to apply aC , we must first buy its leaf
preconditions. To reflect that g(FL) has already been paid,
the respective (ii) arcs in CompGσ(πC(s), FL) are assigned
weight −g(FL). In our example above, the path cost in s is
g = 2 giving us the correct g + h = 2. The “0” arc in Fig-
ure 3 is assigned weight −1, so that the overall cost of the
compliant path for p will be 0 (as the only action we need to
use has already been paid for by the center move).

Any (optimal) standard heuristic search algorithm X on
Θ′ yields an optimal heuristic search algorithm for Θσ ,
which we denote Star-Decoupled X (SDX).

Experiments
Our implementation is in FD (Helmert 2006), extending that
for fork decoupling by GH. We ran all international plan-
ning competition (IPC) STRIPS benchmarks (’98–’14), on
a cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB).

Our experiments are preliminary in that we perform only
a very limited exploration of factoring strategies. Factor-
ing strategy design for star topologies is, in contrast to fork
topologies, quite challenging. The space of star factor-
ings includes arbitrary two-subset partitions of single-SCC
causal graphs, where fork factorings do not exist at all. Even
for the simplest possible optimization criterion, maximizing
the number of leaves in a strict star factoring, finding an op-

timal factoring is NP-complete (this follows by a straightfor-
ward reduction from Maximum Independent Set (Garey and
Johnson 1979)). An additional complication is that leaves
may be “frozen”: As we need to branch over all actions af-
fecting the center, for a leaf FL to yield a state space size
reduction there must be at least one action affecting only
FL (not affecting the center). For example, in IPC Visit-
All, while the robot position may naturally be viewed as the
“center” and each “visited” variable as a leaf, every leaf-
moving action also affects the center so nothing is gained.

We shun this complexity here, leaving its comprehensive
exploration to future work, and instead design only two sim-
ple strict-star factoring strategies by direct extension of GH’s
fork factoring strategy. That strategy works as follows.

Denote by FSCC the factoring whose factors are the SCCs
of CG. View the interaction graph IG(FSCC) over these
SCCs as a DAG where the root SCCs are at the top and the
leaf SCCs at the bottom. Consider the “horizontal lines”
{T, B} (top, bottom) through that DAG, i. e., the partitions
of V where every F ∈ FSCC is fully contained in either of
T or B, and where the only arc in IG({T, B}) is (T → B).
Let W be the set of weakly connected components of FSCC

within B. Then a fork factoring F is obtained by setting
FC := T and FL := W . Any fork factoring can be ob-
tained in this manner, except the redundant ones where some
FL ∈ FL contains several weakly connected components.

GH’s strategy moves the horizontal line upwards, from
leaves to roots in IG(FSCC), in a greedy fashion, thereby
generating a sequence F1, . . . , Fk of fork factorings. They
select the factoring Fi whose number of leaf factors is max-
imal, and whose index i is minimal among these factor-
ings. The rationale behind this is to maximize the number
of leaves (the amount of conditional independence) while
keeping these as small as possible (reducing the runtime
overhead). If k = 0 (no horizontal line exists i. e. CG is
a single SCC), or Fi has a single leaf only, then GH abstain
from solving the input task. The rationale is that, in GH’s
experiments, single-leaf factorings hardly ever payed off.

We design two new (non-fork) strategies, inverted forks
and X-shape. The former is exactly GH’s strategy but invert-
ing the direction of the arcs in the causal graph. The latter
runs GH’s fork factoring first, and thereafter runs inverted
forks on the fork center component FC . If an inverted-fork
leaf FL has an outgoing arc into a fork leaf, then FL is in-
cluded into FC . We abstain if no factoring exists or if the
selected factoring has a single leaf only. Note that this still
abstains on single-SCC causal graphs, and that frozen leaves
cannot occur as neither forks nor inverted forks allow leaf-
affecting actions to affect the center. The strategies take neg-
ligible runtime (rounded to 0.00 in most cases, much faster
than FD’s pre-processes in the few other cases).

For optimal planning (with LM-cut (Helmert and Domsh-
lak 2009)), while GH reported dramatic gains using fork fac-
toring, our new factoring strategies do not improve much
upon these gains. Inverted forks do sometimes help, most
notably in Satellite where Star-Decoupled A∗ (SDA∗) with
inverted fork factoring solves 3 more instances than each of
A∗ and fork-factoring SDA∗, reducing evaluations on com-
monly solved instances by up to two orders of magnitude.

(A): Coverage (B): Evaluations: Improvement factor relative to GBFS (C): Runtime: Improvement factor relative to GBFS
X-shape inverted fork fork X-shape

no preferred operators with preferred operators no preferred operators with preferred operators
npo po npo po npo po SDGBFS SDGBFS LAMA SDGBFS SDGBFS LAMA

base sd base sd LAMA # sd sd # sd sd
∑

D GM max #
∑

D GM max
∑

D GM max #
∑

D GM max #
∑

D GM max
∑

D GM max
Childsna 20 0 0 3 +1 -3 20 0 +1 0 0 0 0 0
Depots 22 14 -1 18 -1 +3 22 -1 -1 0 12 0.5 1.1 14.0 17 1.5 2.1 54.5 3.4 2.3 299 10 0.3 0.3 5.7 14 1.0 0.7 22.5 0.8 1.3 91.0
Driver 20 18 +1 20 -2 0 0 20 +1 -2 17 1.2 2.2 8.3 18 0.1 0.9 4.0 0.7 0.9 21.0 5 0.3 0.4 3.3 12 0.0 0.2 1.0 0.5 0.6 2.1
Elev08 30 30 0 30 0 0 30 0 0 0 30 5.5 5.4 18.1 30 4.2 3.5 12.1 1.0 1.1 3.8 24 2.0 1.5 4.0 20 1.4 1.1 2.0 0.6 0.6 1.4
Elev11 20 18 +2 20 0 0 20 +2 0 0 18 12.6 7.5 46.8 20 11.5 5.6 37.3 1.8 1.1 4.3 18 4.8 2.7 18.5 20 4.7 1.8 13.0 1.3 0.7 2.8
Floor11 20 6 -5 6 -4 0 20 -5 -4 0 1 0.4 0.4 0.4 2 0.7 0.7 0.7 0.8 0.8 1.0 1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.2 0.2 0.3
Floor14 20 2 -2 2 0 0 20 -2 0 0 0 2 0.6 0.6 0.7 0.9 0.9 1.1 0 2 0.1 0.1 0.1 0.2 0.2 0.3
Log00 28 28 0 28 0 0 28 0 0 28 0 0 28 11.8 9.4 18.8 28 5.2 4.7 6.8 0.8 0.9 1.0 0 0
Log98 35 26 +9 35 0 0 35 +9 0 35 +9 0 26 37.3 12.7 60.0 35 49.4 3.5 177 9.0 1.1 28.1 16 19.0 6.7 34.9 24 19.1 1.5 65.8 4.3 0.8 18.0
Mico 145 145 0 145 0 0 0 145 0 0 145 2.4 2.2 4.4 145 4.3 3.6 8.4 1.0 1.0 1.8 26 1.1 1.1 1.6 45 1.0 1.0 1.2 0.5 0.6 0.9
Mystery 2 0 0 1 0 0 2 0 0 0 0 1 0.9 0.9 0.9 1.4 1.3 1.3 0 1 0.6 0.6 0.6 1.0 1.0 1.0
NoMy 20 9 +10 10 +9 +3 0 20 +10 +9 9 141 34.0 1250 10 43K 33.5 15M 1697 4.5 135K 5 2.6 2.2 5.9 8 1033 3.8 12K 468 2.1 10K
Pathw 30 11 +2 20 0 +4 0 29 +2 0 11 12.7 3.8 26.5 20 1.4 1.5 1.8 0.6 0.7 1.2 7 3.5 1.3 10.7 10 0.4 0.6 1.0 0.3 0.4 1.0
PSR 3 3 0 3 0 0 0 3 0 0 3 1.6 1.7 1.9 3 1.3 1.2 1.6 1.0 1.0 1.0 0 0
Rovers 40 23 -1 40 0 0 38 +5 -1 40 -1 0 22 1.2 1.7 12.3 40 1.3 1.7 3.1 0.7 0.8 1.8 12 0.4 0.5 1.7 22 0.6 0.7 1.0 0.3 0.4 0.8
Satell 36 30 +3 36 0 0 34 +1 0 36 +3 0 30 2.7 2.0 38.7 36 1.8 1.3 6.8 0.4 0.5 1.5 19 1.1 1.8 21.9 25 1.9 1.0 3.9 0.1 0.3 0.8
TPP 29 22 +1 29 0 0 26 -5 0 27 +1 0 22 3183 454 31K 29 0.1 3.4 41.9 0.8 0.8 1.8 14 95.8 52.7 987 17 0.0 0.2 1.3 0.5 0.6 0.9
Transp08 30 16 +14 28 +2 +2 30 +14 +2 0 16 693 35.7 2226 28 305 21.0 4360 1.0 1.0 3.3 10 135 17.6 262 22 18.0 2.0 156 0.6 0.7 1.7
Transp11 20 0 +20 11 +9 +7 20 +20 +9 0 0 11 500 114 4360 1.0 1.1 8.9 0 11 19.0 5.2 141 0.7 0.7 4.7
Transp14 20 0 +20 6 +14 +9 20 +20 +14 0 0 6 168 130 407 1.1 1.1 6.9 0 6 8.7 7.4 23.9 0.6 0.8 4.4
Wood08 26 26 0 26 0 0 25 0 0 25 0 0 26 0.4 1.2 121 26 1.2 2.3 111 7.8 14.8 145 20 0.1 0.2 2.1 22 0.2 0.3 7.9 2.1 2.4 6.3
Wood11 19 18 0 19 0 0 18 +1 0 18 +1 0 2 0.4 0.5 4.3 19 1.2 1.2 3.0 11.8 15.8 53.8 16 0.0 0.1 0.5 18 0.0 0.1 0.2 2.1 2.1 4.9
Zeno 20 20 0 20 0 0 18 0 0 20 0 0 20 29.3 12.1 103 20 4.6 3.0 6.3 0.8 0.8 1.3 7 4.2 3.8 10.6 7 0.9 0.8 1.1 0.4 0.4 0.7∑

655 465 +73 556 +28 +25 426 +59 +20 446 +26 +7

Table 1: Results in satisficing planning with hFF. Each table section fixes a factoring strategy (2nd row from top), and uses
only the instances which that strategy does not abstain on; of these, (B) uses the subset of commonly solved ones (with vs.
without preferred operators), (C) the same but excluding ones commonly solved in ≤ 0.1 seconds. The respective numbers of
underlying instances are shown in columns “#”. GBFS: Greedy Best-First Search; npo: no preferred ops; po: with preferred
ops (FD’s dual-queue search); base: baseline (GBFS on standard state space); sd: star-decoupled base;

∑
D: factor over the

per-domain sums; GM/max: Geometric mean/maximum over the per-instance factors; K: thousand; M: million.
But such cases are rare. It remains future work to explore
more sophisticated star-factoring strategies for optimal plan-
ning. Here, we focus on satisficing planning where even our
current simple factoring strategies yield good results.

Consider Table 1. X-shape factoring abstains much less
than each of the “base strategies”, forks and inverted forks,
on its own. X-shape factoring substantially improves cover-
age, overall and in several domains, without preferred opera-
tors, and does so in NoMystery and Transport with preferred
operators. It even beats LAMA (Richter and Westphal 2010)
overall, thanks to excelling in Transport. Indeed, with pre-
ferred operators, Transport is solved almost instantly, with a
maximum (average) of 69 (36.1) state evaluations and 14.7
(2.7) seconds runtime. Without preferred operators, the av-
erage is 1236.8 evaluations and 127.1 seconds. Substantial
reductions of evaluations, with corresponding smaller but
still significant reductions of runtime, are obtained also in
Elevators, Logistics, NoMystery, Pathways, TPP, and Zeno-
travel, plus smaller improvements in various other cases.

The strength of X-shape factoring is inherited from fork
factoring in NoMystery and Pathways, where inverted fork
factoring abstains. It stems from inverted fork factoring,
and is thus entirely thanks to the new techniques introduced
herein, in Elevators and Transport where fork factoring ab-
stains. For Logistics, TPP, and Zenotravel, where neither
base strategy abstains, our current configuration of X-shape
factoring uses exactly the fork factorings, because the fork
strategy is run first and thus given a “preference”. To il-
lustrate, in Logistics, the fork makes each package a leaf.
The inverted fork would make the trucks leaves, but they
have outgoing arcs to the packages so are re-included into
the center. Symmetrically, if the X-shape ran the inverted
fork strategy first, it would end up with exactly the inverted
fork factorings. In Logistics98, these have a consistent ad-

vantage (
∑

D evaluations improvement factor over forks is
6.4 with preferred operators). In Logistics00 they have a
consistent small disadvantage (

∑
D factor 0.9). In TPP and

Zenotravel, there is significant per-instance variance, up to
14 times worse respectively 537 times better in TPP, and up
to 2 times worse respectively 5 times better in Zenotravel.
So there may be room for improvement by combining forks
and inverted forks in a less simplistic manner.

As we are mainly interested in speed, the above consid-
ers uniform action costs. The results for non-uniform ac-
tion costs are very similar, except in Elevators where both
the baseline and X-shape factoring get worse, in Transport
where only the baseline gets worse, and in Woodworking
where only X-shape factoring without preferred operators
gets worse. The overall coverage gain is then 49 without
preferred operators, and 35 with preferred operators.

Conclusion
For our current simple factoring strategies, the upshot from
our experiments is that the main empirical advantage of star
topologies over forks (as far as IPC benchmarks are con-
cerned) stems from the Transport domain, which this tech-
nique “kills” completely. The most important research ques-
tion in planning remains the exploration of factoring strate-
gies. We need methods able to identify sophisticated star
topologies, and we need to understand the strengths of dif-
ferent factorings as a function of problem structure.

Beyond planning, an interesting opportunity is to apply
star-topology decoupling to star-topology systems. Verifica-
tion & synthesis appear especially relevant, possibly with
adversarial or probabilistic extensions to star-decoupling.
Some classical puzzles may also be amenable; e. g., in the
Peg Solitaire game, one can take the “center” to be the mid-
dle of the board and the “leaves” to be its peripheral parts.

Acknowledgments. We thank the anonymous reviewers,
whose comments helped to improve the paper.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., ed., Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), 929–935.
Acapulco, Mexico: Morgan Kaufmann.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Brafman, R. I., and Domshlak, C. 2006. Factored plan-
ning: How, when, and when not. In Gil, Y., and Mooney,
R. J., eds., Proceedings of the 21st National Conference of
the American Association for Artificial Intelligence (AAAI-
06), 809–814. Boston, Massachusetts, USA: AAAI Press.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35. AAAI Press.
Brafman, R., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 65–72.
AAAI Press.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability—A Guide to the Theory of NP-Completeness.
San Francisco, CA: Freeman.
Gnad, D., and Hoffmann, J. 2015. Beating lm-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal of Artificial Intelligence Research 41:155–
229.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.

Kelareva, E.; Buffet, O.; Huang, J.; and Thiébaux, S. 2007.
Factored planning using decomposition trees. In Veloso, M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), 1942–1947. Hyder-
abad, India: Morgan Kaufmann.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Wang, D., and Williams, B. C. 2015. tburton: A divide
and conquer temporal planner. In Bonet, B., and Koenig, S.,
eds., Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI’15), 3409–3417. AAAI Press.

Goal Recognition Design With Non-Observable Actions

Sarah Keren and Avigdor Gal
{sarahn@tx,avigal@ie}.technion.ac.il

Technion — Israel Institute of Technology

Erez Karpas
karpase@csail.mit.edu

Massachusetts Institute of Technology

Abstract

Goal recognition design involves the offline analysis of goal
recognition models by formulating measures that assess the
ability to perform goal recognition within a model and find-
ing efficient ways to compute and optimize them. In this work
we extend earlier work in goal recognition design to partially
observable settings. Partial observability is relevant to goal
recognition applications such as assisted cognition and se-
curity that suffer from reduced observability due to sensor
malfunction, deliberate sabotage, or lack of sufficient bud-
get. We relax the full observability assumption by offering a
new generalized model for goal recognition design with non-
observable actions. In particular we redefine the worst case
distinctiveness (wcd) measure to represent the maximal num-
ber of steps an agent can take in a system before the observed
portion of his trajectory reveals his objective. We present a
method for calculating the wcd based on novel compilations
to classical planning and propose a method to improve the de-
sign. Our empirical evaluation shows the proposed solutions
to be effective in computing and improving the wcd.

Introduction
Goal recognition design (grd) (Keren, Gal, and Karpas
2014; 2015) involves the offline analysis of goal recogni-
tion models, interchangeably called in the literature plan
recognition (Pattison and Long 2011; Kautz and Allen 1986;
Cohen, Perrault, and Allen 1981; Lesh and Etzioni 1995;
Ramirez and Geffner 2009; Agotnes 2010; Hong 2001), by
formulating measures that assess the ability to perform goal
recognition within a model and finding efficient ways to
compute and optimize them.

Goal recognition design is applicable to any domain for
which quickly performing goal recognition is essential and
in which the model design can be controlled. In partic-
ular goal recognition design is relevant to goal and plan
recognition applications such as assisted cognition (Kautz
et al. 2003) and security (Jarvis, Lunt, and Myers 2004;
Kaluza, Kaminka, and Tambe 2011; Boddy et al. 2005) that
suffer from reduced observability due to sensor malfunc-
tion, deliberate sabotage, or lack of sufficient budget. In
a safe home setting, for example, reduced coverage means
less control over access to sensitive areas such as a hot oven.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For intrusion detection applications, malfunctioning sensors
may result in an unobserved path to sensitive zones.

Earlier works on goal recognition design (Keren, Gal, and
Karpas 2014; 2015) fail to provide support for goal recog-
nition with reduced observability due to its reliance on the
assumption that the model being analyzed is fully observ-
able. In this work we relax the full observability assumption
and offer innovative tools for a goal recognition design anal-
ysis that accounts for a model with non-observable actions
and a design process that involves sensor placement.

The set of actions in the partially observable setting is
partitioned into observable and non-observable actions, re-
flecting for example a partial sensor coverage. The pro-
posed analysis of observations relies on the partial incom-
ing stream of observations. A key feature of this setting is
that it supports a scenario where the system has no informa-
tion regarding the actions of the agents beyond what is ob-
served. Therefore, in the absence of an observation, the sys-
tem cannot differentiate unobserved actions from idleness
of an agent. An example of such a scenario can be found in
Real Time Location Systems (RTLS) where the last known
location of an agent is taken as its current position.

The partially observable setting provides three extensions
to the goal recognition design state-of-the-art. First, we sup-
port a partially observable model by defining an observa-
tion sequence that contains only the observable actions per-
formed by an agent. This means that each such sequence
may be generated by more than one execution sequence.
Accordingly, a non-distinctive observation sequence is one
that satisfies (formally defined in this paper) paths to more
than one goal. The worst case distinctiveness(wcd) is then
the length of the maximal execution that produces a non-
distinctive observation sequence. The wcd serves as an up-
per bound on the number of observations that need to be
collected for each agent before guaranteeing his objective is
recognized.

As a second extension, we provide a compilation of the
partially observable goal recognition design problem into a
classical planning problem, which allows us to exploit ex-
isting tools for calculating the wcd. Our empirical analysis
shows that the compilation allows efficient computation of
the wcd.

After calculating the wcd of a model, it may be desired
to minimize it. The third extension we present therefore in-

volves finding the optimal set of modifications that can be
introduced to the model in order to reduce the wcd. We
introduce a new design-time modification method that in-
volves exposing non-observable actions, e.g., by (re)placing
sensors. This modification method is used in addition to
removing actions from the model (Keren, Gal, and Karpas
2014) in order to minimize the wcd while respecting the
specified restrictions on the number of allowed modifica-
tions. The empirical analysis reveals that the combination
of observation exposure and activity restriction allows big-
ger improvements than each of the measures separately.

Figure 1: An example of a goal recognition design problem

Example 1 To illustrate the objective of calculating and op-
timizing the wcd of a goal recognition design model, con-
sider the example depicted in Figure 1, which demonstrates
a simplified setting from the logistics domain. There are 3
locations, a single truck that is initially located at position
Loc1, and 4 objects that are initially placed such that O1 is
at location Loc1, O2 and O3 are at Loc2 and O4 is at Loc3.
Objects can be moved by loading them onto the truck and
unloading them in their destination after the truck reaches
it. There are two goals: 1) O1 and O2 at Loc3 and O4 at
Loc1 (g0) and 2) O3 at Loc3 (g1). Optimal plans are the
only valid plans in this example. In the fully observable set-
ting wcd = 0, since the goal is revealed by the first action,
which can either be LoadO1 for g0 or Drive-Loc1-Loc2
for g1. Assume that the non-observable actions are all the
load and unload actions, and the observable actions are only
the movement of the truck. Here, because the truck needs to
travel from Loc1 to Loc2 and then to Loc3 for achieving
both goals the goal is revealed only if Drive-Loc3-Loc1 is
performed. This means that g1 can be achieved without the
system being aware of it. Exposing LoadO1, by placing a
sensor on the object, changes the situation dramatically.

The rest of the paper is organized as follows. We start
by providing background on classical planning, followed by
introducing a model of grd problems and the wcd value for
the partially observable setting. We continue by present-
ing methods for calculating and reducing the wcd value of
a grd problem, respectively. We conclude with an empiri-
cal evaluation, a discussion of related work, and concluding
remarks.

Background
The basic form of automated planning, referred to as clas-
sical planning, is a model in which the actions of agents
are fully observable and deterministic. A common way to
represent classical planning problems is the STRIPS formal-
ism (Fikes and Nilsson 1972): P = 〈F, I,A,G,C〉 where
F is the set of fluents, I ⊆ F is the initial state, G ⊆ F rep-
resents the set of goal states, and A is a set of actions. Each
action is a triple a = 〈pre(a), add(a), del(a)〉, that repre-
sents the precondition, add, and delete lists respectively, and
are all subsets of F . An action a is applicable in state s if
pre(a) ⊆ s. If action a is applied in state s, it results in a
new state s′ = (s \ del(a))∪ add(a). C : A→ R+

0 is a cost
function that assigns each action a non-negative cost.

The objective of a planning problem is to find a plan π =
〈a1, . . . , an〉, a sequence of actions that brings an agent from
I to a goal state. The cost c(π) of a plan π is Σni=1(C(ai)).
Often, the objective is to find an optimal solution for P , an
optimal plan, π∗, that minimizes the cost. We assume the
input of the problem includes actions with a uniform cost
equal to 1. Therefore, plan cost is equivalent to plan length,
and the optimal plans are the shortest ones.

Model
A model for partially observable goal recognition design
(pogrd) is given as D = 〈PD,GD,Πleg(GD)〉 where:

• PD = 〈FD, ID, AD〉 is a planning domain where A =
Ao ∪ Ano is a partition of A into observable and non-
observable actions, respectively.

• GD is a set of possible goals, where each possible goal
g ∈ GD is a subset of FD.

• Πleg(GD) =
⋃
g∈GD Πleg(g) is the set of legal plans to

each of the goals. A plan is an execution of actions that
take the agent from I to a goal in GD. A legal plan is
one that is allowed under the assumptions made on the
behavior of the agent.

It is worth noting that the model includes an initial state,
common to all agents acting in the system. In case there are
multiple initial states, there is a simple compilation, which
adds a zero cost transition between a dummy common ini-
tial state and each initial state, making the model and the
methods we propose applicable.

The pogrd model divides the system description into three
elements, namely system dynamics, defined by FD, ID, AD
and GD, agent strategy defined by Πleg(GD), and observ-
ability defined by the partition ofA intoAo andAno. When-
ever D is clear from the context we shall use P, G, and
Πleg(G).

A path is a prefix of a legal plan. We denote the set of
paths inD as Πpref (GD) and the set of paths to goal g ∈ GD
as Πpref (g) . An observation sequence ~o = 〈a1, · · · , an〉
is a sequence of actions aj ∈ Ao. For any two action
sequences 〈a1, · · · , an〉 and 〈a′

1, · · · , a
′
m〉 the concatena-

tion of the action sequences is denoted by 〈a1, · · · , an〉 ·
〈a′

1, · · · , a
′
m〉 .

In the partially observable setting the observations se-
quence that is produced by a path includes only the observ-
able actions that are performed. The relationship between a
path and an observation sequence is formally defined next.

Definition 1 Given a path π, the observable projection of π
in D, denoted opD(π) (op(π) when clear from the context),
is recursively defined as follows:

op(π) =





〈〉 if π = 〈〉
〈a1〉 · op(〈a2 · · · an〉) if π = 〈a1, · · · , an〉 and a1 ∈ Ao

op(〈a2, · · · , an〉) otherwise

It is worth noting that the fully observable settings presented
by (Keren, Gal, and Karpas 2014; 2015) is a special case
of the model presented here, in which the entire action set
is observable. In this case, Ano = ∅, Ao = A, and the
observable projection of any action sequence is equivalent
to the action sequence itself.

The relation between an observation sequence and a goal
is defined as follows.

Definition 2 An observation sequence ~o satisfies a goal g if
∃π ∈ Πpref (g) s.t. ~o = op(π).

We now define non-distinctive observation sequences and
paths, as follows.

Definition 3 ~o is a non-distinctive observation sequence if
it satisfies more than one goal. Otherwise, it is distinctive.
π is a non-distinctive path if its observable projection ~o is
non-distinctive. Otherwise, it is distinctive.

The following basic observation sets the relationship be-
tween a path and its prefixes.

Lemma 1 Any prefix of a non-distinctive path is non-
distinctive.

Proof: Let π be a non-distinctive path. According to Defi-
nition 3, ∃g, g′ ∈ G, π ∈ Πpref (g), π′ ∈ Πpref (g′) s.t. g

′ 6=
g and op(π) = op(π

′
). Let πpre be a prefix of π. Then,

by Definition 1, op(πpre) is a prefix of op(π) = op(π′).
According to Definition 2, πpre ∈ Πpref (g′) and therefore,
according to Definition 3, πpre is non-distinctive.

Given Lemma 1, we define a maximal non-distinctive pre-
fix of a path π (dubbed prend(π)) to be a prefix of π such
that there is no other non-distinctive prefix of π that contains
it.

We now examine the effect of moving an action from Ao

to Ano (dubbed concealment) on the number of goals a path
satisfies. Relying on Definition 2, we mark the set of goals
a path π satisfies in D as GD(π) and we use ΠopD(π) to
represent the paths π

′
in D s.t. opD(π) = opD(π

′
).

Theorem 1 Let D and D′ be two pogrd models that are
identical except that AnoD ⊆ AnoD′ . For any π ∈ Πpref (GD),
GD(π) ⊆ GD′(π). If, in addition, ∀a ∈ AnoD′ \ AnoD , π̂ is
distinctive in D′ for any prefix π̂ · 〈a〉 of π, then GD(π) =
GD′(π) (strict equivalence).

Proof: In general, if ∀a ∈ π, a 6∈ Ano
D′ \ AnoD then

opD(π) = opD′(π) since none of the actions in π changed
their observability property. Therefore, GD(π) = GD′(π).

Otherwise, since π ∈ Πpref (GD) there exists a goal
g ∈ GD and πg ∈ Πleg(g) s.t. opD(π) is a prefix to opD(πg)
(Definition 2). By eliminating any action a ∈ AnoD′ \ AnoD
both in opD(π) and in opD(πg) we maintain the prefix prop-
erty. Therefore, opD′(π) is a prefix to opD(πg) and thus
π ∈ Πpref (GD′).

The only thing left to show now is that if π̂ is distinctive
in D′ then GD(π) = GD′(π). π̂ is distinctive in D′ and
therefore opD′(π̂) satisfies a single goal g (Definition 3). π
achieves the goal g and π̂ is a prefix of π. Therefore, opD(π̂)
satisfies g as well. opD′(π̂ · 〈a〉) = opD′(π̂) and therefore
also satisfies g.

Assume to the contrary that π̂ · 〈a〉 is non-distinctive.
Therefore, there must be at least one more goal g′ 6= g s.t.
opD′(π̂ · 〈a〉) satisfies g′. Therefore, there are two plans π1

to goal g and π2 to goal g′ such that opD′(π̂ · 〈a〉) is a pre-
fix to both opD′(π1) and opD′(π2). Since opD′(π̂ · 〈a〉) =
opD′(π̂), opD′(π̂) is also a prefix to both opD′(π1) and
opD′(π2), which serves to contradict the assumption that
opD′(π̂) satisfies a single goal and GD(π) = GD′(π).

Next, we define the worst case distinctiveness (wcd) mea-
sure of a pogrd model. We mark the set of non-distinctive
paths of a model D as Πnd(D) and define the wcd as maxi-
mal length of a non-distinctive path in the model.

Definition 4 The worst case distinctiveness of a model D,
denoted by wcd(D) is:

wcd(D) = max
π∈Πnd(D)

|π|

An immediate implication of Theorem 1 is that concealed
actions may impact the wcd only if they immediately follow
a non-distinctive prefix. In particular, if a prefix π is non-
distinctive and π · 〈a〉 is distinctive, then by concealing a,
op(π · 〈a〉) may increase the number of goals it satisfies,
making it non-distinctive.

Calculating wcd
To calculate the wcd value of the pogrd model we compile
it into a classical planning problem, where wcd is computed
for each pair of goals. Individual results are then combined
for computing the wcd of the entire model. Note that the
following description is restricted to the setting where the
set of legal plans is the set of optimal plans. The same ap-
proach can be applied to the non-optimal setting present by
Keren, Gal, and Karpas (2015) with minor modifications,
but is omitted here for lack of space.

The pogrd problem with two goals is compiled as a sin-
gle planning problem involving two agents each aiming at
a separate goal. The solution to the problem is a plan for
each agent and is divided into two parts by a common ex-
posure point. The prefix of a plan up to the exposure point
represents a non-distinctive path, one that does not reveal
the goal of the agent and may include actions performed by

both agents together in addition to non-observable actions
performed by a single agent. After the exposure the goal of
the agent is recognized. Since our objective is to reveal the
wcd of the model we discount the cost of actions that be-
long to the unexposed prefix of the plan thus encouraging
the agents to extend the unexposed prefix as much as possi-
ble.

Given a pogrd problem D and goals G = {g0, g1}, the
latest-expose compilation includes two agents: agent0 aim-
ing at g0 and agent1 aiming at g1. The model contains three
types of actions: together-actions (denoted A0,1), actions
that both agents perform simultaneously, non-exposed ac-
tions (Aine), actions in Ano that are executed by a single
agent before the exposure point, and exposed actions (Aie),
actions (either observed or non-observed) that are performed
by a single agent after the exposure point. This setting is
achieved by adding to the model the DoExpose no-cost op-
eration that represents the exposure point by adding to the
current state the exposed predicate. Actions inA0,1 andAine
are applicable only before DoExpose occurs while actions in
Aie can be applied only after.

The use of the exposure point is similar to the use of
split (Keren, Gal, and Karpas 2014; 2015), where agents are
encouraged to act together. However, the addition of non-
observable actions to the unexposed extends prefix breaks
the symmetry that existed in the fully observable setting.
The objective is no longer to find a path that maximizes the
number of steps both agents share. Rather, one of the agents
seeks a maximum path that keeps the agent unrecognized by
combining non-observable actions and actions that are on le-
gal paths to a different goal. To reflect this asymmetry we
change the objective to allow only one agent (arbitrarily cho-
sen as agent0) to benefit from performing non-observable
actions. We let Πnd(gi) represent non-distinctive paths that
are prefixes to plans to gi and define the wcd-gi to be the
maximal wcd shared by goal gi and any other goal.

Definition 5 The worst case distinctiveness of a goal gi in
model D, denoted by wcd-gi(D) is:

wcd-gi(D) = max
π∈Πnd(gi)

|π|

We now present the latest-expose compilation for optimal
agents.

Definition 6 For a pogrd problem D = 〈P,G =
{g0, g1},Πleg(G)〉 where P = 〈F, I,A = Ao ∪ Ano〉 we
create a planning problem P ′ = 〈F ′, I ′, A′, G′〉, with ac-
tion costs C ′, where:

• F ′ = {f0, f1 | f ∈ F} ∪ {exposed} ∪ {done0}
• I ′ = {f0, f1 | f ∈ I}}
• A′ = A0,1 ∪Aine ∪Aie ∪ {DoExpose} ∪ {Donei}

– A0,1 = {〈{f0, f1 | f ∈ pre(a)} ∪ {¬exposed},
{f0, f1 | f ∈ add(a)},
{f0, f1 | f ∈ del(a)}〉 | a ∈ A}

– Aine= {〈{fi | f ∈ pre(a)} ∪ {¬exposed},
{fi | f ∈ add(a)},
{fi | f ∈ del(a)}〉 | a ∈ Ano}

– A0
e= {〈{f0 | f ∈ pre(a)} ∪ {exposed} ∪ {¬done0},
{f0 | f ∈ add(a)},
{f0 | f ∈ del(a)}〉 | a ∈ A}

– A1
e= {〈{f1 | f ∈ pre(a)} ∪ {exposed} ∪ {done0},
{f1 | f ∈ add(a)},
{f1 | f ∈ del(a)}〉 | a ∈ A}

– Done0 = 〈exposed, done0, ∅〉
– DoExpose = 〈∅, exposed, ∅〉
• G′ = {f0|f ∈ g0} ∪ {f1|f ∈ g1}

• C ′(a) =





2− ε if a ∈ A0,1

1− ε if a ∈ Aine
1 if a ∈ Aie
0 if a ∈ {DoExpose} ∪ {Done0}

fi is a copy of F for agent i, exposed is a fluent represent-
ing the no-cost action DoExpose has occurred, and done0 is
a fluent indicating the no-cost Done0 has occurred. The ini-
tial state is common to both agents and does not include the
exposed and done0 fluents. Until a DoExpose action is per-
formed, the only actions that can be applied are the actions
in A0,1 and Aine. The DoExpose action adds exposed to the
current state thus allowing the actions in A0

e to be applied.
After agent 0 accomplishes its goal,Done0 is performed, al-
lowing the application of actions in A1

e until g1 is achieved.
We enforce agent 1 to wait until agent 0 reaches its goal be-
fore starting to act in order to make the search for a solution
to P ′ more efficient by removing symmetries between dif-
ferent interleaving of agent plans after DoExpose occurs.

Having described the compilation we now describe its
use. In order to find the wcd of the model, we solve a differ-
ent planning problem for each pair of the goals, each time
discounting a single agent. The wcd-g0 value is found by
counting the number of actions performed by agent0 before
DoExpose occurs. The wcd value of the model is the maxi-
mal wcd-gi over all solved instances.

Given a solution π to P
′
, we mark the projection of π

on each agent i as πi. πi includes all actions in A0,1 Aine
and Aie that appear in π . Accordingly, the projections of
the optimal solution π∗ to P

′
on each agent is marked as

π∗i . In addition, π∗D(gi) represents an optimal solution of
gi in D. Following the idea presented by Keren, Gal, and
Karpas (2014), we guarantee that the projection of the op-
timal solution to P ′ yields optimal plans for both agents by
bounding ε, which represents the discount that may be col-
lected for performing actions before DoExpose occurs to be
lower than the smallest possible diversion from a legal path
to any of the agents.

Lemma 2 π∗0 and π∗1 are optimal plans for each agent in P ′
if

ε <
1

|π∗D(g0)|
Proof: In order to guarantee both agents choose optimal
paths we require that the maximal discount that may be col-
lected in P

′
is smaller than the minimal cost of a diversion

from a valid path of any of the agents. We therefore bound
the difference between the cost of achieving G′ in P ′ and

achieving g0 and g1 in D to be smaller than the cost of the
minimal diversion from the optimal paths in D. Therefore,
assuming the minimal diversion cost is 1 we require that :

C ′(π∗)− Σ
i
(|π∗D(gi)|) < 1

The compilation guarantees that action costs in P and P
′

differ only in the discount that may be accumulated by
agent0 in the unexposed prefix of π∗0 , whose maximal length
is equal to wcd-g0(D). We therefore need to ensure that

ε · wcd-g0(D) < 1

and

ε <
1

wcd-g0(D)

In the worst case agent0 can reach g0 without being ex-
posed. This guarantees an upper bound on wcd-g0(D) s.t.
wcd-g0(D) ≤ |π∗(g0)D|. Therefore if

ε <
1

|π∗D(g0)|
both agents act optimally.

Next, we show that the observable projection of the paths
prior to the exposure point is non-distinctive. Given a solu-
tion π to the P

′
, for any agent i, unexposed(πi) denotes the

prefix of πi prior to the exposure point.

Lemma 3 unexposed(πi) is non-distinctive.

Proof: To show that unexposed(πi) is non-distinctive
we need to show that ∃g, g′

s.t. g 6= g
′

and
unexposed(πi) satisfies both g and g

′
. The compila-

tion guarantees that for any action a ∈ unexposed(πi),
a ∈ A0,1 or Aino. According to Definition 1,
op(unexposed(πi)) = {〈a1...an|a ∈ A0,1〉}. This
means that op(unexposed(π0)) = op(unexposed(π1)) and
op(unexposed(πi)) contains only observable actions the
agents perform together and which therefore appear on the
plans to both g0 and g1. Therefore, op(unexposed(πi)) sat-
isfies more then one goal and it is non-distinctive.

Finally, Theorem 2 shows that the optimal solution to P ′
yields the wcd-g0, thus concluding our proof of correctness.

Theorem 2 Given a pogrd model D with two goals 〈g0, g1〉
and a model P ′, created according to Definition 6,
wcd-g0(D) = |unexposed(π∗0)|.

Proof: Lemma 2 guarantees that, apart from the no-cost op-
eration DoExpose and Done0, the solution to P

′
consists

solely of actions that form a pair of optimal paths to each of
the goals. Therefore, among the solutions that comply with
this condition, π∗ is the one that maximizes the accumulated
discount. The compilation guarantees that the only way to
accumulate discount is by maximizing the number of actions
agent0 performs before the exposure point, therefore π∗ is

the solution to P
′

that maximizes |unexposed(π0)|. There-
fore |unexposed(π∗0)| = wcd-g0(D).

In Example 1 the wcd is 7 since when calculating wcd-g0
for an agent aiming at g0, π∗0 consists of agent0 loading
O1 at Loc1, driving together with agent1 to Loc2, loading
O2, driving together with agent1 to Loc3, unloading both
packages and loading 04 before theDoExpose occurs. Note
that all these actions belong to eitherA0,1 orA0

ne as opposed
to the unobservable action of unloading O4 which occurs
after the exposure point and therefore belongs to A0

e and is
not part of the wcd path.

Reducing wcd
Having formulated the wcd measure, we turn to our second
objective of finding ways to optimize the wcd by redesigning
the model. Optimization can be achieved using two possi-
ble modifications, namely action removal and exposure. The
former reduces wcd by disallowing actions from being per-
formed. The latter involves exposing an action by moving it
from Ano to Ao, e.g., by placing a sensor in an area of the
model that was previously non-observed.

wcd reduction is performed within a modification bud-
get that represents the constraints to be respected by the re-
duction method. Given the two possible modifications of a
model, we can either provide an integrated budget, Btotal,
or separate budgets Bsep = 〈Brem, Bsen〉, where Brem and
Bsen are the bounds on the number of actions that can be
removed and exposed, respectively.

Our objective is to use the budget constraint to minimize
the wcd value of the model. We mark the modifications by a
pair 〈A¬, Ano→o〉, where A¬ and Ano→o are the disallowed
and exposed actions in the transformed model respectively.
In our exploration we assume a uniform cost for the removal
and exposure of all actions. In addition, we add the require-
ment that the cost of achieving any of the goals must not
increase. Note that these assumptions are made for simplic-
ity and can be easily relaxed without major modification to
the reduction algorithms.

Let D〈A¬,Ano→o〉 denote the transformed version of D
where A = A \ A¬, Ano = Ano \ Ano→o and Aobs =
Aobs ∪Ano→o. For Bsep = 〈Brem, Bsen〉 the objective can
be expressed by the following optimization problem.

minimize
A¬∪Ano→o

wcd(D〈A¬,Ano→o〉)

subject to
|A¬| ≤ Brem and
|Ano→o| ≤ Bsen and
∀g ∈ G, C∗D(g) = C∗D〈A¬,Ano→o〉(g)

where C∗D(g) and C∗D〈A¬,Ano→o〉
(g) represent the optimal

costs of achieving goal g in D and D〈A¬,Ano→o〉, respec-
tively. When the budget is integrated the first two constraints
are replaced with |A¬|+ |Ano→o| ≤ Btotal.

The reduction is performed using a BFS search that itera-
tively explores all possible modifications to the model. The

initial state is the original model and each successor node
introduces a single modification, either exposure or reduc-
tion, that was not included in the parent node. A node in the
search tree is therefore represented by a pair 〈A¬, Ano→o〉.
A node is pruned from the search if any of the constraints
have been violated or if there are no more actions to add.

The key question remaining is what are the modifications
that should be considered at each stage. A naı̈ve approach
would be to consider all possible modifications, which is un-
practical and wasteful. Instead, we focus our attention on
modifications that have the potential of reducing the wcd by
either eliminating the wcd path (action removal) or by re-
ducing the length of its non-distinctive prefix (exposure).
It was already shown that the only actions that need to
be considered for elimination are the ones on the current
wcd path (Keren, Gal, and Karpas 2014). We show that the
only non-observable actions that need to be considered for
exposure are the ones that appear on the non-distinctive pre-
fix of the current wcd path. We refer to the pair of plans that
maximize the wcd as the wcd plans of a model and mark
them by Πwcd(D).

Theorem 3 Let D〈A¬,Ano→o〉 be a model and D〈A¬,A
′
no→o〉

be a transformed model s.t. Ano→o ⊆ A
′
no→o. If for all

a ∈ A′
no→o \Ano→o, a 6∈ prend(Πwcd(D〈A¬,Ano→o〉)) then

wcd(D〈A¬,Ano→o〉) = wcd(D
′

〈A¬,A
′
no→o〉

).

The proof is immediate from Theorem 1.
The reduction algorithm creates, for each node, one suc-

cessor for disallowing each action that appears in Πwcd(D)
and one successor for exposing each non-observable action
in prend(Πwcd(D

′
)) of the parent node. To avoid redundant

computation, we cache computed actions combination.
In Example 1 disallowing actions is not possible without

increasing the optimal costs. However, by exposingLoadO1

(i.e. by placing a sensor on the object), the wcd is reduced
to 0 equivalently to the fully observable setting.

Empirical Evaluation
Our empirical evaluation has several objectives. Hav-
ing shown that reduced observability may increase the
wcd value of a model, we first examine empirically the ex-
tent of this effect. In addition, we compare the fully observ-
able setting (Keren, Gal, and Karpas 2014) with the partially
observable setting. Finally, we evaluate the reduction pro-
cess as well as the effectiveness of action reduction vs. ex-
posure. We describe the datasets and the experiment setup
before presenting and discussing the results.
Datasets We use 4 domains of plan recognition (Ramirez
and Geffner 2009), namely GRID-NAVIGATION, IPC-
GRID+, BLOCK-WORDS, and LOGISTICS. Each prob-
lem description contains a domain description, a template
for a problem description without the goal, a set of goals
and a set of non-observable actions. For each benchmark
we generated a separate grd problem for each pair of hy-
potheses and randomly sampled actions to form the non-
observable set creating 3 instances with 5%, 10% and 20%
randomly chosen non-observable actions. We tested 216

GRID-NAVIGATION instances, 660 IPC-GRID+ instances,
600 BLOCK-WORDS instances, and 300 LOGISTICS in-
stances. In addition, we created a hand crafted benchmark
for the LOGISTICS domain dubbed LOGISTICS-Generated,
which corresponds to Example 1 where packages load and
unload actions are non-observable. This corresponds to
real-world settings where satellite imaging can easily track
movement of vehicles between locations, but the actual ac-
tions performed are obscured from view.
Setup For each problem instance, we calculated the
wcd value and run-time for the fully observable and par-
tially observable settings. For the wcd reduction we exam-
ined the partially observable setting with 3 bound settings:
an integrated bound of Btotal = 4 and 2 separate bounds
Bsep = 〈0, 2〉 and B = 〈2, 0〉, where the first element of
each pair represents Brem and the second Bsen. We used
the Fast Downward planning system (Helmert 2006) run-
ning A∗ with the LM-CUT heuristic (Helmert 2006). The
experiments were run on Intel(R) Xeon(R) CPU X5690 ma-
chines, with a time limit of 30 minutes and memory limit of
2 GB.
Results Table 1 summarizes the impact the ratio of non-
observable actions has on the execution time and the wcd .
The partially observable setting is partitioned into the var-
ious ratios examined, including a problem with no non-
observable activities, which is compared against the val-
ues collected for the fully observable setting solved using
latest-split. For each setting we compare average run time
(in seconds) over solved problems. Whenever some of the
problems timed-out, we mark in parenthesis the ratio of
solved instances. For all domains, wcd increases with the in-
crease in the ratio of non-observable actions. As for running
time, the latest-split outperforms the equivalent partially ob-
servable setting for all domains except GRID-NAVIGATION,
for which performance is similar. However, the overhead
for adding non-observable actions is negligible. For the LO-
GISTICS-Generated domain the increase in wcd was more
noticeable, with the average wcd increasing from 3.77 in
the fully observable setting to 4.87 in the partially observ-
able setting.

Table 2 summarizes the results for the wcd reduction for
the partially observable setting for each ratio, showing for
each budget allocation the average wcd reduction achieved
within the allocated time (for the LOGISTICS domain results
refer only to the problems that were successfully solved in
the wcd calculation stage). The evaluation shows that for
all domains the wcd can be decreased by applying at least
one of the modification methods separately, but the most
substantial reduction is achieved by combining the methods.
This hypothesis is supported by the LOGISTICS-Generated
domain where the results for the reduction were from 4.87
in the original partially observable setting to 3.34, 3.9 and
3.8 for the 4,〈0, 2〉,〈2, 0〉 bound allocations respectively.

Related Work
Goal recognition design was first introduced by Keren et
al. (2014; 2015), offering tools to analyze and solve the
grd model in fully observable settings. This work relaxes
the full observability assumption.

latest-split 0% 5% 10% 20%
Time wcd Time wcd Time wcd Time wcd Time wcd

GRID-NAVIGATION 0.324 10.36 0.319 10.36 0.356 10.41 0.351 10.46 0.357 11.1
IPC-GRID+ 3.53 3.454 8.754 3.454 9.56 3.55 9.64 3.67 9.96 3.84
BLOCKSWORLD 3.03 2.06 29.2 2.06 33.2 2.12 25.89 2.14 31.01 2.82
LOGISTICS 238.497 (0.9) 3.51 165.2 (0.6) 3.71 153.26 (0.31) 3.71 155.48 (0.29) 3.78 191.56 (0.2) 4.1

Table 1: Average running time for wcd calculation over solved problems for varying non-observable actions ratio

5 10 20
0 4 2:0 0:2 0 4 2:0 0:2 0 4 2:0 0:2

GRID-NAVIGATION 10.41 9.64 9.71 10.36 10.46 9.34 9.76 10.36 11.1 10.91 11.1 10.91
IPC-GRID+ 3.55 2.01 2.01 3.55 3.67 1.75 1.87 2.93 3.84 2.6 2.92 3.35
BLOCKSWORLD 2.12 1.78 1.83 2.12 2.14 1.58 1.64 2.1 2.82 2.15 2.45 2.67
LOGISTICS 3.71 3.37 3.44 3.56 3.78 3.26 3.42 3.51 4.1 3.47 3.8 3.67

Table 2: Average wcd after reduction for each ratio and budget allocation achieved within allocated time

The first to establish the connection between the closely
related fields of automated planning and goal recognition
were Ramirez and Geffner (2009), presenting a compila-
tion of plan recognition problems into classical planning
problems that can be solved by any planner. Several works
on plan recognition followed this approach (Agotnes 2010;
Pattison and Long 2011; Ramirez and Geffner 2010; 2011)
by using various automated planning techniques. We fol-
low this approach and introduce a novel compilation of goal
recognition design problems with non observable actions
into classical planning.

Partial observability in goal recognition has been modeled
in various ways (Ramirez and Geffner 2011; Geib and Gold-
man 2005; Avrahami-Zilberbrand, Kaminka, and Zarosim
2005). In particular, observability can be modeled using a
sensor model that includes an observation token for each ac-
tion (Geffner and Bonet 2013). Note that the pogrd model
presented for the partially observable setting, can be thought
of one in which the set of observation tokens O includes an
empty observation sequence o∅ and A includes a no-cost ac-
tion aidle by which an agent remains at his current position.

Conclusions
We presented a model for goal recognition design that ac-
counts for partial observability by partitioning of the set of
actions to observable and non-observable actions. We ex-
tend the wcd measure and proposed ways to calculate and
reduce it. By accounting for non-observable actions, we in-
crease the model’s relevancy to a wide range of real-world
settings.

Our empirical evaluation shows that non-observable ac-
tions typically increases the wcd value. In addition, we
showed that for all of the domains, wcd reduction by com-
bining disallowed and exposed actions is preferred over each
of the methods separately.

In future work we intend to investigate alternative ways to
account for partial observability by creating more elaborated
sensor models.

References
Agotnes, T. 2010. Domain independent goal recognition.
In Stairs 2010: Proceedings of the Fifth Starting AI Re-
searchers Symposium, volume 222, 238. IOS Press, Incor-
porated.

Avrahami-Zilberbrand, D.; Kaminka, G.; and Zarosim, H.
2005. Fast and complete symbolic plan recognition: Al-
lowing for duration, interleaved execution, and lossy ob-
servations. In Proc. of the AAAI Workshop on Modeling
Others from Observations, MOO.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using clas-
sical planning. In Proceedings of the Fifteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2005), 12–21.
Cohen, P. R.; Perrault, C. R.; and Allen, J. F. 1981. Beyond
question-answering. Technical report, DTIC Document.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3):189–208.
Geffner, H., and Bonet, B. 2013. A concise introduction
to models and methods for automated planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning
8(1):1–141.
Geib, C. W., and Goldman, R. P. 2005. Partial observability
and probabilistic plan/goal recognition. In Proceedings of
the International workshop on modeling other agents from
observations (MOO-05).
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hong, J. 2001. Goal recognition through goal graph analy-
sis. Journal of Artificial Intelligence Research(JAIR 2001)
15:1–30.
Jarvis, P. A.; Lunt, T. F.; and Myers, K. L. 2004. Identi-
fying terrorist activity with ai plan recognition technology.
In Proceedings of the Sixteenth National Conference on In-
novative Applications of Artificial Intelligence (IAAI 2004,
858–863. AAAI Press.
Kaluza, B.; Kaminka, G. A.; and Tambe, M. 2011. To-
wards detection of suspicious behavior from multiple ob-
servations. In AAAI Workshop on Plan, Activity, and Intent
Recognition (PAIR 2011).
Kautz, H., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth National Conference
of the Amercan Association of Artificial Intelligence (AAAI
1986), volume 86, 32–37.
Kautz, H.; Etzioni, O.; Fox, D.; Weld, D.; and Shastri, L.

2003. Foundations of assisted cognition systems. Univer-
sity of Washington, Computer Science Department, Techni-
cal Report.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS Conference Proceedings.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recogni-
tion design for non optimal agents. In Proceedings of the
Conference of the American Association of Artificial Intel-
ligence (AAAI 2015).
Lesh, N., and Etzioni, O. 1995. A sound and fast goal
recognizer. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI 1995),
volume 95, 1704–1710.
Pattison, D., and Long, D. 2011. Accurately determining
intermediate and terminal plan states using bayesian goal
recognition. Proceedings of the First Workshop on Goal,
Activity and Plan Recognition(GAPRec 2011) 32.
Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI 2009).
Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Pro-
ceedings of the Conference of the American Association of
Artificial Intelligence (AAAI 2010).
Ramirez, M., and Geffner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a pomdp agent. In Pro-
ceedings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence- Volume Three (IJCAI 2011),
2009–2014. AAAI Press.

Classical Planning with Simulators:
Results on the Atari Video Games

Nir Lipovetzky
The University of Melbourne

Melbourne, Australia
nir.lipovetzky@unimelb.edu.au

Miquel Ramirez
Australian National University

Canberra, Australia
miquel.ramirez@anu.edu.au

Hector Geffner
ICREA & U. Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

The Atari 2600 games supported in the Arcade Learning En-
vironment (Bellemare et al. 2013) all feature a known initial
(RAM) state and actions that have deterministic effects. Clas-
sical planners, however, cannot be used off-the-shelf as there
is no compact PDDL-model of the games, and action effects
and goals are not known a priori. Indeed, there are no ex-
plicit goals, and the planner must select actions on-line while
interacting with a simulator that returns successor states and
rewards. None of this precludes the use of blind lookahead
algorithms for action selection like breadth-first search or Di-
jkstra’s yet such methods are not effective over large state
spaces. We thus turn to a different class of planning meth-
ods introduced recently that have been shown to be effective
for solving large planning problems but which do not require
prior knowledge of state transitions, costs (rewards) or goals.
The empirical results over 54 Atari games show that the sim-
plest such algorithm performs at the level of UCT, the state-
of-the-art planning method in this domain, and suggest the
potential of width-based methods for planning with simula-
tors when factored, compact action models are not available.

A version of this short paper has been accepted at IJCAI
(Lipovetzky et al. 2015)

Introduction
The Arcade Learning Environment (ALE) provides a
challenging platform for evaluating general, domain-
independent AI planners and learners through a convenient
interface to hundreds of Atari 2600 games (Bellemare et al.
2013). Results have been reported so far for basic planning
algorithms like breadth-first search and UCT, reinforcement
learning algorithms, and evolutionary methods (Bellemare
et al. 2013; Mnih et al. 2013; Hausknecht et al. 2014). The
empirical results are impressive in some cases, yet a lot re-
mains to be done, as no method approaches the performance
of human players across a broad range of games.

While all these games feature a known initial (RAM) state
and actions that have deterministic effects, the problem of
selecting the next action to be done cannot be addressed with
off-the-shelf classical planners (Ghallab et al. 2004; Geffner
and Bonet 2013). This is because there is no compact PDDL-
like encoding of the domain and the goal to be achieved in

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each game is not given, precluding the automatic derivation
of heuristic functions and other inferences. Indeed, there are
no goals but rewards, and the planner must select actions
on-line while interacting with a simulator that just returns
successor states and rewards.

The action selection problem in the Atari games can
be addressed as a reinforcement learning problem (Sut-
ton and Barto 1998) over a deterministic MDP where the
state transitions and rewards are not known, or alterna-
tively, as a net-benefit planning problem (Coles et al. 2012;
Keyder and Geffner 2009) with unknown state transitions
and rewards. ALE supports the two settings: an on-line
plannning setting where actions are selected after a looka-
head, and a learning setting that must produce controllers
for mapping states into actions reactively without any looka-
head. In this work, we are interested in the on-line planning
setting.

The presence of unknown transition and rewards in the
Atari games does not preclude the use of blind-search meth-
ods like breadth-first search, Dijkstra’s algorithm (Dijkstra
1959), or learning methods such as LRTA* (Korf 1990),
UCT (Kocsis and Szepesvári 2006), and Q-learning (Sut-
ton and Barto 1998; Bertsekas and Tsitsiklis 1996). Indeed,
the net-benefit planning problem with unknown state tran-
sitions and rewards over a given planning horizon, can be
mapped into a standard shortest-path problem which can be
solved optimally by Dijkstra’s algorithm. For this, we just
need to map the unknown rewards r(a, s) into positive (un-
known) action costs c(a, s) = C − r(a, s) where C is a
large constant that exceeds the maximum possible reward.
The fact that the state transition and cost functions f(a, s)
and c(a, s) are not known a priori doesn’t affect the appli-
cability of Dijkstra’s algorithm, which requires the value of
these functions precisely when the action a is applied in the
state s.

The limitation of the basic blind search methods is that
they are not effective over large state spaces, neither for solv-
ing problems off-line, nor for guiding a lookahead search
for solving problems on-line. In this work, we thus turn to a
recent class of planning algorithms that combine the scope
of blind search methods with the performance of state-of-
the-art classical planners: namely, like “blind” search algo-
rithms they do not require prior knowledge of state transi-
tions, costs, or goals, and yet like heuristic algorithms they

manage to search large state spaces effectively. The basic al-
gorithm in this class is called IW for Iterated Width search
(Lipovetzky and Geffner 2012). IW consists of a sequence
of calls IW(1), IW(2), .., IW(k), where IW(i) is a stan-
dard breadth-first search where states are pruned right away
when they fail to make true some new tuple (set) of at most
i atoms. Namely, IW(1) is a breadth-first search that keeps
a state only if the state is the first one in the search to make
some atom true; IW(2) keeps a state only if the state is the
first one to make a pair of atoms true, and so on. Like plain
breadth-first and iterative deepening searches, IW is com-
plete, while searching the state space in a way that makes
use of the structure of states given by the values of a finite
set of state variables. In the Atari games, the (RAM) state
is given by a vector of 128 bytes, which we associate with
128 variables Xi, i = 1, . . . , 128, each of which may take
up to 256 values xj . A state s makes an atom Xi = xj true
when the value of the i-th byte in the state vector s is xj .
The empirical results over 54 Atari games show that IW(1)
performs at the level of UCT, the state-of-the-art planning
method in this domain, and suggest the potential of width-
based methods for planning with simulators when factored,
compact action models are not available.

The paper is organized as follows. We review the iterated
width algorithm and its properties, look at the variations of
the algorithm that we used in the Atari games, and present
the experimental results.

Iterated Width
The Iterated Width (IW) algorithm has been introduced as
a classical planning algorithm that takes a planning problem
as an input, and computes an action sequence that solves the
problem as the output (Lipovetzky and Geffner 2012). The
algorithm however applies to a broader range of problems.
We will characterize such problems by means of a finite and
discrete set of states (the state space) that correspond to vec-
tors of size n. Namely, the states are structured or factored ,
and we take each of the locations in the vector to represent
a variable Xi, and the value at that vector location to repre-
sent the value xj of variableXi in the state. In addition to the
state space, a problem is defined by an initial state s0, a set of
actions applicable in each state, a transition function f such
that s′ = f(a, s) is the state that results from applying action
a to the state s, and rewards r(a, s) represented by real num-
bers that result from applying action a in state s. The transi-
tion and reward functions do not need to be known a priori,
yet in that case, the state and reward that results from the ap-
plication of an action in a state need to be observable. The
task is to compute an action sequence a0, . . . , am for a large
horizon m that generates a state sequence s0, . . . , sm+1 that
maximizes the accumulated reward

∑m
i=0 r(ai, si), or that

provides a good approximation.

The Algorithm
IW consists of a sequence of calls IW(i) for i = 0, 1, 2, . . .
over a problem P until a termination condition is reached.
The procedure IW(i) is a plain forward-state breadth-first
search with just one change: right after a state s is generated,

the state is pruned if it doesn’t pass a simple novelty test.
More precisely,

• The novelty of a newly generate state s in a search algo-
rithm is 1 if s is the first state generated in the search that
makes true some atom X = x, else it is 2 if s is the first
state that makes a pair of atoms X = x and Y = y true,
and so on.

• IW(i) is a breadth-first search that prunes newly gener-
ated states when their novelty is greater than i.

• IW calls IW(i) sequentially for i = 1, 2, . . . until a termi-
nation condition is reached, returning then the best path
found.

For classical planning, the termination condition is the
achievement of the goal. In the on-line setting, as in the
Atari games, the termination condition is given by a time
window or a maximum number of generated nodes. The
best path found by IW is then the path that has a maxi-
mum accumulated reward. The accumulated reward R(s) of
a state s reached in an iteration of IW is determined by the
unique parent state s′ and action a leading to s from s′ as
R(s) = R(s′) + r(a, s′). The best state is the state s with
maximum rewardR(s) generated but not pruned by IW, and
the best path is the one that leads to the state s from the cur-
rent state. The action selected in the on-line setting is the
first action along such a path. This action is then executed
and the process repeats from the resulting state.

Performance and Width
IW is a systematic and complete blind-search algorithm like
breadth-first search (BRFS) and iterative deepening (ID),
but unlike these algorithms, it uses the factored represen-
tation of the states in terms of variables to structure the
search. This structured exploration has proved to be very
effective over classical planning benchmark domains when
goals are single atoms.1 For example, 37% of the 37,921
problems considered in (Lipovetzky and Geffner 2012) are
solved by IW(1) while 51.3% are solved by IW(2). These
are instances obtained from 37 benchmark domains by split-
ting problems with N atomic goals into N problems with
one atomic goal each. Since IW(k) runs in time that is ex-
ponential in k, this means that almost 90% of the 37,921
instances are solved in time that is either linear or quadratic
in the number of problem variables, which in such encodings
are all boolean. Furthermore, when the performance of IW
is compared with a Greedy Best First Search guided by the
additive heuristic hadd, it turns out that “blind” IW solves as
many problems as the informed search, 34,627 vs. 34,849,
far ahead of other blind search algorithms like BRFS and ID
that solve 9,010 and 8,762 problems each. Moreover, IW is
faster and results in shorter plans than in the heuristic search.

The min k value for which IW(k) solves a problem is
indeed bounded and small in most of these instances. This

1Any conjunctive goal can be mapped into a single dummy
atomic goal by adding an action that achieves the dummy goal and
that has the original conjunctive goal as a precondition. Yet, this
mapping changes the definition of the domain.

is actually no accident and has a theoretical explanation.
Lipovetzky and Geffner define a structural parameter called
the problem width and show that for many of these domains,
any solvable instance with atomic goals will have a bounded
and small width that is independent of the number of vari-
ables and states in the problem. The min value k for which
the iteration IW(k) solves the problem cannot exceed the
problem width, so the algorithm IW runs in time and space
that are exponential in the problem width.

Formally, the width w(P) of a problem P is i iff i is
the minimum positive integer for which there is a sequence
t0, t1, . . . , tn of atom sets tk with at most i atoms each, such
that 1) t0 is true in the initial state of P , 2) any shortest
plan π that achieves tk in P can be extended into a shortest
plan that achieves tk+1 by extending π with one action, and
3) any shortest plan that achieves tn is a shortest plan for
achieving the goal of P .

While this notion of width and the iterated width algo-
rithms that are based on it have been designed for problems
where a goal state needs to be reached, the notions remain
relevant in optimization problems as well. Indeed, if a good
path is made of states si each of which has a low width, IW
can be made to find such path in low polynomial time for a
small value of the k parameter. Later on we will discuss a
slight change required in IW to enforce this property.

The Algorithms for the Atari Games
The number of nodes generated by IW(1) is n × D × b
in the worst case, where n is the number of problem vari-
ables, D is the size of their domains, and b is the number
of actions per state. This same number in a breadth-first
search is not linear in n but exponential. For the Atari games,
n = 128, D = 256, and b = 18, so that the product is equal
to 589, 824, which is large but feasible. On the other hand,
the number of nodes generated by IW(2) in the worst case
is (n × D)2 × b, which is equal to 19, 327, 352, 832 which
is too large, forcing us to consider only a tiny fraction of
such states. For classical planning problems, the growth in
the number of nodes from IW(1) to IW(2) is not that large,
as the variables are boolean. Indeed, we could have taken the
state vector for the Atari games as a vector of 1024 boolean
variables, and apply these algorithms to that representation.
The number of atoms would indeed be much smaller, and
both IW(1) and IW(2) would run faster then. However by
ignoring the correlations among bits in each one of the 128
words, the results would be weaker.

IW is a purely exploration algorithm that does not take
into account the accumulated reward for selecting the states
to consider. As a simple variant that combines exploration
and exploitation, we evaluated a best-first search algorithm
with two queues: one queue ordered first by novelty mea-
sure (recall that novelty one means that the state is the first
one to make some atom true), and a second queue ordered
by accumulated reward. In one iteration, the best first search
picks up the best node from one queue, and in the second
iteration it picks up the best node from the other queue. This
way for combining multiple heuristics is used in the LAMA
planner (Richter and Westphal 2010), and was introduced in
the planner Fast Downward (Helmert 2006). In addition, we

break ties in the first queue favoring states with largest ac-
cumulated reward, and in the second queue, favoring states
with smallest novelty measure. Last, when a node is ex-
panded, it is removed from the queue, and its children are
placed on both queues. The exception are the nodes with no
accumulated reward that are placed in the first queue only.
We refer to this best-first algorithm as 2BFS.

For the experiments below, we added two simple varia-
tions to IW(1) and 2BFS. First, in the breadth-first search
underlying IW(1), we generate the children in random or-
der. This makes the executions that result from the IW(1)
lookahead less susceptible to be trapped into loops; a poten-
tial problem in local search algorithms with no memory or
learning. Second, a discount factor γ = 0.995 is used in both
algorithms for discounting future rewards like in UCT. For
this, each state s keeps its depth d(s) in the search tree, and
if state s’ is the child of state s and action a, R(s′) is set to
R(s)+γd(s)+1r(a, s). The discount factor results in a slight
preference for rewards that can be reached earlier, which is
a reasonable heuristic in on-line settings based on lookahead
searches.

Experimental Results
We tested IW(1) and 2BFS over 54 of the 55 different
games considered in (Bellemare et al. 2013), from now on
abbreviated as BNVB.2 The two algorithms were used to
play the games in the on-line planning setting supported by
ALE where we will compare them with the planning algo-
rithms considered by BNVB; namely, breadth-first search
and UCT. ALE supports also a learning setting where the
goal is to learn controllers that map states into actions with-
out doing any lookahead. Algorithms across the two settings
are thus not directly comparable as they compute different
things. Learning controllers appears as a more challenging
problem and it is thus not surprising that planning algorithms
like UCT tend to achieve a higher score than learning al-
gorithms. In addition, the learning algorithms reported by
BNVB tend to use the state of the screen pixels, while the
planning algorithms, use the state of the RAM memory. It
is not clear however whether the use of one input represen-
tation is more challenging than the use of the other. For the
learning algorithms, BNVB mention that the results tend to
be better for the screen inputs. Experiments were run on a
cluster, where each computing node consists of a 6-core Intel
Xeon E5-2440, with 2.4 GHz clock speed, with 64 GBytes
of RAM installed.

Table 1 shows the performance of IW(1) and 2BFS in
comparison with breadth-first search (BRFS) and UCT.
Videos of selected games played by IW(1), 2BFS, and
UCT can be seen in Youtube.3 The discount factor used
by all the algorithms is γ = 0.995. The scores reported
for BRFS and UCT are taken from BNVB. Our experi-
mental setup follows theirs except that a maximum budget
of 150, 000 simulated frames is applied to IW(1), 2BFS,

2We left out SKIING as the reported figures apparently use a
different reward structure.

3http://www.youtube.com/playlist?list=
PLXpQcXUQ_CwenUazUivhXyYvjuS6KQOI0.

and UCT. UCT uses this budget by running 500 rollouts of
depth 300. The bound on the number of simulated frames
is like a bound on lookahead time, as most of the time in
the lookahead is spent in calls to the emulator for computing
the next RAM state. This is why the average time per action
is similar to all the algorithms except IW(1), that due to its
pruning does not always use the full budget and takes less
time per action on average.

Also, as reported by BNVB, all of the algorithms reuse
the frames in the sub-tree of the previous lookahead that is
rooted in the selected child, deleting its siblings and their
descendants. More precisely, no calls to the emulator are
done for transitions that are cached in that sub-tree, and such
reused frames are not discounted from the budget that is thus
a bound on the number of new frames per lookahead. In ad-
dition, in IW(1), the states that are reused from the previous
searches are ignored in the computation of the novelty of
new states so that more states can escape pruning. Other-
wise, IW(1) often uses a fraction of the budget. This is not
needed in 2BFS which does no pruning. IW(1) and 2BFS
are limited to search up to a depth of 1, 500 frames and up to
150, 000 frames per root branch. This is to avoid the search
from going too deep or being too committed to a single root
action.

Last, in the lookahead, IW(1) and 2BFS select an action
every 5 frames, while UCT selects an action every frame.
This means that in order to explore a branch 300 frames
deep, UCT gets to choose 300 actions, while IW(1) and
2BFS get to choose 60 actions, both however using the same
300 frames from the budget. For this, we followed the setup
of BRFS in BNVB that also selects actions every 5 frames,
matching the behavior of the emulator that requests an action
also every 5 frames. Since the lookahead budget is given by
a maximum number of (new) frames, and the time is mostly
taken by calls to the emulator, this may not be the best choice
for IW(1) and 2BFS that may therefore not be exploiting all
the options afforded by the budget. Interestingly, when UCT
is limited to one action every 5 frames, its performance is
reduced by up to a 50% in games where it performs very
well (CRAZY CLIMBER), and does not appear to improve in
those games where it performs very poorly (FREEWAY).

Table 1 shows that both IW(1) and 2BFS outperform
BRFS, which rarely collects reward in many domains as the
depth of the BRFS search tree results in a lookahead of 0.3
seconds (20 frames or 4 nodes deep). The notable exception
to this is CENTIPEDE where abundant reward can be col-
lected with a shallow lookahead. On the other hand, both
IW(1) and 2BFS normally reach states that are up to 350–
1500 frames deep (70–260 nodes or 6–22 seconds), even
if IW(1) does not always use all the simulation frames al-
located due to its agressive pruning. This can be observed
in games such as BREAKOUT, CRAZY CLIMBER, KANGA-
ROO, and POOYAN, where the average CPU time for each
lookahead is up to 10 times faster than 2BFS. Computation
time for UCT and BRFS are similar to 2BFS, as the most
expensive part of the computation is the generation of frames
through the simulator, and these three algorithms always use
the full budget.

More interestingly, IW(1) outscores UCT in 31 of the

54 games, while 2BFS outscores UCT in 26. On the other
hand, UCT does better than IW(1) and 2BFS in 19 and
25 games respectively. The relative performance between
IW(1) and 2BFS makes IW(1) the best of the two in 34
games, and 2BFS in 16. In terms of the number of games
where an algorithm is the best, IW(1) is the best in 26
games, 2BFS in 13 games, and UCT in 19 games. Also,
BRFS is best in 2 games (CENTIPEDE, tied up in BOXING),
while the other three algorithms are tied in another 2 games
(PONG, BOXING).

Likewise, in FREEWAY and BERZERK both IW(1) and
2BFS attain a better score than the baseline semi-random al-
gorithm Perturb in (Bellemare et al. 2013), that beats UCT
on those games. Perturb is a simple algorithm that selects a
fixed action with probability 0.95, and a random action with
probability 0.05. For Perturb, BNVB do not report the aver-
age score but the best score. Perturb manages to do well in
domains where rewards are deep but can be reached by re-
peating the same action. This is the case of FREEWAY, where
a chicken has to run to the top of the screen across a ten
lane highway filled with traffic. Every time the chicken gets
across (starting at the bottom), there is one unit of reward. If
the chicken is hit by a car, it goes back some lanes. In FREE-
WAY, only 12 out of the 18 possible actions have an effect:
6 actions move the chicken up (up-right, up-left, up-fire,
up-right-fire, up-left-fire), 6 actions move the chicken down
(down-right, down-left, down-fire, down-right-fire, down-
left-fire), and 6 actions do nothing. Perturb does well in this
domain when the selected fixed action moves the chicken
up. As noted in Table 1 and seen in the provided video, UCT
does not manage to take the chicken across the highway at
all. The reason that UCT does not collect any reward is that
it needs to move the chicken up at least 240 times4 some-
thing that is very unlikely in a random exploration. IW(1)
does not have this limitation and is best in FREEWAY.

IW(1) obtains better scores than the best learning algo-
rithm (Mnih et al. 2013) in the 7 games considered there,
and 2BFS does so in 6 of the 7 games. Comparing with the
scores reported for the reinforcement learning algorithms in
BNVB, we note that both IW(1) and 2BFS do much bet-
ter than the best learning algorithm in those games where
the learning algorithms outperform UCT namely, MON-
TEZUMA REVENGE, VENTURE and BOWLING. We take
this as evidence that IW(1) and 2BFS are as at least as good
as learning algorithms at finding rewards in games where
UCT is not very effective.

For instance, in MONTEZUMA REVENGE rewards are
very sparse, deep, and most of the actions lead to losing a
life with no immediate penalty or consequence. In our ex-
periments, all algorithms achieve 0 score, except for 2BFS
that achieves an average score of 540, and a score of 2, 500
in one of the runs. This means however that even 2BFS is
not able to consistently find rewards in this game. This game
and several others like BREAKOUT and SPACE INVADERS
could be much simpler by adding negative rewards for los-
ing a life. We have indeed observed that our planning algo-

4One needs to move the chicken up for at least 4 seconds (240
frames) in order to get it across the highway.

IW(1) 2BFS BRFS UCT
Game Score Time Score Time Score Score

ALIEN 25634 81 12252 81 784 7785
AMIDAR 1377 28 1090 37 5 180
ASSAULT 953 18 827 25 414 1512
ASTERIX 153400 24 77200 27 2136 290700
ASTEROIDS 51338 66 22168 65 3127 4661
ATLANTIS 159420 13 154180 71 30460 193858
BANK HEIST 717 39 362 64 22 498
BATTLE ZONE 11600 86 330800 87 6313 70333
BEAM RIDER 9108 23 9298 29 694 6625
BERZERK 2096 58 802 73 195 554
BOWLING 69 10 50 60 26 25
BOXING 100 15 100 22 100 100
BREAKOUT 384 4 772 39 1 364
CARNIVAL 6372 16 5516 53 950 5132
CENTIPEDE 99207 39 94236 67 125123 110422
CHOPPER COMMAND 10980 76 27220 73 1827 34019
CRAZY CLIMBER 36160 4 36940 58 37110 98172
DEMON ATTACK 20116 33 16025 41 443 28159
DOUBLE DUNK -14 41 21 41 -19 24
ELEVATOR ACTION 13480 26 10820 27 730 18100
ENDURO 500 66 359 38 1 286
FISHING DERBY 30 39 6 62 -92 38
FREEWAY 31 32 23 61 0 0
FROSTBITE 902 12 2672 38 137 271
GOPHER 18256 19 15808 53 1019 20560
GRAVITAR 3920 62 5980 62 395 2850
HERO 12985 37 11524 69 1324 12860
ICE HOCKEY 55 89 49 89 -9 39
JAMES BOND 23070 0 10080 30 25 330
JOURNEY ESCAPE 40080 38 40600 67 1327 7683
KANGAROO 8760 8 5320 31 90 1990
KRULL 6030 28 4884 42 3089 5037
KUNG FU MASTER 63780 21 42180 43 12127 48855
MONTEZUMA REVENGE 0 14 540 39 0 0
MS PACMAN 21695 21 18927 23 1709 22336
NAME THIS GAME 9354 14 8304 25 5699 15410
PONG 21 17 21 35 -21 21
POOYAN 11225 8 10760 16 910 17763
PRIVATE EYE -99 18 2544 44 58 100
Q*BERT 3705 11 11680 35 133 17343
RIVERRAID 5694 18 5062 37 2179 4449
ROAD RUNNER 94940 25 68500 41 245 38725
ROBOT TANK 68 34 52 34 2 50
SEAQUEST 14272 25 6138 33 288 5132
SPACE INVADERS 2877 21 3974 34 112 2718
STAR GUNNER 1540 19 4660 18 1345 1207
TENNIS 24 21 24 36 -24 3
TIME PILOT 35000 9 36180 29 4064 63855
TUTANKHAM 172 15 204 34 64 226
UP AND DOWN 110036 12 54820 14 746 74474
VENTURE 1200 22 980 35 0 0
VIDEO PINBALL 388712 43 62075 43 55567 254748
WIZARD OF WOR 121060 25 81500 27 3309 105500
ZAXXON 29240 34 15680 31 0 22610

Times Best (54 games) 26 13 1 19
Times Better than IW (54 games) – 16 1 19
Times Better than 2BFS (54 games) 34 – 1 25
Times Better than UCT (54 games) 31 26 1 –

Table 1: Performance that results from various lookahead algorithms in 54 Atari 2600 games. The algorithms, BRFS, IW(1), 2BFS, and
UCT, are evaluated over 10 runs (episodes) for each game. The maximum episode duration is 18, 000 frames and every algorithm is limited
to a lookahead budget of 150,000 simulated frames. Figures for BRFS and UCT taken from Bellemare et al. Average CPU times per action
in seconds, rounded to nearest integer, shown for IW(1) and 2BFS. Numbers in bold show best performer in terms of average score, while
numbers shaded in light grey show scores that are better than UCT’s. Bottom part of the table shows pairwise comparisons among the
algorithms.

rithms do not care much about losing lives until there is just
one life left, when their play noticeably improves. This can
be seen in the videos mentioned above, and suggest a simple
form of learning that would be useful to both planners and
reinforcement learning algorithms.

We are not reporting the performance of IW(k) with pa-
rameter k = 2 because in our preliminary tests and accord-
ing to the discussion in the previous section, it doesn’t ap-
pear to improve much on BRFS, even if it results in a looka-
head that is 5 times deeper, but still too shallow to compete
with the other planning algorithms.

Exploration and Exploitation
The notion of width underlying the iterated width algorithm
was developed in the context of classical planning in order
to understand why most of the hundreds of existing bench-
marks appear to be relatively simple for current planners,
even though classical planning is PSPACE-complete (By-
lander 1994). A partial answer is that most of these domains
have a low width, and hence, can be solved in low polyno-
mial time (by IW) when goals contain a single atom. Bench-
mark problems with multiple atomic goals tend to be easy
too, as the goals can often be achieved one at a time after a
simple goal ordering (Lipovetzky and Geffner 2012).

In the iterated width algorithm, the key notion is the nov-
elty measure of a state in the underlying breadth-first search.
These novelty measures make use of the factored represen-
tation of the states for providing a structure to the search:
states that have width 1 are explored first in linear time, then
states that have width 2 are explored in quadratic time, and
so on. In classical planning problems with atomic goals, this
way of organizing the search pays off both theoretically and
practically.

The use of “novelty measures” for guiding an optimiza-
tion search while ignoring the function that is being opti-
mized is common to the novelty-based search methods de-
veloped independently in the context of genetic algorithms
(Lehman and Stanley 2011). In these methods individuals
in the population are not ranked according to the optimiza-
tion function but in terms of how “novel” they are in rela-
tion to the rest of the population, thus encouraging diversity
and exploration rather than (greedy) exploitation. The actual
definition of novelty in such a case is domain-dependent; for
example, in the evolution of a controller for guiding a robot
in a maze, an individual controller will not be ranked by how
close it takes the robot to the goal (the greedy measure), but
by the distance between the locations that are reachable with
it, and the locations reachable with the other controllers in
the population (a diversity measure). The novelty measure
used by IW, on the other hand, is domain-independent and
it is determined by the structure of the states as captured by
the problem variables.

The balance between exploration and exploitation has re-
ceived considerable attention in reinforcement learning (Sut-
ton and Barto 1998), where both are required for converging
to an optimal behavior. In the Atari games, as in other de-
terministic problems, however, “exploration” is not needed
for optimality purposes, but just for improving the effective-
ness of the lookahead search. Indeed, a best-first search algo-

rithm guided only by (discounted) accumulated reward will
deliver eventually best moves, but it will not be as effective
over small time windows, where like breadth-first search it’s
likely not to find any rewards at all. The UCT algorithm pro-
vides a method for balancing exploration and exploitation,
which is effective over small time windows. The 2BFS al-
gorithm above with two queues that alternate, one guided by
the novelty measures and the other by the accumulated re-
ward, provides a different scheme. The first converges to the
optimal behavior asymptotically; the second in a bounded
number of steps, with the caveat below.

Duplicates and Optimality

The notions of width and the IW algorithm guarantee that
states with low width will be generated in low polynomial
time through shortest paths. In the presence of rewards like
the Atari games, however, the interest is not in the shortest
paths but in the best paths; i.e, the paths with maximum re-
ward. IW may actually fail to find such paths even when
calling IW(k) with a high k parameter. Optimality could
be achieved by replacing the breadth-first search underlying
IW(k) by Dijkstra’s algorithm yet such a move would make
the relation between IW and the notion of width less clear.
A better option is to change IW to comply with a different
property; namely, that if there is a “rewarding” path made up
of states of low width, then IW will find such paths or bet-
ter ones in time that is exponential in their width. For this, a
simple change in IW suffices: when generating a state s that
is a duplicate of a state s′ that has been previously generated
and not pruned, s′ is replaced by s ifR(s) > R(s′), with the
change of reward propagated to the descendants of s′ that
are in memory. This is similar to the change required in the
A* search algorithm for preserving optimality when mov-
ing from consistent to inconsistent heuristics (Pearl 1983).
The alternative is to “reopen” such nodes. The same change
is actually needed in 2BFS to ensure that, if given enough
time, 2BFS will actually find optimal paths. The code used
for IW and 2BFS in the experiments above does not imple-
ment this change as the overhead involved in checking for
duplicates in some test cases did not appear to pay off. More
experiments however are needed to find out if this is actually
the most effective option.

Summary

We have shown experimentally that width-based algorithms
like IW(1) and 2BFS that originate in work in classical
planning, can be used to play the Atari video games where
they achieve state-of-the-art performance. The results also
suggest more generally the potential of width-based meth-
ods for planning with simulators when factored, compact
action models are not available. In this sense, the scope of
these planning methods is broader than those of heuristic-
search planning methods that require propositional encod-
ings of actions and goals, and with suitable extensions, may
potentially approach the scope of MCTS methods like UCT
that work on simulators as well.

Acknowledgments
We thank the people who created the ALE. Nir Lipovetzky
is partially funded by the ARC Linkage grant LP11010015.

References
Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael
Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence
Research, 47(47):253–279, 2013.
D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, 1996.
T. Bylander. The computational complexity of STRIPS
planning. Artificial Intelligence, 69:165–204, 1994.
Amanda Coles, Andrew Coles, Angel Garcı́a Olaya, Ser-
gio Jiménez, Carlos Linares López, Scott Sanner, and Sung-
wook Yoon. A survey of the seventh international planning
competition. AI Magazine, 33(1):83–88, 2012.
Edsger. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.
H. Geffner and B. Bonet. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool
Publishers, 2013.
M. Ghallab, D. Nau, and P. Traverso. Automated Planning:
theory and practice. Morgan Kaufmann, 2004.
M. Hausknecht, J. Lehman, Risto Miikkulainen, and Peter
Stone. A neuroevolution approach to general atari game
playing. IEEE Transaction on Computational Intelligence
and AI in Games, (99), 2014.
M. Helmert. The Fast Downward planning system. Journal
of Artificial Intelligence Research, 26:191–246, 2006.
E. Keyder and H. Geffner. Soft goals can be compiled
away. Journal of Artificial Intelligence Research, 36:547–
556, 2009.
L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In Proc. ECML-2006, pages 282–293. Springer,
2006.
R. Korf. Real-time heuristic search. Artificial Intelligence,
42:189–211, 1990.
Joel Lehman and Kenneth O. Stanley. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary computation, 19(2):189–223, 2011.
Nir Lipovetzky and Héctor Geffner. Width and serialization
of classical planning problems. In Proc. ECAI, pages 540–
545, 2012.
Nir Lipovetzky, Miquel Ramirez, and Hector Geffner. Clas-
sical planning with simulators: Results on the atari video
games. In Proc. International Joint Conference on Artificial
Intelligence (IJCAI-15), 2015.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learn-
ing. In Proc. of the NIPS-2013 Workshop on Deep Learning,
2013.
J. Pearl. Heuristics. Addison Wesley, 1983.

S. Richter and M. Westphal. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Ar-
tificial Intelligence Research, 39(1):127–177, 2010.
R. Sutton and A. Barto. Introduction to Reinforcement
Learning. MIT Press, 1998.

Analysis of Bagged Representations in PDDL

Pat Riddle, Mike Barley, Santiago Franco and Jordan Douglas
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, 1142 NZ

Abstract

In this paper, we demonstrate that many problems used
in the IPC are more naturally represented as bags in-
stead of sets. These tend to be problems with lots of
objects. In the standard PDDL representations the ob-
jects are all denoted individually by unique names and
this causes the problem solvers to encounter combina-
torial explosions on trying to solve them. Frequently we
don’t care about individual objects, we want something
to happen to a whole set of objects, but currently we
are forced to identify them individually anyway. These
bags of objects are similar to resources in scheduling.
We propose a new formulation for these types of prob-
lems in the current PDDL STRIPS representation. We
analyze the new and original representations in an at-
tempt to determine when each representation performs
better. In this paper’s experiments, the best results were
always obtained on the new representations. All new
representations in this paper were generated manually,
but we are currently developing a system that automat-
ically generates these types of representations from the
original PDDL representation, so throughout this paper
the new representations are called the transformed rep-
resentations.

Introduction
The PDDL based language is based on sets, so each indi-

vidual object is uniquely identified which leads to combina-
torical explosions. A more natural representation for prob-
lems with a large set of objects is a bag based representation
(like resources in scheduling). In this paper we explore prob-
lems from 6 domains. We analyze results on two represen-
tations for each problem. We refer to these representations
as the original and transformed representation, although all
the transformed representations discussed in this paper were
created manually. We are currently developing a transfor-
mation system which creates the new representations auto-
matically and translates the resulting solution back into the
original representation. (Riddle et al. 2015) The goal of this
paper is to determine whether bagged-based representations
have an advantage over the normal set-based PDDL repre-
sentations for domains with a large number of objects of the
same type.

PDDL (McDermott et al. 1998) is fundamentally based
on sets. In a domain like sokoban-strips-opt-08, each of

the stones are individually identified. For instance, in prob-
lem p20 there are 5 individually identified stones. The goal
state specifies that each stone is at some goal location (at-
goal stone-05), but it doesn’t matter which goal location a
stone is at. This allows us to call each stone “stoneX”. In the
PDDL problem file we can rename all the stones in all the
predicates to stoneX. We must also alter the goal state, other-
wise PDDL’s set semantics mean once one stone is put in any
goal position the problem is solved. In this instance the goal
state becomes (and (at stoneX pos-03-03) (at stoneX
pos-03-04) (at stoneX pos-03-05) (at stoneX pos-03-06)
(at stoneX pos-03-07)), which is equivalent to the original
goal description. For sokoban-strips-opt-08, the domain file
does not have to be altered to use this new representation.

We solved p20 in both representations with Fast Down-
ward (Helmert 2006). Using the blind heuristic in the new
representation it found a 31 cost solution (with 87 steps) in a
search time of 3.07 seconds which expanded 752,651 states
until last jump. Fast Downward’s “until last jump” values
return the number of states for the last fully expanded f-
level. We use these counts throughout this paper to avoid any
stochastic effects caused by search tree ordering. The prob-
lem solver on the original representation ran out of memory
during f-level 31. These representations will have the same
cost optimal solution, so we can look at the last f-level they
both completed. In the original representation, at the end of
f-level 30, Fast Downward expanded 30,006,650 states in
105.7 seconds. At the same f-level in the transformed rep-
resentation Fast Downward expanded 752,651 states in 3.07
seconds. We use blind search to compare the actual size of
the state space. This simple change, ignoring the names of
identical objects, reduces the search tree size by a factor of
40, as can be seen in Table 3. The reduction factor is cal-
culated by dividing the nodes expanded in the original rep-
resentation by the nodes expanded in the transformed rep-
resentation. If both problems are not solved we use the ex-
panded nodes at the last common f-level in this calculation.
This works for the sokoban-strips-opt-08 domain because no
two stones can occupy the same location, so it never tries to
enter (at stoneX pos-4-3) twice within the same state.

We would like to use the same type of representations
in other domains. For example, in the gripper domain we
would like to call all the balls “ballX”. The problem is two
different balls can be in the same location within a state. If

Table 1: Transformed gripper problem representation

(define (problem strips-gripper-x-1)

(:domain gripper-strips)

(:objects n4 n3 n2 n1 n0 rooma roomb ballX left right)

(:init(room rooma)(room roomb)(ball ballX)(free left)

(free right)(at-robby rooma)(more n0 n1)(more n1 n2)

(more n2 n3)(more n3 n4)(gripper left)(gripper right)

(count ballX rooma n4)

(count ballX roomb n0))

(:goal(and(count ballX roomb n4))))

we enter (at ballX rooma) more than once in a state, then
when one of them is removed all of them will be removed
because of PDDL’s basic set representation. To solve this
problem we create a bag representation that can be used in
PDDL instead.

A Bagged Representation
In order to avoid having multiple copies of the same predi-
cate in a state (e.g., (at ballX rooma)(at ballX rooma))
every predicate that refers to the “objects to be merged” will
need to be replaced by a count predicate. So for instance in
the gripper domain (at ball1 rooma) (at ball2 rooma) (at
ball3 rooma) (at ball4 rooma) will be replaced by (count
ballX rooma 4). This is the equivalent of multiple identical
predicates within the same state. To implement the counts,
we need to do simple arithmetic. Unfortunately only a hand-
ful of optimal planners currently handle PDDL numerical
fluents. We want to create PDDL that can be used by any
PDDL planner, so we add simple counting predicates (more
n1 n2) which allow us to alter the domain actions to in-
crement or decrement the count predicates. The transformed
representation for gripper is shown in Tables 1 and 2.

We created a gripper problem instance p250 with 250
balls. We solve this problem with both representations with
Fast Downward using the blind heuristic. Note that the rep-
resentation used in these experiments merged the grippers
together as well as the balls, as opposed to the PDDL shown
in the tables above. This more complex transformed repre-
sentation is given at (Riddle 2015). With the transformed
representation it found a 749 step solution in a search time
of 1.22 seconds which expanded 1,495 states until last jump.
Whereas with the original representation, Fast Downward
runs out of memory during f-level 6. These representations
will have the same length optimal solution, so we can look
at the last f-level they both completed. In the original repre-
sentation, at the end of f-level 5 Fast Downward expanded
250,502 states in 10.98 seconds. At the end of f-level 5 in
the transformed representation Fast Downward expanded 9
nodes in 1.02 seconds. This change reduces the search tree
size by a factor of 27,834, as can be seen in Table 3.

More Complex Domains
So far the transformations have been fairly easy because the
objects that we wanted to rename only occured in a sin-
gle predicate. Things become more complex when we have
multiple predicates. For instance in the Barman-opt11-strips
domain, let us assume we do not care which shots contain
which drinks, but only care that there “exists” a shot with

Table 2: Transformed gripper domain representation

(define (domain gripper-strips)

(:predicates (room ?r)(ball ?b)(gripper ?g)

(at-robby ?r)(count ?b ?r ?n)(free ?g)(carry ?o ?g)

(more ?n1 ?n2))

(:action move :parameters (?from ?to)

:precondition (and (room ?from)(room ?to)

(at-robby ?from))

:effect (and (at-robby ?to)(not (at-robby ?from))))

(:action pick :parameters (?n1 ?n0 ?obj ?room ?gripper)

:precondition (and (ball ?obj)(room ?room)

(gripper ?gripper)(at-robby ?room)(free ?gripper)

(more ?n1 ?n0)(count ?obj ?room ?n0))

:effect (and (carry ?obj ?gripper)

(not (count ?obj ?room ?n0))

(count ?obj ?room ?n1)(not (free ?gripper))))

(:action drop :parameters (?n1 ?n0 ?obj ?room ?gripper)

:precondition (and (ball ?obj)(room ?room)

(gripper ?gripper)(carry ?obj ?gripper)(more ?n0 ?n1)

(at-robby ?room)(count ?obj ?room ?n0))

:effect (and (not (count ?obj ?room ?n0))

(count ?obj ?room ?n1)(free ?gripper)

(not (carry ?obj ?gripper)))))

each specified drink. Similarly, we have two hands “right”
and “left” and do not care which hand picks up and holds
something, only that we don’t pick up 3 things! We want
to create the same type of abstracted representation for the
barman domain. Unfortunately now we have multiple predi-
cates that refer to shots. To overcome this problem, we create
macro-predicates.

The transformed barman-opt11-strips problem for
pfile01-001.pddl is given at (Riddle 2015). In the origi-
nal representation, there are a number of predicates that
take a shot as an argument. These are: (ontable ?c -
container), (holding ?h - hand ?c - container), (clean
?c - container), (empty ?c - container), (contains
?c - container ?b - beverage), (used ?c - container
?b - beverage). This kind of distributed representation
is very common in PDDL. It can be used because the
unique identifiers (“shot1” “shot2” etc.) allow it to associate
the distributed predicates with each other. Unfortunately,
the unique identifiers are the cause of the combinatorial
explosion! We combine the predicates into a single macro-
predicate. The initial state in the original representation
had {(ontable shot1), (ontable shot2), (ontable shot3),
(ontable shot4), (clean shot1), (clean shot2), (clean
shot3), (clean shot4), (empty shot1), (empty shot2),
(empty shot3), (empty shot4)}. This is represented in
the new representation as (count1 shotX empty clean
ontable 4), which states that in the initial state there is:
1) a (clean shotX), 2) an (empty shotX), and 3) an
(ontable shotX) for the same 4 unique shots. This solves
the problem of distributed representations, but it causes
problems with representing the goal state.

The original representation’s partial goal description
was (and (contains shot1 cocktail3), (contains shot2

cocktail1), (contains shot3 cocktail2)). It contains some
information from our macro-predicate but not all the infor-
mation. We could use 1) variables or 2) existential quanti-
fiers, or 3) an OR construct in our final goal description.
Unfortunately many of the current IPC planners do not al-
low any of these options in a goal description. Alterna-
tively we create a goal-predicate that only contains the in-
formation required in the goal description. For this prob-
lem that is: (and(count-goal shotX cocktail3 1) (count-
goal shotX cocktail1 1) (count-goal shotX cocktail2
1)). Of course the domain actions must be designed to deal
with the count macro-predicates and the newly created goal-
predicates, these can be seen in the Barman domain file at
(Riddle 2015).

We solve problem pfile01-001.pddl in these two repre-
sentations with Fast Downward using the blind heuristic. In
the new representation it returned a 90 cost solution with
36 steps in a search time of 4.41 seconds which expanded
289,946 states until last jump. In the original representation,
it returned a 90 cost solution with 36 steps in a search time
of 38.91 seconds which expanded 5,967,050 states until last
jump. This reduces the search tree size by a factor of 21, as
is shown in Table 3.

Domains with Lots of Objects
The advantage of the “bagged representation” is that it scales
much better than the standard representation, for instance
you can solve the 250 ball gripper problem shown above.
We present three additional domains to emphasize this point.
The first is the Spanner domain from the IPC 2011 Learning
track, created by Amanda Coles, Andrew Coles, Maria Fox
and Derek Long. The second is the ChildSnack domain from
the sequential track in IPC-2014, created by Raquel Fuente-
taja and Tomás de la Rosa Turbides. The third is the Pizza
domain also created by Raquel Fuentetaja and Tomás de la
Rosa Turbides.

In the Spanner domain, we solve a smaller version of
problem pfile01-001.pddl (which has 30 nuts to tighten and
30 spanners). In the transformed representation we merge all
the nuts and spanners. We keep track of the counts of span-
ners at each location and the number of loose and tightened
nuts.

In the ChildSnack domain, we solve problem child-
snack pfile01.pddl (which has 6 children, 6 breads, 6 con-
tents, and 8 sandwiches). In the transformed representation
we merge the bread, contents, and sandwiches. We keep
track of the counts of each item.

In the Pizza domain, we solve problem rnd-
goal pizza base p02.pddl (which has 5 guests and 16
slices of pizza). In the transformed representation we merge
the slices. We keep track of the counts for each item.

We present a number of experiments on these domains (as
well as the 3 domains presented earlier), but first we discuss
the related research.

Related Research
There has been considerable work on problem reformula-
tion, starting with George Polya’s How to Solve It (1957).

Due to lack of space we will focus on planning-specific re-
formulation research. The Fast Downward system (Helmert
2006) transforms the PDDL representation into a multi-
valued planning task, similar in spirit to SAS+. Using this
representation, the system generates four internal data struc-
tures, which it uses to search for a plan. Helmert (Helmert
2009), extending this work, focused on turning PDDL into a
concise grounded representation of SAS+. Additional work
in this area transforms between PDDL and binary decision
diagrams (Haslum 2007), transforms between PDDL and
causal graphs (Helmert 2006), and identifies and removes
irrelevant parts from a problem representation (Haslum,
Helmert, and Jonsson 2013).

To the best of our knowledge, little research has focused
on transforming a PDDL representation into another PDDL
representation. Two notable exceptions are (Areces et al.
2014; de la Rosa and Fuentetaja 2015), the latter of which
we describe at the end of this section. Instead, it has al-
most exclusively focused on either reformulating PDDL to
a planner’s internal representation or transforming one in-
ternal representation to another. Although these approaches
lead to more knowledge about the connectivity of the search
space, and the power to alter the representation in these inter-
nal forms, there are advantages to altering PDDL. First, the
new representations can be used by any PDDL planner. Sec-
ond, in some domains, creating SAS+ or the domain transi-
tion graphs take a lot of time; this might be avoided by first
transforming to a different PDDL representation and trans-
forming that into SAS+ or an internal representation.

Our system has much in common with symmetry reduc-
tion systems. Fox and Long (1999) group symmetric objects
together in TIM. They require objects to be indistinguish-
able in both the initial state and the goal description. They
keep track of the symmetry groups during planning but only
with respect to the goal description, so they cannot remove
all the symmetries in gripper.

Pochter et. al. (2011) generalize the work by Fox and
Long, by using generators to create automorphic groups.
These groups are based on SAS+ and so are more general
than objects. They still require the symmetric groups to be
indistinguishable in both the initial and goal description.

Domshlak et. al. (2012) extended this work to only re-
quire symmetric groups to be indistinguishable in the goal
description in the DKS system. They compared their work to
Pochter’s system, where they solved 8 more problems over
30 domains.

Metis (Alkhazraji et al. 2014), uses orbit search to do
symmetry breaking. It is an improvement on DKS, since it
does not store extra information with each state. Metis also
includes an incremental LM-cut heuristic and partial order
reduction with strong stubborn sets. In the experiments in
this paper, Metis is always run with symmetry breaking but
without these last two components.

The closest work to our automated system for creating
these transformations is the system by de la Rosa et. al.
(2015). They reformulate PDDL into PDDL and they merge
objects in a similar way. The main differences are 1) we
merge objects if they are the same in the initial state or the
same in the goal description whereas their system merges

Table 3: Analysis of both representations across 6 domains using blind search. X signifies the planner was killed because it
ran out of memory under the 2014 IPC constraints. Solution state expansions are “until last jump” to normalize for different
tree orderings on the last level. Reduction Faction of expanded states shows by what factor it has been reduced; we use the last
common f-bound in this calculation if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Factor of

domain problem heuristic representation vars actions time expanded f-bound f-bound cost length Expanded States

sokoban p20 blind transformed 25 120 3.07s 752,651 752,651 30 31 87 40original 35 312 X X 30,006,650 30 X X

gripper p250 blind transformed 5 500,002 1.22s 1,495 9 5 749 749 27,834original 253 2,002 X X 250,502 5 X X

barman-opt11 pfile01-001 blind transformed 147 4,501 4.41s 289,946 90 36 21original 62 358 38.91s 5,967,050 90 36

spanner pfile01-001-small blind transformed 16 1,851 18.38s 8,699,505 126,611 53 111 111 71original 91 981 X X 9,038,188 53 X X

ChildSnack child-snack pfile01 blind transformed 74 1,656 1.8s 90,162 272 5 20 20 5,553original 36 456 X X 1,510,534 5 X X

pizza base p02 blind transformed 28 2,304 1.05s 10,837 205 6 15 15 3,400original 37 14,668 X X 705,106 6 X X

objects if they do not appear in the goal description 2) they
explicitly use numeric fluents in their modeling, restricting
them to planners that support them such as metric-FF (Hoff-
mann 2003) 3) both our systems translate the solution back
to the original representation but our system can generate
plans which have different explicit values specified in the
goal state.

Experimental Results
In this section we explore 6 domains using a number of dif-
ferent problem solvers. First we analyze the representations
using blind search. Next we explore two different heuris-
tics, LM-cut and iPDB. Then we explore the difference be-
tween transforming the representation versus using a sym-
metry reduction technique such as Metis. We also run Metis
on the transformed representation to see if additional sym-
metries are found. Lastly we explore the bidirectional search
approach used in SymBA* on both representations.

Blind Search
We discussed the sokoban, gripper and barman domains ear-
lier. Table 3 shows the reduction factor of expanded states
for each problem in these 3 domains is 40, 27,834 and 21
respectively.

In the Spanner domain, we solve a smaller version of
problem pfile01-001.pddl (which has 30 nuts to tighten and
30 spanners) in both representations with Fast Downward
using the blind heuristic. In the transformed representation it
returns a 111 step solution in a search time of 18.38 seconds
which expanded 8,699,505 states until last jump. Whereas
in the original representation it runs out of memory during f-
level 54. At the end of f-level 53 it expanded 9,038,188 states
in 35.08 seconds. At the end of f-level 53 in the transformed
representation it expanded 126,611 nodes in 1.24 seconds.
The new representation for spanner can be seen at (Riddle
2015). The reduction factor for this problem is 71.

In the ChildSnack domain, we solve problem child-
snack pfile01.pddl in both representations with Fast Down-
ward using the blind heuristic. In the transformed repre-
sentation it found a 20 step solution in a search time of
1.8 seconds which expanded 90,162 states until last jump.
Whereas in the original representation it cannot run out of
memory during f-level 6. At the end of f-level 5 it expanded

1,510,534 states in 82.06 seconds. At the end of f-level 5
in the transformed representation it expanded 272 nodes in
1.01 seconds. The new representation for ChildSnack can be
seen at (Riddle 2015). The reduction factor for this problem
is 5,553.

In the Pizza domain, we solve problem rnd-
goal pizza base p02.pddl in both representations with
Fast Downward using the blind heuristic. In the transformed
representation it found a 15 step solution in a search time
of 1.05 seconds which expanded 10,837 states until last
jump. Whereas in the original representation it runs out of
memory during f-level 7. At the end of f-level 6 it expanded
705,106 states in 34.2 seconds. At the end of f-level 6 in
the transformed representation it evaluated 205 nodes in
1.02 second. The new representation for pizza can be seen
at (Riddle 2015). The reduction factor for this problem is
3,400.

It is obvious that the transformed representation always
has a smaller state space. But what happens when a heuristic
is used? In the next two sections we explore the affect our
new representation has on two separate heuristics, LM-cut
and iPDB.

LM-cut
We now look at both representations with the LM-cut heuris-
tic. LM-cut is a state-of-the-art heuristic which can be
viewed as an approximation to the optimal relaxation heuris-
tic h+(Helmert and Domshlak 2009). Table 4 shows the re-
sults.

In the Sokoban domain both representations solve the
problem. LM-cut is much less accurate on the transformed
representation with an initial h-value of 6 compared to 15
in the original representation. This causes more nodes to be
expanded and the reduction factor is 0.3 for this problem.

In the Gripper domain only the transformed representa-
tion is solved although it does go over the IPC time con-
straints. LM-cut is less accurate in the transformed repre-
sentation with an initial h-value of 251 compared to 501 in
the original representation. Despite this, the reduction factor
is 332 for this problem.

In the Barman-opt11 domain both representations are
solved. LM-cut is still less accurate in the transformed do-
main with an initial h-value of 16 compared to 28 in the

Table 4: Analysis of both representations across 6 domains using the LM-cut heuristic. X signifies the planner was killed
because it ran out of memory under the 2014 IPC constraints. Solution state expansions are “until last jump” to normalize for
different tree orderings on the last level. Reduction Faction of expanded states shows by what factor it has been reduced; we
use the last common f-bound if if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Initial Factor of

domain problem heur reps vars actions time expanded f-bound f-bound cost length h-value Expanded States

sokoban p20 lmct trans 25 120 19.31s 658,420 31 126 6 0.3orig 35 312 31.13s 219,203 31 126 15

gripper p250 lmct trans 5 500,002 9879.52s 1492 752 501 749 749 251 332orig 253 2002 X X 250,001 501 X X 501

barman-opt11 pfile01-001 lmct trans 147 4,501 355.91s 117,832 90 36 16 11orig 62 358 268.7s 1,345,145 90 36 28

spanner pfile01-001-small lmct trans 16 1,851 1959.87s 635,477 15 83 111 111 83 2,179orig 91 981 X X 32,687 83 X X 82

ChildSnack child-snack pfile01 lmct trans 74 1,656 7.52s 26,607 24 12 20 20 12 33,335orig 36 456 X X 800,051 12 X X 10

pizza base p02 lmct trans 28 2,304 1.52s 1,765 227 10 15 15 5 4,064orig 37 14,668 X X 922,581 10 X X 5

original representation. Despite this, the reduction factor is
11 for this problem. The search space is reduced to such an
extent it is faster to solve the problem in the transformed
domain even though the heuristic is less accurate.

In the Spanner domain only the transformed representa-
tion is solved. The initial h-values are nearly identical at
83 and 82 for the transformed and original representations
respectively. A comparison of the last common f-boundary
shows a reduction factor of 2,179.

In the ChildSnack domain only the new representation
is solved. LM-cut is actually more accurate on the trans-
formed representation with an initial h-value of 12 compared
to 10 for the original. A comparison of the last common f-
boundary shows a reduction factor of 33,335.

In the Pizza domain only the new representation is solved.
The initial h-value is 5 for both representations. A compari-
son of the last common f-boundary shows a reduction factor
of 4,064.

LM-cut displays a lower initial h-value in 3 domains, a
marginally higher value in 2 domains and the same value
in 1. When the initial h-value was higher or the same in
the transformed representation, the reduction factor between
representations was higher using LM-cut than using the
blind heuristic. The question remains whether other heuris-
tics perform differently on the two representations. We at-
tempt to answer this question by looking at the iPDB heuris-
tic.

iPDB
We explore the two representations with the iPDB heuristic
(Haslum et al. 2007). The iPDB systems creates PDBs by a
greedy search through a space of abstractions. Table 5 shows
the results.

In the Sokoban domain both representations are solved,
but the transformed domain has a very low initial h-value
and therefore expands more states than the original domain
resulting in a reduction factor of 0.58.

In the Gripper domain only the transformed problem is
solved and finds the perfect initial h-value resulting in 0
nodes until last jump in the final state; therefore the re-
duction factor is undefined. There is also no common f-
boundary explored.

In the Barman domain the initial h-values for the two
representations are very close at 18 and 19 for the trans-
formed and original respectively. The transformed represen-
tation still expands fewer states resulting in a reduction fac-
tor of 17.

In the Spanner domain the transformed representation
finds the perfect initial h-value of 111 resulting in 0 nodes
until last jump in the final state; therefore the reduction fac-
tor is undefined. The original representation finds an initial
h-value of 81 but runs out of memory at f-level 84.

In the ChildSnack domain, both representations get an ini-
tial h-value of 6, but only the transformed representation is
solved. Comparing the number of nodes at the last common
f-boundary, 10, the reduction factor is 4,821.

Table 5: Analysis of both representations across 6 domains using the iPDB heuristic. X signifies the planner was killed because
it ran out of memory under the 2014 IPC constraints. Solution state expansions are “until last jump” to normalize for different
tree orderings on the last level. Reduction Faction of expanded states shows by what factor it has been reduced; we use the last
common f-bound if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Initial Factor of

domain problem heur reps vars actions time expanded f-bound f-bound cost length h-value Expanded States

sokoban p20 iPDB trans 25 120 2.92s 737,817 31 90 4 0.58orig 35 312 2.47s 429,290 31 115 15

gripper p250 iPDB trans 5 500,002 1.05s 0 0 749 749 749 749 undefinedorig 253 2,002 X X 281,628 254 X X 251

barman-opt11 pfile01-001 iPDB trans 147 4,501 4.32s 230,634 90 36 18 17orig 62 358 31.45s 3,989,300 90 36 19

spanner pfile01-001-small iPDB trans 16 1,851 3.88s 0 111 111 111 undefinedorig 91 981 X X 222,815 83 X X 81

ChildSnack child-snack pfile01 iPDB trans 74 1,656 1.59s 65,256 356 10 20 20 6 4821orig 36 456 X X 1,716,166 10 X X 6

pizza base p02 iPDB trans 28 2,304 1.01s 2,728 341 10 15 15 5 4,695orig 37 14,668 X X 1,601,001 10 X X 5

In the Pizza domain, both representations get an initial h-
value of 5, but only the transformed representation solves the
problem. Comparing the number of nodes at the last com-
mon f-boundary, 10, the reduction factor is 4,695.

It is clear that even with heuristics many of these domains
are solved more efficiently in the transformed representa-
tion. The question remains how do they compare to systems
which use symmetry breaking techniques? In the next sec-
tion we do several experiments using the Metis system (Alk-
hazraji et al. 2014).

Metis
The question remains, does transforming the representation
provide any additional benefits over symmetry reduction
techniques? The Metis system (Alkhazraji et al. 2014) is a
state of the art system that uses symmetry reduction tech-
niques and partial order reduction. Throughout this paper we
run Metis without the partial order reduction component, be-
cause we wish to compare the symmetry reduction abilities
of Metis to the symmetry reduction of the transformed rep-
resentation, without mudding the waters with other compo-
nents. We will conduct 3 experiments to explore this ques-
tion. The first experiment compares Metis on the original
representation compared to the transformed representation.
We use the blind heuristic on both these representations.

In the Sokoban and Gripper domains the reduction factor
is 1.0 showing that in these representations the symmetry re-
duction is the same. In the Pizza domain, the reduction fac-
tor is 0.1 (less than 1.0) which shows that Metis finds more
symmetries in the original representation than are removed
in the transformed representation. In Barman, Spanner, and
ChildSnack the reduction factor is greater than 1.0. We infer
from this that our transformed representation has managed
to remove symmetries that Metis has missed. In ChildSnack
this difference is very small (reduction factor of 1.05) but
Barman and Spanner are larger at 1.8 and 2.3 respectively.
We will discuss why this happens in more depth at the end
of this section.

The previous experiments used the blind heuristic. It
shows that the two systems find different symmetries. The
question remains what will happen if heuristics are in-
troduced. The next experiment runs Metis with symmetry
breaking and LM-cut on the original representation and LM-

cut on the transformed representation.
In the Sokoban domain, LM-cut is a big help in the orig-

inal representation while much less effective in the trans-
formed representation reducing the Reduction factor from
1.0 to 0.09.

In the Gripper domain, LM-cut has little affect. The re-
duction factor is reduced from 1.00 to 0.99 and both repre-
sentations expand almost as many nodes as they do in blind
search.

In the Barman domain LM-cut is effective in both repre-
sentations and lowers the reduction factor from 1.8 to 1.4. In
the Spanner domain LM-cut is more effective in the trans-
formed domain than in the original and increases the reduc-
tion factor from 2.3 to 90420. In the ChildSnack domain,
LM-cut is more effective in the transformed domain and in-
creases the reduction factor slightly from 1.05 to 3.15. In the
Pizza domain, LM-cut is equally effective on both domains
with the reduction factor remaining at 0.1.

The last experiment compares Metis with symmetry
breaking and blind search on both representations. We ex-
amine the change in the reduction factor from Table 6 to
Table 8 to quantify this effect. This shows whether Metis
finds additional symmetries in the transformed domain. In
the Sokoban and Gripper domains the reduction factor re-
mains steady at 1.0, showing that both techniques find the
same symmetries. In the other four domains, the reduction
factors are greater than 1.0 showing that the transformed rep-
resentations removed more symmetries than Metis. In the
Spanner domain the reduction factor remains at 2.3 which
shows that the transformed space already removed all the
symmetries Metis could find.

In the Barman domain the reduction factor goes from 1.8
to 2.9, while in the ChildSnack domain the reduction fac-
tor increases from 1.05 to 3.15 and in the Pizza domain the
reduction factor increases from 0.1 to 1.12. In these 3 do-
mains, Metis can remove additional symmetries from the
transformed representation. Our hypothesis about this be-
haviour is that these increases show that there were implicit
symmetries in the original representation that were made ex-
plicit in the transformed representation allowing Metis to re-
move them. This is a very interesting and unexpected result.

Let us now look at the bigger picture. In some domains
(like Sokoban and Gripper) Metis and the transformed rep-

Table 6: Analysis of the old representation using Metis with symmetry reduction and blind search, compared to the new repre-
sentation using blind search. X signifies the planner was killed because it ran out of memory under the 2014 IPC constraints.
Solution state expansions are “until last jump” to normalize for different tree orderings on the last level. Reduction Faction of
expanded states shows by what factor it has been reduced; we use the last common f-bound if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Factor of

domain problem heuristic reps vars actions time expanded f-bound f-bound cost length Expanded States

sokoban p20 blind trans 25 120 3.07s 752,651 31 87 1.0blind-Metis orig 35 312 2.9s 752,983 31 87

gripper p250 blind trans 5 500,002 1.22s 1,495 749 749 1.0blind-Metis orig 253 2,002 8.27s 1,495 749 749

barman-opt11 pfile01-001 blind trans 147 4,501 4.41s 289,946 90 36 1.8blind-Metis orig 62 358 4.81s 533,211 90 36

spanner pfile01-001-small blind trans 16 1,851 18.38s 8,699,505 3,275,046 64 111 111 2.3blind-Metis orig 91 981 X X 7,594,192 64 X X

ChildSnack child-snack pfile01 blind trans 74 1,656 1.8s 90,162 20 20 1.05blind-Metis orig 36 456 3.98s 94,498 20 20

pizza base p02 blind trans 28 2,304 1.05s 10,837 15 15 0.1blind-Metis orig 37 14,668 0.11s 1,078 15 15

Table 7: Analysis of the old representation using Metis symmetry reduction and LM-cut search, compared to the new represen-
tation using LM-cut search. X signifies the planner was killed because it ran out of memory under the 2014 IPC constraints.
Solution state expansions are “until last jump” to normalize for different tree orderings on the last level. Reduction Faction of
expanded states shows by what factor it has been reduced; we use the last common f-bound if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Initial Factor of

domain problem heuristic reps vars actions time expanded f-bound f-bound cost length h-value Expanded States

sokoban p20 LM-cut trans 25 120 19.31s 658,410 31 94 6 0.09Metis orig 35 312 8.38s 58,152 31 124 15

gripper p250 LM-cut trans 5 500,002 9879.52s 1,492 749 749 251 0.99Metis orig 253 2,002 24.08s 1,486 749 749 501

barman-opt11 pfile01-001 LM-cut trans 147 4,501 223.49s 80,182 90 36 16 1.4Metis orig 62 358 24.35s 114,120 90 36 28

spanner pfile01-001-small LM-cut trans 16 1,851 1959.83s 635,477 61 89 111 111 83 90420Metis orig 91 981 X X 5,515,622 89 X X 82

ChildSnack child-snack pfile01 LM-cut trans 74 1,656 2.03s 8,687 20 20 12 3.15Metis orig 36 456 3.24s 27,401 20 20 20

pizza base p02 LM-cut trans 28 2,304 1.52s 1,765 15 15 5 0.1Metis orig 37 14,668 0.36s 174 15 15 5

resentation find the same symmetries. This is what we would
expect. In other domains (such as Barman) we know that
we are finding more symmetries, based on the fact that the
objects are the same in the initial state (e.g., we merge all
the shots together). This is a type of symmetry not currently
handled by the Metis symmetry breaking. So it makes sense
that the reduction factor for Barman is greater than 1.0 in Ta-
ble 8. In the Pizza domain we did not merge the types tray
or people, therefore it makes sense that Pizza’s reduction
value in Table 6 is less than 1.0. Both Spanner and Child-
Snack are greater than 1.0 and we do not know why we find
more symmetries. Certainly in ChildSnack we should find
less symmetries because we did not merge the “child” type.

A reduction value in Table 8 being greater than 1.0 means
that the transformed domain is removing symmetries that
Metis is not removing. This is true of 4 of the domains, in-
cluding the 3.9 reduction factor in ChildSnack, 2.9 in Bar-
man, 2.3 in Spanner and 1.12 in Pizza. This shows that the
transformed representation in combination with Metis is re-
moving further symmetries than Metis did in the original
representation.

We do not have a definitive explanation for these results.
Our hypothesis is that there were implicit symmetries in
the original representation that were made explicit in the
transformed representation allowing Metis to remove them.
It is related to the very different representations given by
the SAS+ variables. Looking at the differences in the num-

ber of SAS+ variables and operators, it is not that surpris-
ing that these differences would cause different symmetries
to be exposed. To further explore the differences caused by
the SAS+ variables and operators we will explore one more
problem solver, SymBA*.

SymBA*
The SymBA* system (Torralba et al. 2014) is a bidirectional
symbolic problem solver built on Fast Downward. It tries
to perform blind bidirectional search. When it determines
it will run out of space it performs bidirectional heuristic
search. This system performs very well when it can stay at
the blind search level. Because our transformed representa-
tions have a much smaller state space, they are a natural fit
for pairing with SymBA*. We run SymBA* on both rep-
resentations. It runs a bidirectional symbolic search so it is
difficult to compare expanded nodes with our previous re-
sults, so only times are given. Additionally it uses a more
extensive process to determine SAS+ variables and opera-
tors (Alcázar and Torralba 2015). It turns out that this is very
advantageous to our transformed representations.

Comparing the number of SAS+ variables and operators,
the SymBA* translator returns fewer SAS+ variables in both
gripper representations and in the transformed representa-
tion on ChildSnack. The number of operators is reduced
in all the transformed representations as well as two of the
original representations. This is a huge help to the problem

Table 8: Analysis of both representations across 6 domains using the Metis symmetric reduction and blind search. X signifies
the planner was killed because it ran out of memory under the 2014 IPC constraints. Solution state expansions are “until last
jump” to normalize for different tree orderings on the last level. Reduction Faction of expanded states shows by what factor it
has been reduced; we use the last common f-bound if either representation is not solved.

states exp. Reduction
SAS+ SAS+ search states last common common solution solution Factor of

domain problem heuristic representation vars actions time expanded f-bound f-bound cost length Expanded States

sokoban p20 blind-Metis transformed 25 120 2.37s 752,651 31 87 1.0original 35 312 2.9s 752,983 31 87

gripper p250 blind-Metis transformed 5 500,002 0.05s 1,495 749 749 1.0original 253 2,002 8.27s 1,495 749 749

barman-opt11 pfile01-001 blind-Metis transformed 147 4,501 2.64s 185,224 90 36 2.9original 62 358 4.81s 533,211 90 36

spanner pfile01-001-small blind-Metis transformed 16 1,851 18.38s 8,699,505 3,275,046 63 111 111 2.3original 91 981 X X 7,594,192 63 X X

ChildSnack child-snack pfile01 blind-Metis transformed 74 1,656 0.34s 24,336 20 20 3.9original 36 456 3.98s 94,498 20 20

pizza base p02 blind-Metis transformed 28 2,304 0.01s 966 15 15 1.12original 37 14,668 0.11s 1078 15 15

Table 9: Analysis of both representations across 6 domains
using the SymBA* problem solver. X signifies the planner
was killed because it ran out of memory under the 2014 IPC
constraints.

#
SAS+ SAS+ search

domain problem representation vars actions time

sokoban p20 transformed 24 120 1.48s
original 29 267 8.28s

gripper p250 transformed 5 2,002 5.63s
original 253 2,002 XXX

barman-opt11 pfile01-001 transformed 147 3,861 9.58s
original 62 310 6.91s

spanner pfile01-001-small transformed 16 981 0.59s
original 91 981 1.63s

ChildSnack child-snack pfile01 transformed 64 298 0.31s
original 36 456 231.01s

pizza base p02 transformed 28 1,332 0.25s
original 37 14,668 X

solver in terms of both time and memory. Some of these
reductions are massive, such as gripper on the transformed
domain, where 500,002 operators becomes 2,002 operators.
Of course the SymBA* translator could be used with the reg-
ular Fast Downward problem solvers, but these experiments
are not in the scope of this paper.

Best Overall Results
In Table 10 the search times for all the experiments con-
ducted are summarized. If we look at which combinations
were best for each problem, we see that the reformulated
representation was always part of the best combination and
that Metis with blind search and SymBA* each were best for
3 out of the 6 problems. While these results must be taken
with a grain of salt, since they are only single runs on sin-
gle problems in each domain, they are still interesting. It is
possible that transforming the space and spending additional
time to get good SAS+ variables and operators and then run-
ning blind search with symmetry reduction or blind bidirec-
tional search on these much smaller search spaces is a rea-
sonable approach to take and should be explored in greater
detail.

Problems Caused by Bagged Representations
Unfortunately the transformed representation is not always
better than the old representation. For instance even the
transformed Sokoban representation has some drawbacks
with the LM-cut and iPDB heuristics. This further supports
earlier results by (Riddle, Holte, and Barley 2011) that there
is no “best representation” for all problems within a domain.
The main drawbacks concern: how the SAS+ variables and
actions are made, how the heuristics are affected. We will
discuss each of these drawbacks in turn.

SAS+ Variables This paper showed that the transformed
representation sometimes gave a larger number of SAS+
variables and actions and sometimes made them smaller. In
some domains such as sokoban, gripper, spanner, and pizza,
the new representation actually has fewer variables and ac-
tions generated. This is a boon to the planners because they
use less memory to represent each state. In other domains
such as barman-opt11 and ChildSnack, more variables and
actions are created. This means the planner will be using
more memory, not less! One solution is to use a better SAS+

Table 10: Analysis of which representation/problem solver
combination was best for each problem. Only search time
was used since SymBA* cannot return nodes expanded.

Metis Metis
blind LMct iPDB Blind LMct Symba

domain reps time time time time time time

sokbn trans 3.07 19.31 2.92 2.37s 1.48
orig X 31.3 2.47 2.9 8.38 8.28

gripper transf 1.22 X 1.05 0.05 5.63
orig X X X 8.27 24.08 XXX

barman transf 4.41 355.9 4.32 2.64 9.58
orig 38.91 268.7 31.45 4.81s 24.35 6.91

spannr transf 18.38 1,959 3.88 18.38 0.59
orig X X X X X 1.63

chdsnk transf 1.8 7.52 1.59 0.34 0.31
orig X X X 3.98 3.24 231.01

pizza transf 1.05 1.52 1.01 0.01 0.25
orig X X X 0.11 0.36 X

preprocessor, such as (Alcázar and Torralba 2015), this is an
area we are currently exploring.

Additionally we have found that the number of states ex-
panded in the transformed representation is reduced to such
an extent, that the extra costs of the additional SAS+ vari-
ables are not a problem. This is not always the case. In prob-
lems where you only bagged 2 or 3 objects together and got
an increase in SAS+ variables, the new representation would
likely take longer to solve.

Heuristics Another issue is how the new representation
affects the heuristics, this relates to the section above be-
cause any change to the SAS+ variables will change the
heuristics’ predictive power. As we can see in our experi-
ments sometimes the new representation improves the accu-
racy of the initial heuristic estimate and sometimes it de-
creases it.1 LM-cut’s initial heuristic values are better in
the ChildSnack and Spanner domains, while iPDB’s initial
heuristic values are better in the Gripper and Spanner do-
mains. iPDB’s estimates in both these domains are perfect
and significantly larger than in the original representation.
In addition we have made the state space so much smaller,
the fact that the heuristics are not as good frequently has lit-
tle effect.

Conclusion and Further Research
To scale up PDDL representations to large numbers of ob-
jects, it is better to use a Bagged representation. This allows
solving much larger problems with less combinatorial explo-
sion. We are creating a system for automatically generating
a bagged representation from the original PDDL representa-
tion (Riddle et al. 2015), although the PDDL representations
shown here were created manually. This allows the use of a
bagged representation even when you care which object is
used, because it translates the solution back into the original
representation. It does require that the objects to be merged
are the same in the initial state or in the goal description.

The results using Metis show that symmetry breaking
techniques and transforming the representation have some
overlaps. But each seems to find some symmetries that the
other misses. The best approach seems to be to use both ap-
proaches with symmetry breaking on the transformed space.

1We are assuming that the initial heuristic estimate reflects the
overall accuracy of the heuristics.

The SymBA* results were also very interesting. It seems
that using the transformed representation to reduce the state
space and then using an uninformed search (especially a
bidirectional one), could be an interesting new direction of
research.

We found that altering the representation before the plan-
ning begins is a much better use of time. In Tables 3 & 5,
only 2 problems can be solved in the original representation
within the 2014 IPC space constraints, while all problems
in the transformed representations can be solved. Using our
automated system significantly reduces overall solving time,
even after accounting for the extra preprocessing time.

The transformed representation is certainly not always
better, especially when there are only a few symmetrical ob-
jects. Currently we use RIDA*’s (Barley, Franco, and Riddle
2014) runtime formula to choose between representations on
a problem by problem basis. We are exploring more exten-
sive methods (as in (Alcázar and Torralba 2015)) for creat-
ing SAS+ variables, which will help control any explosion
in variables and actions caused by the bagged representa-
tion. We plan to explore which heuristics perform better on
a bagged representation. Some heuristics seem to perform
equally across most domains and some do particularly badly
on the bagged representation.

We should include bagged representations in future IPC
competitions. They are an easy way to explore larger spaces,
whether automatically generated or created by hand. It
would be interesting to see which heuristics and problems
solvers work well on these representations and which do not.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In ICAPS.
Alkhazraji, Y.; Katz, M.; Mattmuller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming fast
downward with pruning and incremental computation. In In
the Eighth International Planning Competition Description
of Participant Planners of the Deterministic Track.
Areces, C.; Bustos, F.; Dominguez, M.; and Hoffmann, J.
2014. Optimizing planning domains by automatic action
schema splitting. In Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling.
Barley, M.; Franco, S.; and Riddle, P. 2014. Overcoming the
utility problem in heuristic generation: Why time matters. In
ICAPS.
de la Rosa, T., and Fuentetaja, R. 2015. Auto-
matic compilation of objects to counters in automatic
planning. case of study: Creation planning. http://e-
archivo.uc3m.es/bitstream/handle/10016/19707/TR-
objects-to-counters-10-2014.pdf. Accessed: 2015-02-20.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In ICAPS.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In IJCAI, 956–961.
Morgan Kaufmann.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI, vol-
ume 22-2, 1007. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.
Haslum, P.; Helmert, M.; and Jonsson, A. 2013. Safe, strong
and tractable relevance analysis for planning. In ICAPS.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In IJCAI, 1898–1903.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5).
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing“ignoring delete lists”to numeric state variables. Journal
of Artificial Intelligence Research 291–341.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In AAAI.
Pólya, G. 1957. How to solve it: A new aspect of mathemat-
ical method. Princeton University Press, second edition.
Riddle, P.; Barley, M.; Franco, S.; and Douglas, J. 2015.
Automated transformation of PDDL representations. In In-
ternational Symposium on Combinatorial Search.
Riddle, P.; Holte, R.; and Barley, M. 2011. Does represen-
tation matter in the planning competition? In SARA.
Riddle, P. 2015. PDDL files for the representations.
http://www.cs.auckland.ac.nz/∼pat/socs-2015/. Created:
2015-02-20.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional A*
planner. In The 2014 International Planning Competition -
Description of Planners.

Finding and Exploiting LTL Trajectory Constraints in Heuristic Search

Salomé Simon and Gabriele Röger
University of Basel, Switzerland

{salome.simon,gabriele.roeger}@unibas.ch

An archival version (Simon and Röger 2015) of this paper
will appear at SoCS 2015.

Abstract
We suggest the use of linear temporal logic (LTL) for express-
ing declarative information about optimal solutions of search
problems. We describe a general framework that associates
LTLf formulas with search nodes in a heuristic search algo-
rithm. Compared to previous approaches that integrate spe-
cific kinds of path information like landmarks into heuristic
search, the approach is general, easy to prove correct and easy
to integrate with other kinds of path information.

Introduction
Temporal logics allow to formulate and reason about the de-
velopment of logic-based systems, for example about paths
in factored state spaces. These are for instance common in
planning, where temporal logics have always been present.
As one extreme, the entire planning task can be specified in a
temporal logic language and plans are generated by theorem
proving (Koehler and Treinen 1995) or model construction
(Cerrito and Mayer 1998).

In a different approach, the planning system can exploit
domain-specific search control knowledge, given as part of
the input. Such control knowledge can be a temporal logical
formula that every “meaningful” plan must satisfy, therefore
reducing the size of the search space and speeding up the
plan generation (Bacchus and Kabanza 2000; Doherty and
Kvarnström 2001).

This is related to planning for temporally extended goals
(e. g. Bacchus and Kabanza 1998; Kabanza and Thiébaux
2005), where a plan does not need to reach a state with a
given goal property but the action sequence must satisfy a
given temporal formula.

PDDL 3 state trajectory constraints (Gerevini and Long
2005) integrate both worlds by extending a fragment of lin-
ear temporal logic with an additional operator that allows to
specify a classical goal property.

For all these approaches, the temporal formulas are part
of the input. In contrast, Wang et al. (2009) generate tempo-
ral task-specific trajectory constraints in a fully automated
fashion from landmark orderings (Hoffmann, Porteous, and
Sebastia 2004; Richter and Westphal 2010). This informa-
tion is used to derive better estimates with the FF heuristic

(Hoffmann and Nebel 2001) by evaluating it on a modified
task that makes the constraints visible to the heuristic.

We argue that trajectory constraints in propositional lin-
ear temporal logic on finite traces (LTLf) are suitable for a
much more extensive application in heuristic search: a uni-
fied way of describing path-dependent information inferred
during the search. In planning, there are many techniques
that exploit a specific type of information and maintain it
with specialized data structures and implementations. For
example, landmark heuristics (Richter and Westphal 2010;
Karpas and Domshlak 2009; Pommerening and Helmert
2013) track the landmark status for each operator sequence.
A unified formalism for these techniques would offer two
main advantages: decoupling the derivation and exploita-
tion of information and easily combining different sources
of information.

Currently the derivation and exploitation of information
are integrated in most cases: someone proposes a new source
of information and shows how it can correctly be exploited
(requiring new correctness proofs every time). In our frame-
work, LTLf formulas meeting a feasibility criterion provide
an interface between derivation and exploitation. Thus, new
sources of information only need to be proven to be feasi-
ble, while new ways of exploiting information only need to
be proven to derive (path) admissible heuristics for any in-
formation meeting this criterion. This separation will also
make it easier for practitioners in real-world applications to
specify domain-specific knowledge and correctly exploit it
without needing to know the details of heuristic search.

Due to the unified LTLf representation in our framework,
it is trivial to combine information from different sources. If
heuristics are able to use any kind of feasible information,
combining information will strengthen the heuristic without
needing to adapt the heuristic itself.

In the rest of the paper, we first introduce the necessary
background on LTLf and the considered planning formal-
ism. We define a feasibility criterion for LTLf trajectory
constraints in optimal planning that allows to combine con-
straints and to develop them over the course of actions. Af-
terwards, we demonstrate how feasible trajectory constraints
can be derived from several established sources of informa-
tion. We present a heuristic based on LTLf constraints and
show how the entire framework integrates with the A∗ algo-
rithm. We finish with an experimental evaluation.

Background
In linear temporal logic (LTL, Pnueli 1977) a world w over a
set P of propositional symbols is represented as set w ⊆ P
of the symbols that are true in w. LTL extends propositional
logic (with operators ¬ and ∧) with a unary operator dand a
binary operator U , which allow to formulate statements over
infinite sequences of such worlds. Intuitively, dϕmeans that
ϕ is true in the next world in the sequence, and ϕUψ means
that in some future world ψ is true and until then ϕ is true.

In addition, we use the following common abbreviations:

• Standard abbreviations of propositional logic such as ∨
(or),→ (implies), > (true), ⊥ (false)

• ♦ϕ = >Uϕ expresses that ϕ will eventually be true.

• �ϕ = ¬♦¬ϕ expresses that from the current world on, ϕ
will always be true.

• ϕRψ = ¬(¬ϕU¬ψ) expresses that ψ holds until ϕ holds
as well (releasing ψ) or forever.1

LTL on finite traces (LTLf , De Giacomo and Vardi 2013;
De Giacomo, De Masellis, and Montali 2014) defines se-
mantics for finite world sequences, using the additional ab-
breviation last = ¬ d>, which is true exactly in the last
world of the sequence.

Definition 1 (Semantics of LTLf). Let ϕ be an LTLf for-
mula over a set of propositional symbols P and let w =
〈w0, . . . , wn〉 be a sequence of worlds over P .

For 0 ≤ i ≤ n, we inductively define when ϕ is true at
instant i (written w, i |= ϕ) as:

• For p ∈ P , w, i |= p iff p ∈ w0

• w, i |= ¬ψ iff w, i 6|= ψ

• w, i |= ψ1 ∧ ψ2 iff w, i |= ψ1 and w, i |= ψ2

• w, i |= dψ iff i < n and w, i+ 1 |= ψ

• w, i |= ψ1Uψ2 iff there exists a j with i ≤ j ≤ n s.t.
w, j |= ψ2 and for all i ≤ k < j, w, k |= ψ1

If w, 0 |= ϕ, we say that ϕ is true in w or that w satisfies
ϕ and also write this as w |= ϕ.

In our application, we do not only want to reason about
finalized world sequences but also about possible contin-
uations of given prefixes. Bacchus and Kabanza (2000)
showed for standard LTL with infinite world sequences how
we can evaluate formulas progressively over the beginning
〈w0, . . . , wi〉 of a world sequence. The idea is to cre-
ate a formula which is satisfied by arbitrary continuations
〈wi+1, wi+2, . . . 〉 iff the original formula is satisfied by the
entire sequence 〈w0, . . . , wi, wi+1, . . . 〉. As long as we do
not progress over the last world in the sequence, the progres-
sion rules (shown in Figure 1) also work for LTLf :

Proposition 1. For an LTLf formula ϕ and a world
sequence 〈w0, . . . , wn〉 with n > 0 it holds that
〈w1, . . . , wn〉 |= progress(ϕ,w0) iff 〈w0, . . . , wn〉 |= ϕ.

1While R can be expressed in terms of the essential operators, it
is necessary for the positive normal form, which we will introduce
and use later.

ϕ progress(ϕ,w)

p ∈ P: > if p ∈ w, ⊥ otherwise
¬ψ: ¬progress(ψ,w)

ψ ∧ ψ′: progress(ψ,w) ∧ progress(ψ′, w)

ψ ∨ ψ′: progress(ψ,w) ∨ progress(ψ′, w)dψ: ψ

�ψ: progress(ψ,w) ∧�ψ
♦ψ: progress(ψ,w) ∨ ♦ψ
ψUψ′: progress(ψ′, w) ∨ (progress(ψ,w) ∧ (ψUψ′))
ψRψ′: progress(ψ′, w) ∧ (progress(ψ,w) ∨ (ψRψ′))
last: ⊥
>: >
⊥: ⊥

Figure 1: Progression Rules

For an example, consider formula ϕ = dx ∧ ♦z over
P = {x, y, z} stating that in the following world proposi-
tion x should be true and at some point z should be true.
The progression of ϕ with a world w = {x, z} is

progress(dx ∧ ♦z, w) = progress(dx,w) ∧
progress(♦z, w)

= x ∧ (progress(z, w) ∨ ♦z)
= x ∧ (> ∨ ♦z) ≡ x

The progression eliminates the ♦z from the formula be-
cause it is already satisfied with w. Subformula dx gets re-
placed with x, which fits the requirement that x should now
be true if ϕ is satisfied by the overall world sequence.

In the special case where a progression results to ⊥ (or
>), it is clear that no (or any) continuation will result in an
overall world sequence that satisfies the original formula.

We consider search problems given as STRIPS planning
tasks with action costs. Such a planning task is a tu-
ple Π = 〈V,A, I,G〉, where V is a set of propositional
state variables, A is a set of actions, I ⊆ V is the ini-
tial state and G ⊆ V is the goal description. An action
a = 〈pre(a), add(a), del(a), c(a)〉 ∈ A consists of the pre-
condition pre(a) ⊆ V , the add effects add(a) ⊆ V , the
delete effects del(a) ⊆ V and the action cost c(a) ∈ R+

0 . A
state s ⊆ V is defined by a subset of the variables. Action a
is applicable in state s if pre(a) ⊆ s. Applying a in s leads
to the successor state s[a] = (s\del(a))∪add(a). A path is
a sequence of actions π = 〈a1, . . . , an〉 and is applicable in
state s if the actions are applicable consecutively. We denote
the resulting state with s[〈a1, . . . , an〉]. For the empty path,
s[〈〉] = s. The cost of the path is c(π) =

∑n
i=1 c(ai). A

plan is a path π such that G ⊆ I[π]. It is optimal if it has
minimal cost.

We will formulate LTLf trajectory constraints that do not
only cover state variables but also action applications. We
follow the approach by Calvanese, De Giacomo, and Vardi
(2002) and introduce an additional variable a for each action
of the planning task. Therefore, the set P comprises these
action variables plus the state variables of the planning task.

For the concatenation of two finite sequences σ and σ′,
we write σσ′. For example, 〈w1, . . . , wn〉〈w′1, . . . , w′m〉 =
〈w1, . . . , wn, w

′
1, . . . , w

′
m〉. We use this notation for action

and world sequences.

Feasible LTLf Formulas for Optimal Planning
Graph search algorithms like A∗ operate on search nodes n
that associate a state s(n) with a path of cost g(n) from the
initial state I to this state. We want to associate search nodes
with LTLf trajectory constraints that characterize how the
path to the node should be continued. This information can
then be exploited for deriving heuristic estimates.

Such per node LTLf constraints are suitable for opti-
mal planning if they are satisfied by any continuation of
the path to the node into an optimal plan. To capture
this notion, we define the world sequence induced by path
ρ = 〈a1, . . . , an〉 in state s as wsρ = 〈{a1} ∪ s[a1], {a2} ∪
s[〈a1, a2〉], . . . , {an} ∪ s[ρ], s[ρ]〉 and introduce the follow-
ing feasibility criterion:

Definition 2 (Feasibility for nodes). Let Π be a planning
task with goal G and optimal plan cost h∗ and let n be a
node in the search space that is associated with state s.

An LTLf formula ϕ is feasible for n if for all paths ρ such
that

• ρ is applicable in s,
• the application of ρ leads to a goal state (G ⊆ s[ρ]), and
• g(n) + c(ρ) = h∗

it holds that wsρ |= ϕ.

If the path to node n is not a prefix of an optimal plan,
then any formula is feasible for n. Otherwise, ϕ must be
true for any continuation of the path into an optimal plan but
not necessarily for continuations into suboptimal plans.

If a formula is feasible for a node, its progression is feasi-
ble for the corresponding successor node.

Theorem 1. Let ϕ be a feasible formula for a node n, and
let n′ be the successor node reached from n with action a.
Then progress(ϕ, {a} ∪ s(n′)) is feasible for n′.

Proof. Let Ra be the set of paths that continue the history
of n to an optimal plan (and are therefore relevant for the
feasibility of ϕ) and in addition begin with action a. If Ra

is empty, the path leading to n′ cannot be continued to an
optimal plan and therefore any formula is feasible for n′.
Otherwise let ρ′ be a path that continues the path to n′ to an
optimal plan. Then ρ = 〈a〉ρ′ is in Ra and ws(n)ρ |= ϕ.

Since ws(n)ρ = 〈{a} ∪ s(n′)〉ws(n
′)

ρ′ , Proposition 1 implies

that ws(n
′)

ρ′ |= progress(ϕ, {a} ∪ s(n′)).

We also have the opportunity to incorporate additional
feasible trajectory constraints: if we can derive a new fea-
sible formula ϕnew for a node, we can safely combine it
with the progressed formula ϕprogress to a feasible formula
ϕprogress ∧ ϕnew.

Since graph search algorithms eliminate nodes with dupli-
cate states, a strategy for combining feasible formulas from

nodes with identical state is desirable. Instead of only keep-
ing the formula of the preserved node, we can exploit the
information of two paths of equal cost by combining the two
feasible formulas:

Theorem 2. Let n and n′ be two search nodes such that
g(n) = g(n′) and s(n) = s(n′). Let further ϕn and ϕn′ be
feasible for the respective node. Then ϕn ∧ ϕn′ is feasible
for both n and n′.

Proof sketch. Whether a formula is feasible for a node only
depends on the set of relevant paths characterized in Defini-
tion 2. The node only influences this characterization with
its g-value and its associated state s. Therefore, a formula is
either feasible for all nodes that agree on these components
or for none of them. Feasibility of the conjunction follows
directly from the LTLf semantics.

Feasible formulas for a node only talk about the future but
do not cover the current state. This can lead to an needlessly
complicated specification of information that is derived be-
fore starting the search. For example, the notion of land-
marks is defined for the entire state sequence traversed by
a plan – including the initial state. We therefore also intro-
duce feasibility for tasks that allows to naturally formulate
information about this entire state sequence.

Definition 3 (Feasibility for tasks). Let Π be a planning task
with initial state I . An LTLf formula ϕ is feasible for Π if
〈I〉wIπ∗ |= ϕ for all optimal plans π∗.

Progressing a feasible formula for a task with its initial
state yields a feasible formula for the initial search node.

Finding Feasible LTLf Trajectory Constraints
In this section we will demonstrate how existing examples
from the literature can be used to derive feasible LTLf tra-
jectory constraints. We will present details for landmarks
and unjustified action applications. To give an intuition for
the scope of the framework, we will also briefly comment
on further possibilities.

Fact Landmarks and Landmark Orderings
A (fact) landmark (Hoffmann, Porteous, and Sebastia 2004)
is a state variable that must be true at some point in every
plan. A landmark ordering specifies that before a landmark
becomes true some other landmark must have been true.

There are several methods in the literature to extract
such landmark information for a given planning task (Zhu
and Givan 2003; Hoffmann, Porteous, and Sebastia 2004;
Richter and Westphal 2010; Keyder, Richter, and Helmert
2010).

Wang, Baier, and McIlraith (2009) already encoded land-
mark orderings in LTL. Since in our scenario, progression
notices when a landmark has been reached, we can use a
slightly more compact formalization.

We base our definitions of landmarks and landmark order-
ings on the notions by Richter and Westphal (2010).

A state variable p is a (fact) landmark of a planning task
Π if the application of every plan π of Π visits some state

that contains p. Therefore, ♦p is a feasible formula for the
task if p is a landmark.

There are three types of sound landmark orderings.
A natural ordering l →nat l

′ states that if l′ becomes true
for the first time at time step i, then l must be true at some
time step j < i. This can be expressed as ¬l′U(l ∧ ¬l′)
because l′ can only become true after l was true.

A greedy-necessary ordering l →gn l
′ states that if l′ be-

comes true for the first time at step i, then l must be true at
time step i−1. This can be formulated as ¬l′U(l∧¬l′∧ dl′)
because l must be true directly before l′ becomes true for the
first time.

A necessary ordering l →nec l
′ states that for each time

step i where l′ becomes true, l must be true at time step
i − 1. Put differently, whenever l′ becomes true in the next
step, then currently l must be true: �(¬l′ ∧ dl′ → l).

There are important other landmark-related notions for
which we are not aware of any previous LTL encodings.

One such relevant source of information are the first
achievers of a landmark. A first achiever set FAl for a land-
mark l is a set of actions such that in any plan one of these
actions makes the landmark true for the first time. For a first
achiever set FAl the formula l ∨∨a∈FAl

♦a describes that if
the landmark is not initially true, then one of the actions in
the set needs to be applied.

The landmark count heuristic (Richter and Westphal
2010) counts how many landmarks have not yet been
reached (i. e., they have not been true on the path to the
node) and how many reached landmarks are required again.
A reached landmark l is required again if l is false in the
current state and there is a greedy-necessary (or necessary)
ordering l→ l′ where l′ has not yet been reached. Addition-
ally, any reached landmark l that is a goal proposition and
false in the current state is required again.

We can formulate these conditions for required again
landmarks as (♦l)U l′ for greedy-necessary orderings l →gn
l′ and as (♦g)U ∧g′∈G g

′ for goal landmarks g and goal
specification G.

All these formulas can be combined into a single LTLf

formula that is feasible for the task:
Proposition 2. For planning task Π with goal G, let L be a
set of landmarks and let Onat, Ogn, and Onec be sets of nat-
ural, greedy-necessary and necessary landmark orderings,
respectively. Let FA be a set of first achiever sets for land-
marks. The following formula ϕ is feasible for Π.

ϕ = ϕlm ∧ ϕfa ∧ ϕnat ∧ ϕgn ∧ ϕnec ∧ ϕra ∧ ϕgoal

where
• ϕlm =

∧
l∈L ♦l

• ϕfa =
∧

FAl∈FA

(
l ∨∨a∈FAl

♦a
)

• ϕnat =
∧

l→natl′∈Onat

(
¬l′U(l ∧ ¬l′)

)

• ϕgn =
∧

l→gnl′∈Ogn

(
¬l′U(l ∧ ¬l′ ∧ dl′))

• ϕnec =
∧

l→necl′∈Onec
�(¬l′ ∧ dl′ → l)

• ϕra =
∧

l→l′∈Ogn∪Onec

(
(♦l)U l′

)

• ϕgoal =
∧

g∈G
(
(♦g)U ∧g′∈G g

′)

The subformula ϕlm ∧ ϕra ∧ ϕgoal also provides an alter-
native way of computing the inadmissible landmark count
heuristic, which can only be used for planning without op-
timality guarantee: We determine this task-feasible formula
from the same precomputation as performed by the land-
mark count heuristic and progress it in our framework. The
heuristic estimate for a node can then be determined from
the associated feasible formula as the cardinality of the set
of all state variables that occur within a ♦ formula but are
false in the state of the node.

Action Landmarks
A (disjunctive) action landmark is a set of actions of which
at least one must occur in any plan.

If L is a set of action landmarks for state s′ then ϕL =∧
L∈L ♦(

∨
a∈L a) is feasible for all nodes n with s(n) = s′.

One example for an action landmark is the set of first
achievers for a landmark that is currently not true. Also the
LM-Cut heuristic (Helmert and Domshlak 2009) derives a
set of action landmarks as a byproduct of the heuristic com-
putation. The incremental LM-Cut heuristic (Pommerening
and Helmert 2013) stores and progresses this set to speed up
the LM-Cut computation for the successor states. At the ap-
plication of an action a, incremental LM-Cut creates a new
landmark set for the successor state by removing all action
landmarks that contain a. Let L and L′ be the respective
landmark sets before and after the action application. The
progression of ϕL over a is logically equivalent to ϕL′ , so
LTLf progression reflects the landmark-specific progression
by incremental LM-Cut.

Unjustified Action Applications
The key idea behind unjustified action applications (Karpas
and Domshlak 2011; 2012) is that every action that occurs in
a plan should contribute to the outcome of the plan – by en-
abling another action in the plan or by making a goal propo-
sition finally true.

The definition is based on the notion of causal links: a
path ρ = 〈a1, . . . , an〉 has a causal link between the i-th and
the j-th action application if i < j, ai adds a proposition p
which stays true and is not added again until step j − 1, and
p is a precondition of aj . If there is a link between the i-th
and a later action application in a plan π or the i-th action
adds a goal proposition that is not added again later, then the
i-th action application is justified, otherwise it is unjustified.

A plan π with an unjustified application of a positive-cost
action a cannot be optimal because removing this action ap-
plication from π results in a cheaper plan π′.

The notion of unjustified action applications is defined
for entire plans but during search the question is whether
the current path can be extended to a plan without unjusti-
fied action applications and how we can characterize such an
extension. The relevant information can easily be encoded
within the LTLf framework: if the last action application is
justified, at least one of the add effects must stay true and
cannot be added again until it is used as a precondition or
for satisfying the goal. Since we want to preserve all opti-
mal plans, we do not exploit this information for zero-cost
actions.

Theorem 3. Let Π = 〈V,A, I,G〉 be a planning task and
let n be a search node that was reached with a positive-cost
action a. Then the following formula ϕa is feasible for n:

ϕa =
∨

e∈add(a)\G

(
(e ∧

∧

a′∈A with
e∈add(a′)

¬a′)U
∨

a′∈A with
e∈pre(a′)

a′
)
∨

∨

e∈add(a)∩G

(
(e ∧

∧

a′∈A with
e∈add(a′)

¬a′)U
(
last ∨

∨

a′∈A with
e∈pre(a′)

a′
))

Proof sketch. Let ρ denote the path that lead to n. Assume
that ϕa is not feasible for n, so there is a path ρ′ that satisfies
the conditions from Definition 2 but ws(n)ρ′ 6|= ϕa. Then ρ′

does not use any add effect of a before it gets deleted or
added again by another action application. Also each goal
atom added by a is deleted or added again by ρ′. Therefore
the application of a in the plan ρρ′ is unjustified. As c(a) >
0 there exists a cheaper plan and g(n)+c(ρ′) cannot be equal
to the optimal plan cost of Π. This is a contradiction to ρ′
satisfying the conditions from Definition 2.

The original implementation of unjustified action appli-
cations requires an analysis of the causal links and resulting
causal chains of the action sequence. All information re-
quired for this reasoning is encoded in the LTLf formulas
and standard LTLf progression replaces this analysis of the
causal interactions.

We could even go further: Instead of adding a feasible
formula ϕa after each application of action a, we could also
extend the feasible formula for the initial node with a con-
junction

∧
a∈A a → dϕa, ranging over the set of all actions

A, and let the progression do the rest. However, since plan-
ning tasks can have thousands of actions, this would lead to
significant overhead in the progression.

Other Sources of Information
The scope of our approach is by far not limited to the pre-
viously introduced sources of information. Since space is
limited, we only briefly mention some other ideas.

One obvious possibility is the integration of previous LTL
methods like hand-written (Bacchus and Kabanza 2000;
Doherty and Kvarnström 2001) or learned (de la Rosa and
McIlraith 2011) LTL search control knowledge.

Also invariants such as mutex information can be added
to the LTLf formula to make them explicit to the heuristic
computation. The same holds for the fact that at the end the
goal G must be true (♦(last ∧∧g∈G g)).

The recent flow-based heuristics (van den Briel et al.
2007; Bonet 2013; Pommerening et al. 2014) build on the
observation that a variable cannot be (truly) deleted more
often than it is made true (with some special cases for the
initial state and the goal) but they ignore the order of the cor-
responding action applications. With LTLf formulas we can
express statements of the same flavor but preserving parts of
the ordering information. For an intuition, consider a for-
mula that states that whenever we apply an action deleting p

and later apply an action requiring p, we in between have to
apply an action adding p.

In principle, we could go as far as encoding the entire
planning task in the LTL formula (Cerrito and Mayer 1998).
The challenge with the framework will be to find a suitable
balance of the incurred overhead and the gain in heuristic
information.

Deriving Heuristic Estimates from Feasible
LTLf Trajectory Constraints

Deriving heuristic estimates from feasible LTLf trajectory
constraints is an interesting research question, which can-
not finally be answered in this paper. For the moment, we
only present a proof-of-concept heuristic that extracts land-
marks, essentially ignoring the temporal information carried
by the LTLf formula. However, the temporal aspects of the
LTLf formulas are still important for the heuristic estimate
because they preserve information over the course of pro-
gression. In the future we also want to investigate methods
that are based on LTL reasoning and which are therefore able
to derive stronger estimates from the temporal information.

Although we extract landmarks from the input LTLf for-
mula, this does not mean that this LTLf formula must stem
from landmark information. The heuristic is correct for any
kind of feasible LTLf formulas.

The heuristic computation first derives so-called node-
admissible disjunctive action landmarks from the LTLf

formula. The heuristic estimate is then determined from
these landmarks with the landmark heuristic by Karpas and
Domshlak (2009).

As introduced earlier, a disjunctive action landmark for a
state s is a set of actions such that every path from s to a
goal state contains at least one action from the set. We use a
weaker path-dependent notion that covers all optimal plans:
Definition 4. Let Π = 〈V,A, I,G〉 be a planning task and
n be a search node. A set L ⊆ A is a node-admissible dis-
junctive action landmark for n if every continuation of the
path to n into an optimal plan contains an action from L.

Using such node-admissible disjunctive action landmarks
in the landmark heuristic gives admissible estimates for all
nodes that correspond to a prefix of an optimal plan. Karpas
and Domshlak (2012) call this property path admissible.

Our method of extracting node-admissible landmarks
from LTLf formulas requires the formula to be in positive
normal form (also called negation normal form), where ¬
only appears in literals or before last. This is uncritical be-
cause any LTLf formula can efficiently be transformed into
positive normal form with De Morgan’s law and the follow-
ing equivalences:

¬ dϕ ≡ last ∨ d¬ϕ ¬�ϕ ≡ ♦¬ϕ
¬(ϕ1Uϕ2) ≡ (¬ϕ1)R(¬ϕ2) ¬♦ϕ ≡ �¬ϕ
¬(ϕ1Rϕ2) ≡ (¬ϕ1)U(¬ϕ2)

Moreover, progression preserves the normal form.
For the landmark extraction from the feasible formula, we

first derive an implied LTLf formula (Proposition 3) in con-
junctive normal form. We then extract node-admissible dis-
junctive action landmarks from its clauses (Theorem 4).

Proposition 3. Let ϕ be an LTLf trajectory constraint in
negation normal form. The following function lm defines an
LTLf formula such that ϕ |= lm(ϕ):

lm(x) = ♦x for literals x
lm(last) = ♦last

lm(¬last) = ♦¬last
lm(ϕ ∧ ψ) = lm(ϕ) ∧ lm(ψ)

lm(ϕ ∨ ψ) = lm(ϕ) ∨ lm(ψ)

lm(dϕ) = lm(�ϕ) = lm(♦ϕ) = lm(ϕ)

lm(ϕUψ) = lm(ϕRψ) = lm(ψ)

The proposition can easily be checked from the seman-
tics of LTLf . By distributing ∨ over ∧, we can trans-
form the formula into conjunctive normal form (CNF)∧n

i=1

∨mi

j=1 ♦ϕi,j , where each ϕi,j is a literal, last, or ¬last.
Clauses containing ♦last are tautologies and therefore not
valuable for the heuristic. Clauses containing ♦¬last are
trivially true for each world sequence of length at least two,
which is the case for the induced world sequences for any
path leading from a non-goal state to a goal state. There-
fore, we derive the action landmarks only from the remain-
ing clauses.
Theorem 4. Let Π = 〈V,A, I,G〉 be a planning task and
let ϕ be a feasible LTLf trajectory constraint for node n. Let
further ψ =

∨m
j=1 ♦xj (with xj being literals) be a formula

such that ϕ |= ψ.
If progress(ψ, s(n)) 6≡ >, then L =

⋃m
j=1 support(xj)

with

support(x) =





{a ∈ A | x ∈ add(a)} if x ∈ V
{a ∈ A | x ∈ del(a)} if x̄ ∈ V
{x} if x ∈ A

is a node-admissible disjunctive action landmark for n.

Proof. Since ϕ |= ψ, ψ also is feasible for n. By the se-
mantics of ♦, at least one xj must be true in some world in
any continuation to an optimal plan. If the progression is not
valid, then no state-variable literal xj is already true in the
current state.2 Thus, one of the xj needs to become true in
any optimal plan. For a proposition p, this means that pmust
be added by an action. Similarly, for a negated proposition
¬p, the proposition p must be deleted. An action variable a
requires the action to be applied. Therefore, any continua-
tion of the path to n into an optimal plan contains an action
from L.

Our proposed heuristic is the landmark heuristic com-
puted from all node-admissible disjunctive action landmarks
that can be derived from the trajectory constraints as de-
scribed in Proposition 3 and Theorem 4. In the special case
where the LTLf formula is detected unsatisfiable (simplifies
to ⊥), the heuristic returns∞ because the path to the node
cannot be extended into an optimal plan.

2Moreover, none of the xj is a negated action variable. Al-
though these would not prevent the clause from generating an ac-
tion landmark, the landmark would be very weak.

A∗ with LTLf Trajectory Constraints
Since LTLf trajectory constraints are path-dependent and
the heuristic is not admissible but only path admissible, we
need to adapt the A∗ algorithm so that it still guarantees op-
timal plans. This is only a small modification: whenever a
cheaper path to a state has been found, we need to recom-
pute the heuristic estimate with the new feasible information
instead of using a cached estimate (Karpas and Domshlak
2012). This leads to a different treatment of infinite heuristic
estimates. We also use the opportunity to show the integra-
tion of feasible LTLf formulas.

Algorithm 1 shows the adapted A∗ algorithm. We for-
mulated the algorithm with “eager” duplicate elimination so
that there is always at most one node for each state. Be-
sides the planning task, the algorithm takes a path admis-
sible heuristic function as input that computes the estimate
from a state and an LTLf formula.

We use a method taskFeasibleFormula(Π) that returns a
feasible formula for Π, and a method feasibleFormula(Π, π)
that generates a (path-dependent) feasible formula for the
node reached by path π.

The feasible formula for the task (line 3) is progressed
with the initial state to receive a feasible formula ϕ for the
initial search node, which can be further strenghened with
any other feasible formula for this node (line 4). If the
heuristic for the initial state and this formula is∞ then the
task is unsolvable. Otherwise, we create the initial node and
add it to the open list (lines 6–8).

When generating the successor n′ of node nwith action a,
we first progress the LTLf formula of n to get a new feasible
formula for n′, based on Theorem 1 (line 17). Based on
Theorem 2, this formula can be strengthened with a newly
derived LTLf formula that is feasible for this node (line 18).
If we do not want to incorporate additional information, the
method can simply return >.

If we encounter the successor state for the first time, we
create a new node n′ with the respective properties (line 21).
Otherwise, we distinguish three cases for the previously best
node for this state. If we already found a better path to this
state, we skip this successor (line 24). If we previously
found an equally good path to the state, we strengthen the
LTLf formula of the previous node based on Theorem 2 and
recompute the heuristic estimate (lines 26–28). If the previ-
ously best path to the state was worse, we update the node
with the data from the newly found path (lines 30–33).

In contrast to an admissible heuristic, with a path admis-
sible heuristic it is not safe to prune a state from the search
space if the heuristic estimate via one path (of cost g′) is∞.
However, we can conclude that no optimal plan traverses the
state with a cost of at least g′. To exploit this pruning power
for nodes encountered later, we do not discard a node with
infinite heuristic estimate but store it in the closed list (lines
35–36). If the node has a finite estimate, it gets enqueued in
the open list (line 38).

Experimental Evaluation
For the experimental evaluation, we implemented the LTLf

framework on top of Fast Downward (Helmert 2006). We

Algorithm 1: A∗ with LTLf trajectory constraints

input : Planning task Π = 〈V,A, I,G〉 and
path-admissible heuristic function h

output: Optimal plan π or unsolvable if Π is unsolvable

1 open← empty priority queue of nodes
2 closed← ∅
3 ϕΠ ← taskFeasibleFormula(Π)
4 ϕ← progress(ϕΠ, I) ∧ feasibleFormula(Π, 〈〉)
5 hval← h(I, ϕ)
6 if hval 6=∞ then
7 n← new node with n.state = I , n.g = 0,

n.h = hval, n.ϕ = ϕ and n.parent = ⊥
8 add n to open with priority hval
9 while open is not empty do

10 n← remove min from open
11 s← n.state
12 if s is goal state then
13 return extractPlan(n)
14 add n to closed
15 for all actions a applicable in s do
16 s′ ← s[a]
17 ϕ′ ← progress(n.ϕ, {a} ∪ s′)
18 ϕ′ ← ϕ′ ∧ feasibleFormula(Π, path to s′ via n)
19 g′ ← n.g + c(a)
20 if there exists no node n′ with n′.state = s′ then
21 n′ ← new node with n′.state = s′,

n′.g = g′, n′.h = h(s′, ϕ′),
n′.ϕ = ϕ′ and n′.parent = n

22 else
23 n′ ← unique node in open or closed with

n′.state = s′

24 if g′ > n′.g then continue
25 remove n′ from open /closed
26 if g′ = n′.g then
27 n′.ϕ← n′.ϕ ∧ ϕ′
28 n′.h← h(s′, n′.ϕ)
29 else
30 n′.ϕ← ϕ′

31 n′.g ← g′

32 n′.h← h(s′, ϕ′)
33 n′.parent← n
34 end
35 if n′.h =∞ then
36 add n′ to closed
37 else
38 add n′ to open with priority n′.g + n′.h
39 end
40 end
41 end
42 return unsolvable

conducted all experiments with a memory limit of 4 GB
and a time limit of 30 minutes (excluding Fast Downward’s
translation and preprocessing phase).

Our heuristic derives disjunctive action landmarks from
LTLf constraints as input for the admissible landmark
heuristic (Karpas and Domshlak 2009). To evaluate the
overhead of our approach, we compare it to the standard
implementation of the landmark heuristic with specialized
data structures exploiting the same (initial) landmark infor-
mation. In both cases, the landmark heuristic applies opti-
mal cost-partitioning for computing the estimate.

For the landmark generation, we use the same approach as
the BJOLP planner (Domshlak et al. 2011), combining land-
mark information from two generation methods (Richter and
Westphal 2010; Keyder, Richter, and Helmert 2010).

For the LTLf approach, we generate an initial feasible
LTLf formula from the first achiever and the required again
formulas (corresponding to ϕfa, ϕra, and ϕgoal in Proposi-
tion 2) for these landmarks. We do not use the landmark and
ordering formulas because they would not additionally con-
tribute to the heuristic estimates. We use this LTLf formula
as shown in Algorithm 1, not incorporating additional infor-
mation in line 18. In the following, we refer to this setup as
LTL-A∗ with hLM

AL .
A meaningful application of the standard implementa-

tion of the landmark heuristic requires the search algorithm
LM-A∗ (Karpas and Domshlak 2009) that extends A∗ with
multi-path support for landmarks. We refer to this setup as
LM-A∗ with hLA.

The comparison of these two approaches is not entirely
fair because LM-A∗ combines information from all paths to
a state while LTL-A∗ only combines formulas from equally
expensive paths. Thus, with a comparable search history,
LM-A∗ can sometimes derive better heuristic estimates.

Table 1 shows results for the STRIPS benchmarks of the
International Planning Competitions 1998–2011.

Overall, LM-A∗ with hLA solves 723 tasks and LTL-A∗

with hLM
AL finds solutions for 711 tasks. All unsolved in-

stances of the former are due to the time limit. With the
LTLf implementation 11 instances fail due to the memory
limit with 9 of them being airport instances.

To get a clearer idea of the memory overhead of the ap-
proach, we summed up the memory consumption of all com-
monly solved instances of each domain. The percentage in
parentheses shows the fraction of these two values where
numbers above 100% indicate that the LTLf approach re-
quired more memory. A positive surprise is that more often
than not our approach requires less memory. However, there
are also cases, where the increase in memory consumption
is significant, for example in the logistics-00 domain where
the LTLf implementation needs more than three times the
amount of the specialized implementation. This result is
not caused by the unfavorable comparison of the approaches
because the expansion numbers in both cases are identical.
Nevertheless, the memory consumption only is responsible
for a single unsolved task in this domain because 7 of the 8
affected instances fail due to a timeout.

LM-A∗ LTL-A∗

hLA hLM
AL hLM+UAA

AL

airport (50) 31 28 (335%) 26
barman (20) 0 0 (−%) 0
blocks (35) 26 26 (107%) 26
depot (22) 7 7 (86%) 7
driverlog (20) 14 14 (88%) 14
elevators-08 (30) 14 14 (78%) 13
elevators-11 (20) 11 11 (77%) 11
floortile (20) 2 2 (95%) 4
freecell (80) 52 51 (123%) 50
grid (5) 2 2 (108%) 2
gripper (20) 6 6 (187%) 6
logistics-00 (28) 20 20 (327%) 20
logistics-98 (35) 5 5 (99%) 5
miconic (150) 141 141 (116%) 141
mprime (35) 19 19 (90%) 20
mystery (30) 15 15 (83%) 15
nomystery (20) 18 17 (147%) 16
openstacks-08 (30) 14 12 (200%) 12
openstacks-11 (20) 9 7 (229%) 7
openstacks (30) 7 7 (107%) 7
parcprinter-08 (30) 15 14 (149%) 14
parcprinter-11 (20) 11 10 (152%) 10
parking (20) 1 1 (121%) 1
pathways (30) 4 4 (98%) 4
pegsol-08 (30) 26 26 (155%) 26
pegsol-11 (20) 16 16 (174%) 16
pipesworld-notan (50) 17 17 (91%) 17
pipesworld-tan (50) 9 10 (98%) 10
psr-small (50) 49 49 (87%) 49
rovers (40) 7 7 (91%) 7
satellite (36) 7 7 (86%) 7
scanalyzer-08 (30) 10 9 (111%) 9
scanalyzer-11 (20) 6 6 (114%) 6
sokoban-08 (30) 22 21 (76%) 22
sokoban-11 (20) 18 18 (76%) 18
tidybot (20) 14 14 (103%) 13
tpp (30) 6 6 (95%) 6
transport-08 (30) 11 11 (90%) 11
transport-11 (20) 6 6 (86%) 6
trucks (30) 7 7 (82%) 7
visitall (20) 16 16 (136%) 16
woodworking-08 (30) 14 14 (80%) 14
woodworking-11 (20) 9 9 (78%) 9
zenotravel (20) 9 9 (93%) 9
Sum (1396) 723 711 709

Table 1: Results for LM-A∗ with the standard landmark
heuristic and for LTL-A∗ using a feasible landmark-based
constraint (hLM

AL) and using additional feasible LTLf con-
straints from unjustified action applications (hLM+UAA

AL). The
percentage in parentheses shows the memory consumption
on the commonly solved instances compared to the first con-
figuration. All other numbers show coverage results.

100 101 102 103 104 105 106

100

101

102

103

104

105

106

uns.

unsolved

hLM
AL

h
L
M

+
U
A
A

A
L

Figure 2: Comparison of expansions.

In a second experiment, we include in addition feasi-
ble LTLf trajectory constraints as described in the section
on unjustified action applications. We denote the result-
ing heuristic hLM+UAA

AL . Coverage results are shown in the
last column of Table 1. Overall, the inclusion of the ad-
ditional feasible information leads to two fewer solved in-
stances. However, there are also domains where the cover-
age increases. One main reason for failure is a higher mem-
ory consumption leading to 83 instances that failed due to
the memory limit. Another reason is a time overhead that
leads to 13.4% fewer evaluations per second on the com-
monly solved instances. On the positive side, the heuristic is
indeed better informed which translates to a reduction in the
number of expanded nodes (cf. Figure 2).

Conclusion
We propose a clean and general LTLf framework for opti-
mal planning that is easy to prove correct. It is based on a
feasibility criterion for LTLf trajectory constraints and there
are plenty of possibilities to derive such feasible constraints
from established planning methods.

We presented a baseline heuristic from such constraints,
based on the extraction of disjunctive action landmarks. This
heuristic does not yet fully exploit the potential of the ap-
proach because it does not consider the temporal informa-
tion of the constraints. We plan to change this in future work
where we will to a greater extend exploit LTLf reasoning
methods in the heuristic computation. We also will investi-
gate the potential for strengthening other heuristic computa-
tions with the information from LTLf trajectory constraints,
similar to what Wang, Baier, and McIlraith (2009) have done
with landmark orderings and the FF heuristic. Another re-
search direction will be the examination of further sources
of information and of possible positive interactions of their
combination.

Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

References
Bacchus, F., and Kabanza, F. 1998. Planning for temporally
extended goals. Annals of Math. and AI 22(1,1):5–27.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. AIJ 116(1–
2):123–191.
Bonet, B. 2013. An admissible heuristic for SAS+ plan-
ning obtained from the state equation. In Proc. IJCAI 2013,
2268–2274.
Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002.
Reasoning about actions and planning in LTL action theo-
ries. In Proc. KR 2002, 593–602.
Cerrito, S., and Mayer, M. C. 1998. Using linear temporal
logic to model and solve planning problems. In Giunchiglia,
F., ed., Artificial Intelligence: Methodology, Systems, and
Applications (AIMSA 98), volume 1480 of LNCS, 141–152.
Springer-Verlag.
De Giacomo, G., and Vardi, M. Y. 2013. Linear tempo-
ral logic and linear dynamic logic on finite traces. In Proc.
IJCAI 2013, 854–860.
De Giacomo, G.; De Masellis, R.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-
ness. In Proc. AAAI 2014, 1027–1033.
de la Rosa, T., and McIlraith, S. 2011. Learning domain
control knowledge for TLPlan and beyond. In ICAPS 2011
Workshop on Planning and Learning, 36–43.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A tem-
poral logic based planner. AI Magazine 22(3):95–102.
Domshlak, C.; Helmert, M.; Karpas, E.; Keyder, E.; Richter,
S.; Röger, G.; Seipp, J.; and Westphal, M. 2011. BJOLP:
The big joint optimal landmarks planner. In IPC 2011 plan-
ner abstracts, 91–95.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical Report R. T. 2005-08-47,
Dipartimento di Elettronica per l’Automazione, Università
degli Studi di Brescia.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Kabanza, F., and Thiébaux, S. 2005. Search control in plan-
ning for temporally extended goals. In Proc. ICAPS 2005,
130–139.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proc. IJCAI 2009, 1728–1733.
Karpas, E., and Domshlak, C. 2011. Living on the edge:
Safe search with unsafe heuristics. In ICAPS 2011 Workshop
on Heuristics for Domain-Independent Planning, 53–58.

Karpas, E., and Domshlak, C. 2012. Optimal search with
inadmissible heuristics. In Proc. ICAPS 2012, 92–100.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In Proc. ECAI 2010,
335–340.
Koehler, J., and Treinen, R. 1995. Constraint deduction in
an interval-based temporal logic. In Fisher, M., and Owens,
R., eds., Executable Modal and Temporal Logics, volume
897 of LNCS, 103–117. Springer-Verlag.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS 1977), 46–57.
Pommerening, F., and Helmert, M. 2013. Incremental LM-
cut. In Proc. ICAPS 2013, 162–170.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
Proc. ICAPS 2014, 226–234.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Simon, S., and Röger, G. 2015. Finding and exploiting
LTL trajectory constraints in heuristic search. In Proc. SoCS
2015. To appear.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Proc. CP 2007, 651–665.
Wang, L.; Baier, J.; and McIlraith, S. 2009. Viewing land-
marks as temporally extended goals. In ICAPS 2009 Work-
shop on Heuristics for Domain-Independent Planning, 49–
56.
Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

Simulation-Based Admissible Dominance Pruning

Álvaro Torralba and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
torralba@cs.uni-saarland.de, hoffmann@cs.uni-saarland.de

Abstract

In optimal planning as heuristic search, admissible pruning
techniques are paramount. One idea is dominance pruning,
identifying states “better than” other states. Prior approaches
are limited to simple dominance notions, like “more STRIPS
facts true” or “higher resource supply”. We apply simula-
tion, well-known in model checking, to compute much more
general dominance relations based on comparing transition
behavior across states. We do so effectively by expressing
state-space simulations through the composition of simula-
tions on orthogonal projections. We show how simulation can
be made more powerful by intertwining it with a notion of la-
bel dominance. Our experiments show substantial improve-
ments across several IPC benchmark domains.

Introduction
Heuristic search is the predominant approach to cost-optimal
planning. But the number of states that must be explored to
prove optimality often grows exponentially even when us-
ing extremely well-informed heuristics (Helmert and Röger
2008). Therefore, recent years have seen substantial effort
devoted to identifying and exploiting structure allowing to
prune redundant parts of the state space. Known techniques
of this kind pertain to symmetries (e. g. (Fox and Long 1999;
2002; Domshlak, Katz, and Shleyfman 2012)), partial-order
reduction based methods like expansion-core (Chen and Yao
2009) or strong stubborn sets (Valmari 1989; Wehrle and
Helmert 2012; Wehrle et al. 2013; Wehrle and Helmert
2014), and dominance pruning (Hall et al. 2013). We follow
up on the latter here.

Dominance pruning is based on identifying states “better
than” other states. For example, consider a Logistics task
where one truck must carry several packages to location G.
Consider the position of any one package p. All other state
variables having equal values, the best is to have p at G, and
it is better for p to be in the truck than at any location other
than G. We refer to this kind of relation between states as a
dominance relation. (Hall et al. use the term “partial-order”,
which we change here to avoid ambiguity with, e. g., partial-
order reduction.)

Two main questions need to be answered: (1) How to
discover the dominance relation? (2) How to simplify the
search (and/or planning task) given a dominance relation?
Hall et al. answered (2) in terms of an admissible prun-

ing method, pruning state s if a dominating state t, with
an at-most-as-costly path, has already been seen. We fol-
low that idea here, contributing a BDD implementation. Our
main contribution regards (1). Hall et al. use dominance re-
lations characterized by consumed resources: state t dom-
inates state s if s and t are identical except that t(r) ≥
s(r) for all resources r.1 Herein, we instead find the dom-
inance relation through simulation, used in model checking
mainly to compare different system models (Milner 1971;
Gentilini, Piazza, and Policriti 2003).

A simulation is a relation � on states where, whenever
s � t, for every transition s → s′ there exists a transition
t → t′ using the same action, such that s′ � t′. In words,
t simulates s if anything we can do in s, we can do also in
t, leading to a simulating state. (For the reader familiar with
the use of bisimulation in merge-and-shrink (Helmert et al.
2014): simulation is “one half of” bisimulation.) A simula-
tion clearly qualifies as a dominance relation. But how to
find a simulation on the state space?

We employ a compositional approach, obtaining our sim-
ulation relation on the state space from simulation relations
on orthogonal projections, i. e., projections whose variable
subsets do not overlap. We enhance simulation with a con-
cept of label (action) dominance, in addition to states. In
our Logistics example above, e. g., for each package this de-
tects the described relation (G is better than being in the
truck is better than being at any location other than G). This
yields a very strong dominance relation that allows to ignore
any state in which a package is unnecessarily unloaded at
an irrelevant location. Empirically, we find that indeed our
pruning method often substantially reduces the number of
expanded nodes.

For space reasons, we omit some proofs. Full proofs, and
more examples, will be made available in a TR.

Background
A planning task is a 4-tuple Π = (V,A, I,G). V is a finite
set of variables v, each v ∈ V being associated with a fi-

1Precisely, Hall et al. consider numeric state variables r and an-
alyze whether higher r is always good, or is always bad, or neither.
In Metric-FF’s (Hoffmann 2003) linear normal form, this is equiva-
lent to the formulation above. Hall et al. also handle STRIPS facts,
as variables with domain {0, 1}. But, there, their notions trivialize
to “t dominates s if t ⊇ s”.

nite domain Dv . A partial state over V is a function s on
a subset V (s) of V , so that s(v) ∈ Dv for all v ∈ V (s); s
is a state if V (s) = V . The initial state I is a state. The
goal G is a partial state. A is a finite set of actions, each
a ∈ A being a pair (prea, eff a) of partial states, called its
precondition and effect. Each a ∈ A is also associated with
its non-negative cost c(a) ∈ R+

0 .
A labeled transition system (LTS) is a tuple Θ =

(S,L, T, s0, SG) where S is a finite set of states, L is a finite
set of labels each associated with a label cost c(l) ∈ R+

0 ,
T ⊆ S × L × S is a set of transitions, s0 ∈ S is the start
state, and SG ⊆ S is the set of goal states.

The state space of a planning task Π is the LTS ΘΠ

where: S is the set of all states; s0 is the initial state I of
Π; s ∈ SG iff G ⊆ s; the labels L are the actions A, and
s

a−→ s′ is a transition in T if s complies with prea, and
s′(v) = eff a(v) for v ∈ V (eff a) while s′(v) = s(v) for
v ∈ V \V (eff a). A plan for a state s is a path from s to any
sG ∈ SG. The cost of a cheapest plan for s is denoted h∗(s).
A plan for s0 is a plan for Π, and is optimal iff its cost equals
h∗(s0). As defined by Wehrle and Helmert (2014), a plan for
s is strongly optimal if its number of 0-cost actions is min-
imal among all optimal plans for s. We denote by h0∗(s) the
number of 0-cost actions in a strongly optimal plan of s.

Abstractions and abstract state spaces are quite common
in planning (e. g. (Helmert, Haslum, and Hoffmann 2007)).
We build on this work, but only indirectly. We use merge-
and-shrink abstractions as the basis from which our simula-
tion process starts. That process itself will be described in a
generic form not relying on these specific constructs. Hence,
in what follows, we provide only a summary view that suf-
fices to present our contribution.

Say we have a task Π = (V,A, I,G) with state space
ΘΠ = (S,A, T, I, SG), and a variable subset W ⊆ V .
The projection onto W is the function πW : S 7→ SW

from the states S over V into the states SW over W , where
πW (s) is the restriction of s to W . The projected state
space ΘW

Π is the LTS (SW , A, TW , πW (I), SWG), where
TW := {(πW (s), l, πW (s′)) | (s, l, s′) ∈ T} and SWG :=
{πW (sG) | sG ∈ SG}. Given two variable subsets W
and U , (the projections onto) W and U are orthogonal if
W ∩ U = ∅. Orthogonality ensures the following recon-
struction property: ΘW

Π ⊗ ΘU
Π = ΘW∪U

Π for orthogonal
W and U , where ⊗ is the synchronized product opera-
tion. Namely, given any two labeled transition systems Θ1 =
(S1, L, T 1, s1

0, S
1
G) and Θ2 = (S2, L, T 2, s2

0, S
2
G) that share

the same set L of labels, Θ1 ⊗ Θ2 is the labeled transition
system with states S1 × S2, labels L, transition (s1, s2)

l−→
(s′1, s

′
2) iff s1

l−→ s′1 ∈ T 1 and s2
l−→ s′2 ∈ T 2, start state

(s1
0, s

2
0), and goal states {(s1

G, s
2
G) | s1

G ∈ S1
G, s

2
G ∈ S2

G}.
Merge-and-shrink abstractions (Helmert, Haslum, and

Hoffmann 2007; Helmert et al. 2014) construct more gen-
eral abstraction functions, and the corresponding abstract
state spaces, by starting from atomic abstractions (projec-
tions onto single state variables), and interleaving merging
steps (replacing two abstractions with their synchronized
product) with shrinking steps (replacing an abstraction with
an abstraction of itself). It has been shown that, if every

shrinking step replaces the selected abstraction with a bisim-
ulation of itself, then the final abstraction is a bisimulation
of the overall state space ΘΠ. It has also been shown that
such shrinking can be combined with exact label reduction
(Sievers, Wehrle, and Helmert 2014). A label reduction is
a function τ from the labels L into a set Lτ of reduced la-
bels preserving label cost i. e. c(l) = c(τ(l)). Given an LTS
Θ, denote by τ(Θ) the LTS identical to Θ except that all la-
bels l have been replaced by τ(l). Given a set {Θ1, . . . ,Θk}
of LTSs sharing labels L, a label reduction τ is exact if
τ(Θ1)⊗ · · ·⊗ τ(Θk) = τ(Θ1⊗ · · ·⊗Θk). Reducing labels
in this way, and using bisimulation shrinking, merge-and-
shrink delivers a bisimulation of τ(ΘΠ).

Simulation Relations
Given a planning task with states S, a dominance relation
is a binary relation �⊆ S × S where s � t implies h∗(t) ≤
h∗(s) and, if h∗(t) = h∗(s) then h0∗(t) ≤ h0∗(s). This is
exactly what is needed for admissible pruning during search,
as discussed in the next section.

To find dominance relations in practice, we focus on
the special case of simulation relations. These are well
known in model-checking (e. g. (Grumberg and Long 1994;
Loiseaux et al. 1995)). Here we use a variant adapted to
planning (only) in making explicit the distinction between
goal states and non-goal states:

Definition 1 (Simulation) Let Θ = (S,L, T, s0, SG) be an
LTS. A binary relation �⊆ S × S is a simulation for Θ if,
whenever s � t (in words: t simulates s), for every transi-
tion s l−→ s′ there exists a transition t l−→ t′ s.t. s′ � t′. We
call � goal-respecting for Θ if, whenever s � t, s ∈ SG
implies that t ∈ SG.

We call � the coarsest goal-respecting simulation if, for
every goal-respecting simulation �′, we have �′⊆�.

A unique coarsest goal-respecting simulation always ex-
ists and can be computed in time polynomial in the size of
Θ (Henzinger, Henzinger, and Kopke 1995). Note that the
coarsest simulation is always reflexive, i. e., s � s; the same
is true of all simulation relations considered here. Intuitively,
every state “dominates itself”.

Observe that s � t implies h∗(t) ≤ h∗(s), because any
plan for s can be also applied to t. Hence a goal-respecting
simulation over states is a dominance relation. But, for ob-
taining that property, goal-respecting simulation is unnec-
essarily strict. It suffices to preserve, not the label l of the
transition s→ s′, but only its cost:

Definition 2 (Cost-Simulation) Let Θ = (S,L, T, s0, SG)
be an LTS. A binary relation�⊆ S×S is a cost-simulation
for Θ if, whenever s � t, s ∈ SG implies that t ∈ SG, and

for every transition s l−→ s′ there exists a transition t l′−→ t′

s.t. s′ � t′ and c(l′) ≤ c(l).2

A cost-simulation still is a dominance relation, and any
goal-respecting simulation is a cost-simulation but not vice

2Hall et al. (2013) include an equivalent definition, calling it
“compatibility” and not relating it to simulation.

versa. However, in our compositional approach where in-
dividual dominance relations are computed on orthogonal
projections, we need to preserve labels for synchroniza-
tion across these projections. Hence, to ensure we obtain
a dominance relation of the state space, we must use goal-
respecting simulation (rather than cost-simulation) on each
projection.

For our notion of label dominance, it will be important to
consider LTSs with NOOPs added. For any LTS Θ, we de-
note by Θnoop the same LTS but with a new additional label
noop where c(noop) = 0 and, for every state s, a new tran-
sition s

noop−−−→ s. Obviously, any dominance relation over
Θnoop is a dominance relation over Θ. So for our purposes
it suffices to find a dominance relation over the state space
(ΘΠ)noop with NOOPs added.

Admissible Dominance Pruning
By A∗ with dominance pruning, we refer to the following
modification of A∗: Whenever a node N with state s(N)
and path cost g(N) is generated, check whether there exists
a node N ′ in the open or closed lists, with state s(N ′) and
path cost g(N ′), so that s(N) � s(N ′) and g(N ′) ≤ g(N).
If so, pruneN , i. e. do not insert it into the open list, nor into
the closed list.

As s � t implies h∗(t) ≤ h∗(s), any plan through N
costs at least as much as an optimal plan through N ′, so A∗

with dominance pruning guarantees optimality. In presence
of 0-cost actions, one must be careful to not prune s if this
eliminates all possible plans for t. However, s cannot belong
to the strongly optimal plan of t because s � t and h∗(t) =
h∗(s) implies h0∗(t) ≤ h0∗(s).

Dominance pruning can reduce A∗’s search space, but
comes with a computational overhead. First, checking cost,
the runtime required for checking whether there exists a
nodeN ′ in the open or closed lists, with the mentioned prop-
erties. Second, maintenance cost, the runtime and memory
required for maintaining whichever data structure is used to
keep checking cost (which is excessive in a naı̈ve implemen-
tation) at bay. Depending on which of these two costs tend
to be higher, variants of dominance pruning make sense.

Hall et al.’s (2013) dominance relations are characterized
by resources r. They maintain, for each r, the set S(r) of
seen states with a positive value for r. Given a new state s,
their check iterates over the states in the intersection of S(r)
for those r where s(r) is positive. This implementation has
high checking cost but low maintenance cost. Hence Hall
et al. perform the check not at node-generation time, but at
node-expansion time, reducing the number of checks that
will be made.

To deal with our much more general dominance rela-
tions, we developed a BDD-based (Bryant 1986) implemen-
tation. This has low checking cost but high maintenance
cost. Hence we perform the check at node-generation time,
but only against the closed list, reducing the number of
maintenance operations needed.

We maintain a BDD Bg for the set of states simulated by
any s(N ′) where N ′ is a previously expanded node with
g(N ′) = g. This is done for every g-value of the expanded

nodes so far. Every time a node N ′ is expanded, we deter-
mine the set of states S�s(N ′) simulated by s(N ′), and add
S�s(N ′) into Bg(N ′). The checking operation then is very
fast: when a node N is generated, test membership of s(N)
in Bg for all g ≤ g(N). Each such test takes time linear in
the size of the state.

The Compositional Approach
As hinted, our approach is compositional, constructing the
dominance relation over the state space ΘΠ as the com-
position of simulation relations over orthogonal projections
thereof. Stating this in a generic manner (and simplifying to
the atomic case of two orthogonal projections), we have an
LTS Θ12 which equals the synchronized product Θ1 ⊗ Θ2

of two smaller LTSs. We obtain a simulation for Θ12 from
simulations for Θ1 and Θ2:

Definition 3 (Relation Composition) Let Θ1 =
(S1, L, T 1, s1

0, S
1
G) and Θ2 = (S2, L, T 2, s2

0, S
2
G) be

LTSs sharing the same labels. For binary relations
�1⊆ S1×S1 and�2⊆ S2×S2, the composition of�1 and
�2, denoted �1 ⊗ �2, is the binary relation on S1 × S2

where (s1, s2)(�1 ⊗ �2)(t1, t2) iff s1 �1 t1 and s2 �2 t2.

Proposition 1 Let Θ12 = Θ1 ⊗ Θ2, and let �1 and �2

be goal-respecting simulations for Θ1 and Θ2 respectively.
Then �1 ⊗ �2 is a goal-respecting simulation for Θ12.

The proof is direct by definition, and is almost identical
to that of a similar result concerning bisimulation, stated by
Helmert et al. (2014).

Our basic idea can now be described as follows. Say we
have a planning task Π = (V,A, I,G) with state space ΘΠ,
a partition V1, . . . , Vk of the task’s variables, and a goal-
respecting bisimulation abstraction αi of each τ(ΘVi

Π) where
τ is an exact label reduction. This is precisely the input we
will get from merge-and-shrink abstraction. We will hence-
forth refer to this input as our initial abstractions. Say we
construct a goal-respecting simulation �i for each abstract
state space Θαi . Because bisimulation is a special case of
simulation, �i is a goal-respecting simulation for τ(ΘVi

Π).
Applying Definition 3 and Proposition 1 iteratively,

⊗
i �i

is a goal-respecting simulation for
⊗

i τ(ΘVi

Π). Because τ is
exact,

⊗
i τ(ΘVi

Π) = τ(
⊗

i ΘVi

Π), and by the reconstruction
property τ(

⊗
i ΘVi

Π) = τ(ΘΠ). Because the label reduction
is cost-preserving,

⊗
i �i is a cost-simulation for ΘΠ, and

hence a dominance relation as desired.
One can use this result and method as-is, obtaining a new

dominance pruning method as a corollary of suitably assem-
bling existing results and methods. However, empirically,
this method’s ability to find interesting dominance relations
is quite limited. We now extend the simulation concept to
overcome that problem.

Label-Dominance Simulation
Sievers et al. (2014) introduce label “subsumption”, where
l′ subsumes l if it labels all transitions labeled by l. To inter-
twine dominance between labels with dominance between
states, we extend that concept as follows:

Definition 4 (Label Dominance) Let Θ be an LTS with
states S, let � ⊆ S × S be any binary relation on S, and
let l, l′ be labels. We say that l′ dominates l in Θ given � if
c(l′) ≤ c(l), and for every transition s l−→ s′ there exists a

transition s l′−→ t′ s.t. s′ � t′.
The relation� here is arbitrary, but will be a simulation in

practice. Hence, intuitively, a label dominates another one if
it “applies to the same states and always leads to an at least
as good state”. To give a simple example, consider the LTS
corresponding to a single vehicle’s position, and say we have
a 0-cost “beam” action which takes us from any position to
the vehicle’s goal. Provided that every position is, per �,
simulated by the goal position, “beam” dominates all other
labels.

In IPC benchmarks, typically Definition 4 is important not
for regular actions, but for NOOPs.

Example 1 say we have a truck variable vT , two locations
A and B, and a package variable vP whose goal is to be
at B. Our variable partition is the trivial one, V1 = {vT }
and V2 = {vP }. Bisimulation using exact label reduction
will return LTSs as shown in Figure 1. The “load” and “un-
load” actions get reduced in a way allowing to synchronize
with the correct truck position; the distinction between the
truck “drive” actions is irrelevant so these are reduced to
the same label. Clearly, no label dominates any other in ei-
ther of these two LTSs. However, consider Θ1 and Θ2 with
NOOPs added. The new label noop dominates the load/un-
load actions in Θ1, and dominates the drive actions in Θ2,
provided�1 and�2 are reflexive as will be the case in prac-
tice.

Θ1:
(truck) A B

dr

dr

lA lB

Θ2:
(package) A T B

lA

lA

lB

lB

dr dr dr

Figure 1: Label-reduced bisimulations, i. e. the input to our
simulation process, in the Logistics example.

This behavior allows us, e. g., to conclude that, in Θ2, B
dominates T : While T has an outgoing transition to B, la-
beled lB , B itself has no such outgoing label. However, B
has the outgoing label noop leading to B. The transition
B

noop−−−→ B simulates T lB−→ B, except that it uses label
l′ = noop instead of label l = lB . This is admissible (only)
if l′ dominates l in all other LTSs involved. In our case here,
the only other LTS is Θ1, and indeed the label l′ = noop
dominates l = lB in that LTS.

We exploit this kind of information as follows:

Definition 5 (Label-Dominance Simulation) Let T =
{Θ1, . . . ,Θk} be a set of LTSs sharing the same labels. De-
note the states of Θi by Si. A set R = {�1, . . . ,�k} of

binary relations �i⊆ Si ×Si is a label-dominance simula-
tion for T if, whenever s �i t, s ∈ SGi implies that t ∈ SGi ,

and for every transition s l−→ s′ in Θi, there exists a transi-

tion t l′−→ t′ in Θi such that c(l′) ≤ c(l), s′ �i t′, and, for
all j 6= i, l′ dominates l in Θj given �j .

We callR the coarsest label-dominance simulation if, for
every label-dominance simulationR′ = {�′1, . . . ,�′k} for
T , we have �′i ⊆�i for all i.

A unique coarsest label-dominance simulation always ex-
ists, and can be computed in time polynomial in the size of
T . We will prove this in the next section as a corollary of
specifying our algorithm for doing this computation.

In the example, T �2 B holds because s l−→ s′ in Θ2 is

T
lB−→ B, and the simulating t l′−→ t′ in Θ2 is B

noop−−−→ B,
which works because c(noop) = 0 ≤ 1 = c(lB), B �2 B,
and noop dominates lB in Θ1. In the same fashion, pro-
vided that A �2 B, the transition T lA−→ A is simulated by
B

noop−−−→ B. Note that neither of these two inferences could
be made with the standard concept of simulation (even after
exact label reduction), because that concept insists on using
the same labels, not dominating ones.

We now prove soundness of label-dominance simula-
tion, i. e., that label-dominance simulations R yield cost-
simulations of the original state space. Similarly to before,
we iteratively compose R’s element relations, as captured
by the following lemma:
Lemma 1 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels, and let R = {�1, . . . ,�k} be a label-
dominance simulation for T . Then {�1 ⊗ �2,�3, . . . ,�k}
is a label dominance simulation for {Θ1⊗Θ2,Θ3, . . . ,Θk}.
Proof Sketch: The claim regarding �3, . . . ,�k is simple.
For �1 ⊗ �2, consider states (s1, s2) �12 (t1, t2) and
a transition (s1, s2)

l−→ (s′1, s
′
2). We identify a dominating

transition (t1, t2)
l′−→ (t′1, t

′
2) as follows: 1. As s1 �1 t1, ob-

tain a transition t1
ltmp

−−→ ttmp
1 dominating s1

l−→ s′1 in Θ1. 2.

As ltmp dominates l in Θ2, obtain a transition s2
ltmp

−−→ stmp
2

dominating s2
l−→ s′2 in Θ2. 3. As s2 �2 t2, obtain a tran-

sition t2
l′−→ t′2 dominating s2

ltmp

−−→ stmp
2 in Θ2. 4. As l′

dominates ltmp in Θ1, obtain a transition t1
l′−→ t′1 dominat-

ing t1
ltmp

−−→ ttmp
1 in Θ1. �

Theorem 1 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels, and let R = {�1, . . . ,�k} be a
label-dominance simulation for T . Then

⊗
i �i is a cost-

simulation for
⊗

i Θi.

Proof: Applying Lemma 1, we get that
⊗

i �i is a label-
dominance simulation for {⊗i Θi}. Now, for such a single-

ton set of LTSs, the requirements on the transition t l′−→ t′

replacing s l−→ s′ are that c(l′) ≤ c(l), and s′ �i t′. Hence
label-dominance simulation simplifies to cost-simulation,
and the claim follows. �

To clarify the overall process, assume now again the initial
abstractions provided by merge-and-shrink abstraction, i. e.,
a partition V1, . . . , Vk of the variables, and a goal-respecting
bisimulation abstraction αi, with abstract state space Θαi ,
of each τ(ΘVi

Π) where τ is an exact label reduction. We
compute the coarsest label-dominance simulation R =
{�1, . . . ,�k} for T := {Θα1

noop , . . . ,Θ
αk
noop}. As adding

NOOPs does not affect bisimulation and is interchangeable
with the synchronized product, with Theorem 1 we have that⊗

i �i is a cost-simulation for [
⊗

i τ(ΘVi

Π)]noop , and hence
a cost-simulation for ΘΠ as desired.

ComputingR
We now show how to operationalize Definition 5: Given
T = {Θ1, . . . ,Θk}, how to compute the coarsest label-
dominance simulationR for T ?

It is well known that the coarsest simulation can be com-
puted in time polynomial in the size of the input LTS (Hen-
zinger, Henzinger, and Kopke 1995). The algorithm starts
with the most generous relation � possible, then iteratively
removes pairs s � t that do not satisfy the simulation con-
dition. When no more changes occur, the unique coarsest
simulation has been found. This method extends straightfor-
wardly to label-dominance simulation.

Proposition 2 Let T = {Θ1, . . . ,Θk} be a set of LTSs
sharing the same labels. Then a unique coarsest label-
dominance simulation for T exists.

Proof: The identity relation is a label-dominance simula-
tion. If R = {�1, . . . ,�k} and R′ = {�′1, . . . ,�′k}
are label-dominance simulations, then {�1 ∪�′1, . . . ,�k
∪�′k}, also is a label-dominance simulation. �

Denote the states of Θi by Si. Define the Boolean function
Ok(i, s, t), where s �i t, to return true iff the condition for
label-dominance simulation holds, i. e., iff s ∈ SGi implies

that t ∈ SGi , and for every transition s l−→ s′ in Θi there

exists a transition t l′−→ t′ in Θi such that c(l′) ≤ c(l), s′ �i
t′, and, for all j 6= i, l′ dominates l in Θj given �j . Our
algorithm proceeds as follows:

For all i, set �i:= {(s, t) | s, t ∈ Si, s 6∈ SiG or t ∈ SiG}
while ex. (i, s, t) s.t. not Ok(i, s, t) do

Select one such triple (i, s, t)
Set �i:=�i \{(s, t)}

endwhile
returnR := {�1, . . . ,�k}
Proposition 3 Let T = {Θ1, . . . ,Θk} be a set of LTSs
sharing the same labels. Our algorithm terminates in time
polynomial in the size of T , and returns the coarsest label-
dominance simulation for T .

Proof: Each iteration reduces one �i by one element. This
gives a polynomial bound on the number of iterations, and
every iteration takes polynomial time.

The returned R is a label-dominance simulation as
that is the termination condition. R is coarsest as every
label-dominance simulation must refine the initial relations

{(s, t) | s, t ∈ Si, s 6∈ SiG or t ∈ SiG}, and every time
we remove a pair (s, t) we know that s 6�i t in any label-
dominance simulation. �

Example 2 Consider again our Logistics example. The ini-
tial relation �1 for the truck is complete, i. e. �1= {(A,A),
(A,B), (B,A), (B,B)} because the truck has no own
goal. In the initial relation �2 for the package, we have
all pairs (s, t) except ones where s is in the goal but t is
not: �2= {(A,A), (A, T), (T,A), (T, T), (A,B), (T,B),
(B,B)}.

Figure 1 shows the LTSs the fixed point algorithm will
work on. Considering the package relation �2, note that
(2, T, A) is not Ok: A cannot match the transition T lB−→ B
because the only value dominating B is B itself, and A does
not have any outgoing transition to B. Now consider the
truck variable. Note first that (1, A,B) is not Ok: A has the

outgoing transition A lA−→ A. B could only match this via
B

dr−→ A, B lB−→ B, or B
noop−−−→ B but neither dr , lB , nor

noop dominate lA in the package LTS Θ2 since (T,A) is
not in �2 anymore. The same holds similarly for (1, B,A)

because of the outgoing transition B lB−→ B of B.
Hence �1 is reduced to the identity relation and �2 is re-

duced to {(A,A), (A, T), (T, T), (A,B), (T,B), (B,B)}.
Note that this relation corresponds to the statement “T dom-
inates A, and B dominates T”, which is exactly what we
wanted to obtain. Indeed, the algorithm stops here, i. e., all
elements of �2 are now Ok. This is trivial for the identity
pairs (A,A), (T, T), (B,B). Regarding (A, T), transition

A
lA−→ T is simulated by T

noop−−−→ T because noop dom-
inates lA in Θ1. Regarding (T,B), we already discussed

above that both T
lB−→ B and T

lA−→ A are simulated
by B

noop−−−→ B. The same is true, regarding (A,B), for

A
lA−→ T .

Note that standard simulation relation does not derive any
dominance relation other than the identity relation in our ex-
ample. The desired relation is only obtained thanks to using
label-dominance and the noop operation.

Experiments
Our techniques are implemented in Fast Downward (FD)
(Helmert 2006). We ran all optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB). We run
A∗ with FD’s blind heuristic, and with LM-cut (Helmert
and Domshlak 2009). We perform an ablation study of
label-dominance simulation, vs. standard simulation (nei-
ther NOOPs nor label-dominance), vs. bisimulation as com-
puted by merge-and-shrink (not doing any work on top
of merge-and-shrink, just using its output for the prun-
ing). To represent the state of the art in alternative prun-
ing methods, we include the best-performing partial-order
reduction based on strong stubborn sets, which dominates

Blind LM-cut
Coverage Evaluations Gen/sec. Coverage Evaluations Gen/sec.

Domain # A L0 L S B P L S B P L P A L0 L S B P L S B P L P
Airport 50 22 −7 −7 −7 0 −1 1.2 1.2 1 4.4 341 11.3 28 −3 −1 −1 −1 +1 1 1 1 4.7 1.1 2
Driverlog 20 7 +2 +2 0 0 0 15.8 2 2 1 4.8 2.8 13 0 0 0 0 0 1.9 1.2 1.2 1 1.1 1.2
Elevators08 30 14 −1 0 0 0 0 1 1 1 1.1 0.9 4.1 22 0 0 0 0 0 1 1 1 1.3 1 1.2
Elevators11 20 12 −1 0 0 0 0 1 1 1 1.1 1 4.2 18 0 0 0 0 0 1 1 1 1.2 1 1.2
Floortile11 20 2 +4 +4 +4 0 0 177 177 1.8 1.3 5.7 3.7 7 +1 +1 +1 0 0 6.4 6.4 1 1 1.1 1.1
Floortile14 20 0 +5 +5 +5 0 0 – – – – – – 6 +2 +2 +2 0 0 6.3 6.3 1 1 1.3 1.1
FreeCell 80 20 −7 0 0 0 −6 1 1 1 1 1 31.2 15 −1 0 0 0 0 1 1 1 1 0.9 1.4
Gripper 20 8 +6 +6 +6 +6 0 53968 53968 28353 1 292 3.1 7 +7 +7 +7 +7 0 14662 14662 10049 1 31.9 1.3
Hiking14 20 11 0 0 0 0 −3 2.4 1.9 1.8 1 3.1 30.5 9 0 0 0 0 0 1.7 1.5 1.5 1 1.9 1.8
Logistics00 28 10 +7 +6 0 0 0 32.7 3.1 1.2 1 9.3 3 20 0 0 0 0 0 1.9 1.1 1.1 2.9 0.8 1.4
Logistics98 35 2 +1 +1 0 0 0 6.7 1.2 1.2 1.5 4 4.4 6 0 0 0 0 0 1.3 1 1 4.3 0.9 1.3
Miconic 150 55 +6 +6 −1 0 −5 58.3 8.7 3.4 1 15.6 5.5 141 0 0 0 0 0 2.1 1.5 1.1 1 0.6 1.1
Mprime 35 20 −1 −1 0 0 −1 1.1 1 1 1 18 18.5 22 0 0 0 0 0 1.1 1 1 1 1 1.1
Mystery 30 15 −3 −3 −3 0 0 1.9 1.9 1 1.1 29.2 14.2 17 0 0 0 0 0 3.5 3.5 1 1.4 3.4 1.8
NoMystery 20 8 +10 +10 +1 +1 0 2497 128 29.1 1.1 46.4 23 14 +6 +6 +3 0 0 6.5 3.1 1 1 0.6 1.2
OpenStack08 30 22 +2 +2 +2 +1 0 2.1 2 1.8 2 8.1 9.3 21 0 0 0 0 0 2.5 2.4 2.1 1.8 2.3 2
OpenStack11 20 17 +2 +2 +2 +1 0 2.1 2 1.8 2 7.8 9.3 16 0 0 0 0 0 2.5 2.4 2.1 1.8 2.3 2.1
OpenStack14 20 3 0 0 0 0 +1 2.8 2.8 2.5 1.8 7 7.8 3 0 0 0 0 0 2.9 2.8 2.5 1.8 2.4 2.1
ParcPrint08 30 10 +6 +5 +3 +1 +20 862 10 1.5 18349 13.6 532 18 0 0 0 0 +12 5 1.2 1.1 1028 2.2 20.3
ParcPrint11 20 6 +6 +5 +3 +1 +14 869 10 1.5 21826 11.2 371 13 0 0 0 0 +7 5 1.2 1.1 1246 2.4 17.8
PegSol08 30 27 0 0 0 0 0 1 1 1 1 1 3.8 28 −1 0 0 0 −1 1 1 1 1 1 1.4
PegSol11 20 17 0 0 0 0 0 1 1 1 1 1 3.8 18 −1 0 0 0 −1 1 1 1 1 1 1.4
PipesNoTank 50 17 −8 −1 −1 0 −3 1 1 1 1 1.1 10.3 17 −3 0 0 0 0 1 1 1 1 1 1.1
PipesTank 50 12 −1 0 0 0 −3 1.1 1.1 1.1 1 16.8 25.2 12 0 0 0 0 −1 1.8 1.8 1.8 1 1.1 1.2
Rovers 40 6 +2 +2 +1 0 +1 33.4 9.6 1.7 2 20.6 3 7 +2 +2 +1 +1 +2 6.1 3.8 1.2 4.4 1.8 1.8
Satellite 36 6 0 0 0 0 0 72.9 35.3 9.9 10.7 8.4 3.8 7 +3 +3 +3 +3 +4 4.8 1.8 1.7 21.5 0.9 2.3
Scanalyzer08 30 12 0 0 0 0 −4 1 1 1 1 1 8.7 15 −1 −1 −1 0 0 1 1 1 1 1 1.2
Scanalyzer11 20 9 0 0 0 0 −4 1 1 1 1 1 8.7 12 −1 −1 −1 0 0 1 1 1 1 1 1.2
Sokoban08 30 22 −9 0 0 0 −1 1 1 1 1 1.7 8.2 29 −7 −1 0 0 0 1 1 1 1 1.1 1.2
Sokoban11 20 19 −9 0 0 0 −1 1 1 1 1 1.6 8.1 20 −2 0 0 0 0 1 1 1 1 1.1 1.2
Tetris 17 9 −6 −1 −1 −1 −4 1 1 1 1 5.2 52.2 6 −3 −2 −2 −2 −1 1 1 1 1 1 1.3
Tidybot11 20 9 −8 −7 −7 −1 −2 5.5 5.5 1 1.8 59.4 8.5 14 −2 −2 −2 0 0 6.8 6.8 1 1.5 2.6 1.3
Tidybot14 20 2 −2 −2 −2 −1 −2 – – – – – – 9 −7 −7 −7 −1 −1 3.9 3.9 1 1.7 3.1 1.4
TPP 30 6 0 0 0 0 0 6.5 3.4 1 1 22.7 3.3 6 +1 +1 +1 +1 0 1.2 1.1 1 1 1.3 1.1
Transport14 20 7 0 0 0 0 −1 1 1 1 1 1 9.1 6 0 0 0 0 0 1.4 1.4 1.4 1 1.4 1.2
Trucks 30 6 +2 +2 0 0 0 24.8 21.9 2.8 1 13.8 6 10 0 0 0 0 0 2.7 2.3 1 1 1.2 1.2
VisitAll11 20 9 0 0 0 0 0 30 25.5 1 1 104 3.5 10 +1 +1 +1 0 0 7 6.8 1 1 1.5 1.1
VisitAll14 20 3 +1 +1 +1 0 0 27.8 23.4 1 1 92.8 3.5 5 0 0 0 0 0 5.2 5.1 1 1 1.6 1.1
Woodwork08 30 8 +10 +10 +5 +4 +7 981 112 87.8 488 7.6 7.5 17 +7 +7 +5 +5 +10 91.4 23.7 16.9 762 1.8 3.1
Woodwork11 20 3 +9 +9 +5 +4 +6 1059 116 92.2 514 6.7 6.3 12 +5 +5 +4 +4 +7 91.6 23.8 17 772 1.8 2.9
Zenotravel 20 8 +1 +1 0 0 0 41.6 1.5 1.1 1 4.3 6.2 13 0 0 0 0 0 3.6 1.6 1 1 1 1.2∑

1271 605 +19 +57 +16 +16 +8 1.8 1.7 1.5 1.4 4.2 7.4 833 +3 +20 +14 +17 +38 0 0 0 0 1.7 1.5

Table 1: Experiments. “A”: A∗ without pruning. ”L0”, “L”: label-dominance simulation; “S”: simulation; “B”: bisimulation;
“L0” is without safety belt (see text), all others with safety belt. “P”: partial-order reduction. Domains where no changes in
coverage occur anywhere are omitted. “Evaluations” is the factor by which the per-domain summed-up number of evaluated
states, relative to “A”, decreases. “Gen/sec.” is the factor by which the per-node runtime (summed-up number of generated
nodes divided by summed-up search time), relative to “A”, increases.

other partial-order pruning approaches such as expansion-
core (Wehrle et al. 2013).

Our initial abstractions are obtained using merge-and-
shrink with exact label reduction, bisimulation shrinking,
and the non-linear merge DFP strategy (Dräger, Finkbeiner,
and Podelski 2006; 2009; Sievers, Wehrle, and Helmert
2014). We impose two bounds on this process, namely a time
limit of 300 seconds, as well as a limit M on the number of
abstract transitions. When either of these limits is reached,
the last completed abstractions form the starting point for
our simulation process, i. e., are taken to be the initial ab-
stractions. With this arrangement of parameters, the trade-
off between merge-and-shrink overhead incurred vs. bene-
fits gained is relatively easy to control. The bound on tran-
sitions works better than the more usual bound on abstract
states, because the same number of abstract states may lead
to widely differing numbers of transitions and thus actual
effort. A reasonably good “magic” setting forM , in our cur-
rent context, is 100k. For M = 0, i. e. computing the com-
ponent simulations on individual state variables only, per-
formance is substantially worse. For M = 200k, the over-
head becomes prohibitive. In between, overall coverage un-

dergoes relatively small changes only (in the order of 5 in-
stances).

Consider Table 1. With our pruning method, nodes are
first generated and then checked for pruning, so the evalu-
ated states are exactly the non-pruned generated ones. Hence
the number of evaluated states assesses our pruning power,
and the ratio between generated nodes and search time as-
sesses the average time-per-node. The “safety belt” disables
pruning if, after 1000 expansions, no node has been pruned.
This is a simple yet effective method to avoid runtime over-
head in cases where no or not much pruning will be ob-
tained.

Compared to partial-order reduction, simulation-based
pruning tends to be “stronger on its own, but less com-
plementary to LM-cut”. Consider first the blind heuristic,
which assesses the pruning power of each technique “on
its own”. Simulation-based pruning typically yields much
stronger evaluation reductions, the only clear exception be-
ing ParcPrinter where partial-order reduction excels. This
results in much better coverage in many domains and over-
all. With LM-cut, on the other hand, while simulation-based
pruning still applies more broadly – there are 14 test suites

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(a) total time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(b) −M&S time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(c) − simulation time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(d) − BDD setup time

Figure 2: Runtime of A∗ with LM-cut, without pruning on the x-axis, with simulation-based pruning on the y-axis. We distin-
guish the successive pre-processing overheads in our current implementation by deducting them iteratively. Version with max
number transitions of 100 000.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(a) total time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(b) −M&S time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(c) − simulation time

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(d) − BDD setup time

Figure 3: Runtime of A∗ with LM-cut, without pruning on the x-axis, with simulation-based pruning on the y-axis. We distin-
guish the successive pre-processing overheads in our current implementation by deducting them iteratively. Version with max
number transitions of 10 000.

where it reduces evaluations but partial-order reduction does
not – the extent of the reduction is dramatically diminished.
Partial-order reduction suffers from this as well, but retains
much of its power in ParcPrinter and Woodworking, and
consistently causes very little runtime overhead relative to
this slow heuristic function. Thus partial-order reduction has
better overall coverage. It does not dominate simulation-
based pruning though, which yields better coverage in Floor-
tile, Gripper, NoMystery, TPP, and VisitAll.

Label-dominance simulation clearly pays off against stan-
dard simulation as well as bisimulation. The latter already
is very helpful in some domains, like Gripper and Wood-
working. Simulation does add over this, but suffers in some
domains, like Tidybot, from the additional runtime over-
head. Label-dominance simulation has such issues as well,
but makes up for them by more pronounced gains on other
domains.

The per-node runtime overhead in simulation-based prun-
ing is almost consistently outweighed by the search space
size reduction (compare the respective “Gen/sec.” vs. “Eval-
uations” columns in Table 1). The most substantial runtime
overhead stems from computing the simulation relations.
Our current implementation of that process is largely naı̈ve.
We experimented with ideas from model checking for doing
this more effectively, but with limited success due to the dif-
ferent context (especially, label-dominance). It remains an
important open topic to improve this part of our machinery.

Figure 2 shows a comparison of the time to solve a prob-
lem with and without dominance pruning when considering

different parts of the preprocessing or not. We subdivide pre-
processing time into three separated components: the time
to generate the M&S abstractions, the time to compute the
simulation relation and the time to initialize the BDDs. The
plots show the comparison of total time and then substract
the three parts of the preprocessing, one at a time.

The per-node overhead is almost consistently outweighted
by the search space size reduction, as shown by the search
time comparison in Figure 2d. Thus, runtime is improved
in large instances, where the preprocessing runtime is dom-
inated by the search runtime, but not on small ones due to
spending up to 300 seconds in the preprocessing phase (see
Figure 2).

However, the time spent in preprocessing can be con-
trolled by lowering the parameter max number of transitions,
M . Smaller M avoids much of the preprocessing overhead,
at a small price in overall coverage. Figure 3 shows the time
comparison when the abstraction size is kept below 10 000
transitions. In this case, the overhead of computing the label-
dominance simulation and BDD initialization is heavily re-
duced. Most of the overhead is due to the creation of the
M&S abstractions. Reducing M does not increase cover-
age since the main cause for failing at problems solved by
the baseline is that M&S runs out of time or memory dur-
ing label reduction. Total coverage is 846, seven problems
less than the version with abstractions of 100 000 nodes. The
coverage decreases in Woodworking (−3), Scanalyzer (−2),
and Gripper(−7), but the reduced overhead makes coverage
increase in OpenStack(+4) and Sokoban(+1).

Conclusion
The idea of pruning states based on some form of “domi-
nance” is old, but has previously been incarnated in plan-
ning with simple special cases (“more facts true”, “more re-
sources available”) only. Simulation relations are the natural
framework to move beyond this. Our work constitutes a first
step towards leveraging the power of simulation relations in,
as well as extending them for, admissible pruning in plan-
ning. The method is orthogonal to existing pruning meth-
ods, and empirically exhibits complementary strengths rela-
tive to partial-order reduction, so there is potential for syn-
ergy. A major challenge in our view is how to intelligently
control initial-abstraction size, investing a lot of overhead
where simulation pruning is promising and, ideally, avoid-
ing any overhead altogether where it is not.

Proofs
Proposition 1 Let Θ12 = Θ1 ⊗ Θ2, and let �1 and �2

be goal-respecting simulations over Θ1 and Θ2 respectively.
Then �1 ⊗ �2 is a goal-respecting simulation for Θ12.

Proof: Denote, for simplicity, �1 ⊗ �2 by �12. First, we
show that�12 is a simulation of Θ12. For every (s1, s2) �12

(t1, t2) and transition (s1, s2)
l−→ (s′1, s

′
2) in Θ12, we have to

show that there exists a transition (t1, t2)
l−→ (t′1, t

′
2) in Θ12

such that (s′1, s
′
2) �12 (t′1, t

′
2).

As (s1, s2)
l−→ (s′1, s

′
2), by the definition of the synchro-

nized product, s1
l−→ s′1 is a transition in Θ1 and s2

l−→ s′2 is
a transition in Θ2. From (s1, s2) �12 (t1, t2), by construc-
tion of �12 we know that s1 �1 t1 and s2 �2 t2. Therefore,
because �1 and �2 are simulations over Θ1 and Θ2 respec-
tively, there exist transitions t1

l−→ t′1 in Θ1 and t2
l−→ t′2 in

Θ2 such that s′1 �1 t
′
1 and s′2 �2 t

′
2. We have (s′1, s

′
2) �12

(t′1, t
′
2) by construction of �12. Moreover, by the definition

of the synchronized product, (t1, t2)
l−→ (t′1, t

′
2) in Θ12 as

desired.
We now prove that �12 is goal-respecting. Suppose for

contradiction that (s1, s2) �12 (t1, t2) and (s1, s2) is a goal
state, but (t1, t2) is not. Then both s1 and s2 must be goal
states, and at least one of t1 or t2 must be a non-goal state.
By construction of �12, s1 �1 t1 and s2 �2 t2. Therefore,
either �1 or �2 is not goal-respecting, in contradiction. �

Lemma 1 Let T = {Θ1, . . . ,Θk} be a set of LTSs shar-
ing the same labels, and let R = {�1, . . . ,�k} be a label-
dominance simulation for T . Then {�1 ⊗ �2,�3, . . . ,�k}
is a label dominance simulation for {Θ1⊗Θ2,Θ3, . . . ,Θk}.
Proof: Denote, for simplicity, �1 ⊗ �2 by �12 and Θ1 ⊗
Θ2 by Θ12. We first show that �12 satisfies its part of the
claim: For every (s1, s2) �12 (t1, t2) we show that (i) if
(s1, s2) is a goal state in Θ12 then (t1, t2) also is a goal state
in Θ12, and (ii) for every transition (s1, s2)

l−→ (s′1, s
′
2), there

exists a transition (t1, t2)
l′−→ (t′1, t

′
2) where c(l′) ≤ c(l),

(s′1, s
′
2) �12 (t′1, t

′
2) and l′ dominates l in Θj given �j for

all j ≥ 3.

Part (i) is easy to see: As R is a label dominance simula-
tion, and s1 �1 t1 as well as s2 �1 t2 by construction of
�12, we know that si ∈ SGi implies ti ∈ SGi (for i = 1, 2).
The claim then follows directly from the definition of the
synchronized product.

Regarding part (ii), observe first that, because s1
l−→ s′1 is

a transition in Θ1, and R is a label dominance simulation,

there is a transition t1
ltmp

−−→ ttmp
1 in Θ1 such that c(ltmp) ≤

c(l), s′1 �1 t
tmp
1 , and ltmp dominates l in Θj given �j for

all j ≥ 2. As ltmp dominates l in Θ2, and s2
l−→ s′2 is a

transition in Θ2, there is a transition s2
ltmp

−−→ stmp
2 in Θ2,

where s′2 �2 s
tmp
2 . Now, as s2 �2 t2 and R is a label dom-

inance simulation, there is a transition t2
l′−→ t′2 in Θ2 such

that c(l′) ≤ c(ltmp), stmp
2 �2 t

′
2, and l′ dominates ltmp in

Θj given �j for all j 6= 2. Because l′ dominates ltmp in Θ1

given �1, and t1
ltmp

−−→ ttmp
1 is a transition in Θ1, there is a

transition t1
l′−→ t′1 in Θ1, where ttmp

1 �1 t
′
1.

We now have (a) transitions t1
l′−→ t′1 in Θ1 and t2

l′−→
t′2 in Θ2, where c(l′) ≤ c(ltmp) ≤ c(l). We furthermore
have s′1 �1 ttmp

1 and ttmp
1 �1 t′1, from which because all

relations in a label-dominance simulation must be transitive
we have that (b) s′1 �1 t

′
1. Similarly, from s′2 �2 s

tmp
2 and

stmp
2 �2 t′2 we get (c) s′2 �2 t′2. Together, (a–c) clearly

show what we needed to prove.
Consider now the relations �3, . . . ,�k. Since these are

unchanged from the original label-dominance simulationR,
for their part of the claim it suffices to prove that, if l′ dom-
inates l in Θ1 with respect to �1 and in Θ2 with respect to
�2, then l′ dominates l in Θ12 with respect to�12. Hence we
have to prove that, for every transition (s1, s2)

l−→ (t1, t2),

there exists another transition (s1, s2)
l′−→ (t′1, t

′
2) where

(t1, t2) �12 (t′1, t
′
2).

As l′ dominates l in Θ1 with respect to �1, there exists a

transition s1
l′−→ t′1 in Θ1 with t1 �1 t

′
1. As l′ dominates l

in Θ2 with respect to �2, there exists a transition s2
l′−→ t′2

in Θ2 with t2 �2 t′2. The claim follows directly from the
definitions of the synchronized product and �12. �

References
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1659–1664.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proc. 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS’12).
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In

Proceedings of the 13th International SPIN Workshop (SPIN
2006), volume 3925 of Lecture Notes in Computer Science,
19–34.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. STTT
11(1):27–37.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In Proc. 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99),
956–961.
Fox, M., and Long, D. 2002. Extending the exploitation
of symmetries in planning. In Proc. 6th International Con-
ference on Artificial Intelligence Planning and Scheduling
(AIPS-02), 83–91.
Gentilini, R.; Piazza, C.; and Policriti, A. 2003. From bisim-
ulation to simulation: Coarsest partition problems. Journal
of Automated Reasoning 31(1):73–103.
Grumberg, O., and Long, D. E. 1994. Model checking and
modular verification. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16(3):843–871.
Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013.
Faster optimal planning with partial-order pruning. In Proc.
23rd International Conference on Automated Planning and
Scheduling (ICAPS’13).
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. 23rd National Conference of the American
Association for Artificial Intelligence (AAAI-08), 944–949.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 176–183.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Henzinger, M. R.; Henzinger, T. A.; and Kopke, P. W. 1995.
Computing simulations on finite and infinite graphs. In 36th
Annual Symposium on Foundations of Computer Science.,
453–462.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Loiseaux, C.; Graf, S.; Sifakis, J.; Bouajjani, A.; and Ben-
salem, S. 1995. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in Sys-
tem Design 6(1):11–44.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proc. 2nd International Joint Confer-
ence on Artificial Intelligence (IJCAI-71), 481–489.

Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proc.
28th AAAI Conference on Artificial Intelligence (AAAI’14),
2358–2366.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. volume 483 of Lecture Notes in Computer Science,
491–515.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS’12).
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc.
24th International Conference on Automated Planning and
Scheduling (ICAPS’14).
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In Proc. 23rd International Conference
on Automated Planning and Scheduling (ICAPS’13).

