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About Benchmarking and Competitions of Solvers
in Constraint Programming

Frédéric Boussemart1 and Christophe Lecoutre1 and Arnaud Malapert2 and Cédric Piette1
1 Université d’artois, CNRS, CRIL, UMR 8188, rue de l’université, 62307 Lens cedex, France
2 Université Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract

CSP (Constraint Satisfaction Problem) is the problem of
finding an assignment of values to a set of variables such
that a set of constraints is satisfied. In this short paper,
we briefly describe how past CSP competitions were
conducted, present the main features of the new format
XCSP3, targeted to become a CP (Constraint Program-
ming) standard, and discuss about classification of in-
stances as well as ranking of solvers. In the context of
benchmarking and solver competitions, this position pa-
per aims at encouraging the cross-fertilization of ideas
and methods in both planning and constraint reasoning
domains.

Constraint programming (CP) is a general technology
providing simple, general and efficient models and algo-
rithms for solving combinatorial constrained problems. At
the heart of CP, we find the framework CSP (Constraint
Satisfaction Problem) that consists in solving problem in-
stances represented by Constraint Networks (CNs). A solu-
tion to a CN is obtained by instantiating its set of variables
so that its set of constraints is satisfied. This framework has
many derivatives, mainly extensions, as indicated in Figure
1: temporal CSP (TCSP), weighted CSP (WCSP), valued
CSP (VCSP), quantified CSP (QCSP), constraint optimiza-
tion problem (COP), Max-CSP, distributed CSP (DisCSP),
and so on.
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Figure 1: The framework CSP and some of its extensions.
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Systems for solving CP instances are called constraint
solvers. Several competitions have been organized over the
years to assess the different solvers or algorithms developed
in the CP community. A first series of competitions has fo-
cused on generic, black-box solvers that do not require hu-
man intervention to perform well. These competitions have
been organized in this spirit, using XCSP 2.1 as input for-
mat, in 2005, 2006, 2008 and 2009. They have contributed
to identify interesting techniques and to draw a fair picture
of state-of-the-art algorithms or heuristics (Lecoutre, Rous-
sel, and van Dongen 2010). On the other hand, every year
since 2008, another series of competitions has been run:
the MiniZinc challenge. Different solvers are compared on
common Minizinc/Flatzinc benchmarks, in particular so that
solver implementers can examine the detailed results and de-
termine the strengths and weaknesses of their system, and
problem modelers can judge which system might be prefer-
able for their problem (Stuckey, Becket, and Fischer 2010).
In the rest of the paper, we briefly describe how past CP
competitions were conducted, present the main features of
the new format XCSP3, and discuss about classification of
instances as well as ranking of solvers.

Constraint Solver Competitions
In this section, we succinctly present how the fourth inter-
national constraint solver competition (CSC), held in 2009,
was organized. There were three problems:

• CSP

• Max-CSP

• WCSP

The objective for CSP is finding a solution or proving that
no solution exists. The objective for Max-CSP is finding
an assignment of variables that violates as few constraints
as possible. The objective for WCSP is finding an assign-
ment of minimal violation cost (cost functions, instead of
hard constraints, are considered). CSP is a decision problem
whereas Max-CSP and WCSP are optimization ones.

There were two solver categories:

• complete

• incomplete

Complete solvers can determine if an instance is satisfi-
able or not (or can find and prove optimality for Max-CSP

http://www.cril.univ-artois.fr/CSC09
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and WCSP) whereas incomplete solvers cannot prove the
unsatisfiability or the optimum.

The format used to represent problem instances was
XCSP 2.1; it is described in (Roussel and Lecoutre 2009).
Some tools were also provided:

• C and C++ parsers for XCSP 2.1

• A Java parser for XCSP 2.1

• A program to check the validity of problem instances in
format XCSP 2.1

• A program to check solutions

Execution Environment

Solvers were run on a cluster of computers using the Linux
operating system. They were run under the control of an-
other program that enforces some limits on memory and
CPU time. Solvers were run inside a sandbox that prevents
unauthorized use of the system (network connections, file
creation outside the allowed directory, among others). It was
required that two executions of a solver with the same pa-
rameters and system resources should output the same result
in approximately the same time (so that the experiments can
be repeated).

Of course, contestants were asked to provide the organiz-
ers with a command line for running their solvers. In this
command line, the following placeholders were replaced by
the actual information given by the evaluation environment:

• BENCHNAME replaced by the name of the file contain-
ing the instance to solve.

• RANDOMSEED replaced by a random seed which is a
number between 0 and 4, 294, 967, 295. This parameter
had to be used for initializing the random number genera-
tor (when the solver uses random numbers). It is recorded
by the evaluation environment, which allows to solve a
given instance under the same conditions if necessary.

• TIMEOUT represents the total CPU time (in seconds) that
the solver may use before being killed. May be used to
adapt the solver strategy.

• MEMLIMIT represents the total amount of memory (in
MiB) that the solver may use before being killed. May be
used to adapt the solver strategy.

• TMPDIR is the name of the only directory where the
solver is allowed to read/write temporary files.

• DIR is the name of the directory where the solver files are
stored.

After TIMEOUT seconds have elapsed, the solver first re-
ceives a SIGTERM to give it a chance to output the best
solution found so far (in the case of an optimizing solver).
One second later, the program receives a SIGKILL signal
from the controlling program to terminate the solver. Simi-
larly, a solver that used more memory than the limit defined
by MEMLIMIT was sent a SIGTERM followed one second
later by a SIGKILL.

The solver could not write to any file except standard out-
put, standard error and files in the TMPDIR directory. A
solver was not allowed to open any network connection or

launch external commands which are not related to the solv-
ing process.

Output Rules

The evaluation environment recorded everything that is out-
put by a solver on stdout/stderr (up to a limit of 1MiB) and
put a timestamp on each line. This can be very informative
to check how solvers behave on some instances.

Of course, solvers had to output special messages to the
standard output in order to check results. The output for-
mat was inspired by the DIMACS output specification of
the SAT competitions. Lines output by the solver had to be
prefixed by “c ”,“s ”,“v ”, “d ” or “o ”. Other lines were
ignored.

• solution (“s ” line) These lines are mandatory, start with
lower case s followed by space (ASCII code 32), and are
followed by one of the following answers:

– UNSUPPORTED

– SATISFIABLE

– UNSATISFIABLE (only used for CSP)

– UNKNOWN

– OPTIMUM FOUND

Note that UNSUPPORTED is used when the solver rec-
ognizes a constraint that is not implemented.

• values (“v ” line) These lines are mandatory and contain a
solution, i.e., a sequence of numbers, with whitespace as
separator.

• diagnostic (“d ” line) These lines are optional. A keyword
followed by a value must be given on such lines. For ex-
ample, a possible keyword is ASSIGNMENTS.

• comment (“c ” line) Such lines are optional and may ap-
pear anywhere in the solver output. They contain any in-
formation that authors want to output. They are recorded
by the evaluation environment for later viewing.

• objective cost (“o ” line) (for Max-CSP and WCSP, only)
These lines contain an integer value.

On the one hand, a CSP solver had to output exactly one
“s ” line and in addition, when the instance is found SAT-
ISFIABLE, exactly one “v ” line. On the other hand, since
a MAX-CSP or WCSP solver does not stop as soon as it
finds a solution but instead tries to find a better solution, it
must be given a way to output the best found solution even
when it reaches the time limit. There are two options de-
pending on the ability of the solver to intercept signals. The
first option can be used if the solver is able to catch the sig-
nal SIGTERM : when interrupted, it must output the best
found solution. The second option must be used otherwise:
a certificate “v ” line is output each time the solver finds a
solution which is better than the previous ones.

Ranking

For each problem (CSP, Max-CSP and WCSP) and solver
category, a ranking was computed for different categories of
instances, based on constraint arity (binary and non-binary

http://www.satcompetition.org
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constraints) and constraint representation (extensional, in-
tensional and global constraints). Solvers were ranked as fol-
lows.

CSP: Solvers claiming incorrect results in a given category
were disqualified from this category. Of the remaining
solvers, the solver solving the most problems were de-
clared the winner. Ties were broken by considering the
minimum total solution time.

Max-CSP/WCSP: Solvers with no incorrect results in a
given category were ranked as follows:

Incomplete solvers were ranked in increasing order of
their average relative error (i.e. the average normalized
difference between the cost of solutions found by the
solver and the cost of the best known solutions).

Complete solvers were ranked in decreasing order of the
number of instances for which a solution was proved
to be OPTIMUM (using average relative error as tie
breaker).

Minizinc Competitions

In this section, we succinctly present how the last Miniz-
inc competition, held in 2014, was organized. The language
used for representing problem instances in that competition
was MiniZinc (Nethercote et al. 2007) (version 1.6), and
its related low-level format FlatZinc. Entrants to the chal-
lenge provide a FlatZinc solver as well as global constraint
definitions specialized for their solver. A translator, called
mzn2fzn, is run on MiniZinc models using the provided
global constraint definitions to create FlatZinc files, which
are given as input to the contestant solvers.

An entrant in the challenge is a constraint solver that is
installed in a virtual machine (VM) provided by the organiz-
ers. The provided VM with an installed solver is run by an
executable file called fzn-exec that invokes a FlatZinc solver
handling FlatZinc version 1.6. The syntax is:

fzn-exec [<options>] file.fzn

where:

• the argument file.fzn is the name of a FlatZinc 1.6 model
instance to evaluate.

• the options are:

-a For satisfaction problems, the solver must output all
solutions, and for optimization problems, the solver
must output the first optimal solution and all found in-
termediate solutions.

-f The solver is free to ignore any specified search strat-
egy.

-p <n> The solver is free to use multiple threads and/or
cores during search. The argument n specifies the num-
ber of cores that are available.

There have been four competition CLASSES:

• FD search: solvers must follow the search strategy given
in each input file, and are disqualified when they do not
follow it.

• Free search: solvers are free to ignore the search strategy.

• Parallel search: solvers are free to use multiple threads or
cores.

• Open class: this class allows the usage of portfolio
solvers. Solvers are free to use multiple threads or cores
to solve the problem.

Output of solvers must conform to the FlatZinc 1.6 spec-
ification. For optimization problems, when the time limit is
exceeded before the final solution is printed then the last
complete approximate solution printed is considered to be
the solution for that instance. Each solver s is run on prob-
lem instance p and the following information is collected:

• wck(p, s) - the wall clock time used by s.

• solved(p, s) - true if p is solved by s

• quality(p, s) - the objective value of the best solution
found by s.

• optimal(p, s) - true if the objective value is proved opti-
mal by s.

Scoring Procedure The scoring procedure is based on
the Borda count voting system. Each benchmark instance is
treated like a voter who ranks the solvers. Each solver scores
points related to the number of solvers that it beats. More
precisely, a solver s scores points on problem p by compar-
ing its performance with each other solver s′ as follows:

• if s gives a better answer than s′ it scores 1 point,

• else if ¬solved(p, s) or s gives a worse answer than s′ it
scores 0 point.

• else (s and s′ gives indistinguishable answers) scoring is
based on execution time comparison: s scores wck(p, s ′)
/ (wck(p, s ′) + wck(p, s)), or 0.5 if both finished in 0s.

A solver s is said to be better than a solver s′ iff:

• for satisfaction problems, solved(p, s) ∧ ¬solved(p, s ′)

• for optimization problems,

solved(p, s) ∧ ¬solved(p, s ′)
∨optimal(p, s) ∧ ¬optimal(p, s ′)
∨quality(p, s) > quality(p, s ′)

From XCSP 2.1 to XCSP3

Although significant efforts were performed these recent
years, in the context of competitions of solvers, as shown in
previous sections, the Constraint Programming (CP) com-
munity still suffers from the lack of a standard low-level for-
mat for representing various forms of combinatorial prob-
lems subject to constraints and optimization. It is important
to note that we specifically refer here to the possibility of
generating and exchanging files containing precise descrip-
tions of problem instances (no model/data separation), so
that fair comparisons of problem solving approaches can
be made in good conditions, and experiments can be re-
produced easily. The two current proposals, XCSP 2.1 and
FlatZinc, have some drawbacks that certainly prevent them
from becoming such a “universal” format. For example, it
was not possible to deal with objective functions in XCSP

http://www.minizinc.org/challenge2014/challenge.html
http://www.minizinc.org/challenge2014/challenge.html
http://www.minizinc.org/specifications.html
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2.1, and not possible to deal with weighted constraint net-
works in MiniZinc (and so, in FlatZinc), although a proposal
was made in (Ansotegui et al. 2011), but to the best of our
knowledge, never incorporated in official specifications.

In (Boussemart et al. 2015), the specifications for a major
revision/extension of the basic format XCSP 2.1 are intro-
duced. This new format, XCSP3, is a rather light language
that allows us to get integrated representations of combina-
torial constrained problems, by enumerating variables, con-
straints and objectives in a very simple and unambiguous
way.

Actually, here are the main advantages of XCSP3:

• Generality. XCSP3 allows us to represent many forms
of combinatorial constrained problems since it can deal
with constraint satisfaction, mono and multi-objective
optimization, preferences through soft constraints, vari-
able quantification, qualitative reasoning, continuous con-
straint solving, distributed constraint reasoning, and prob-
abilistic constraint reasoning.

• Completeness. A very large range of constraints is avail-
able, including rarely used variants and encompassing
practically (i.e., to a very large extent) all constraints that
can be found in major constraint solvers such as, e.g.,
Choco and Gecode.

• Understanding. We pay attention to control the number
of concepts and basic constraint forms, advisedly exploit-
ing automatic variations of these forms through lifting,
restriction, sliding, combination and relaxation mecha-
nisms, so as to facilitate global understanding.

• Readability. The new format is more compact, and less
redundant than XCSP 2.1, making it very easy to read and
understand, especially as variables and constraints can be
handled under the form of arrays/groups.

• Flexibility. It will be very easy to extend the format, if
necessary, in the future, for example by adding new kind
of global constraints, or by adding a few XML attributes
in order to handle new concepts.

• Easiness of Parsing. Thanks to the XML architecture of
the format, basically, it is easy to parse instance files at
a coarse-grain level. Besides, parsers written in Java and
C++ are made available.

• Dedicated Website. A website, companion of XCSP3,
will be open soon, with many models/series/instances
made available. This website will allow the user to make
sophisticated queries in order to select and download the
instances that he finds relevant.

The main novelties of XCSP3 with respect to XCSP 2.1
are:

• Optimization. XCSP3 can manage both mono-objective
and multi-objective optimization.

• New Types of Variables. It is possible to define 0/1, inte-
ger, symbolic, float, qualitative, set, and graph variables,
in XCSP3.

• Lifted and Restricted forms of Constraints. It is natu-
ral to extend basic forms of constraints over lists (tuples),

sets and multi-sets. It is simple to build restricted forms
of constraints by considering some properties of lists.

• Meta-constraints. It is possible to exploit sliding and log-
ical mechanisms over variables and constraints.

• Relaxed constraints. Relaxed cost-based constraints can
be defined easily.

• Reification. Half and full reification is easy, and made
possible by letting the user associate a 0/1 variable with
any constraint of the problem through a dedicated XML
attribute.

• Views. In XCSP3, it is possible to post constraints with
arguments that are not limited to simple variables or con-
stants, thus, avoiding in some situations the necessity of
introducing auxiliary variables and constraints, and per-
mitting solvers that can handle variable views to do it.

• Structure. It is possible to post variables under the form
of arrays (of any dimension) and to post constraints in
(semantic or syntaxic) groups, thereby, partly preserving
the structure of the models.

• Annotations. It is possible to add annotations to the in-
stances, for indicating search guidance and filtering pref-
erences.

<instance format="XCSP3" type="CSP">

<variables>

<array id="M" size="[3][3]">

1..9

</array>

</variables>

<constraints>

<allDifferent> M[][]</allDifferent>

<group>

<sum>

<list> %... </list>

<condition> (eq,15) </condition

>

</sum>

<args> M[0][] </args>

<args> M[1][] </args>

<args> M[2][] </args>

<args> M[][0] </args>

<args> M[][1] </args>

<args> M[][2] </args>

<args>

M[0][0] M[1][1] M[2][2]

</args>

<args>

M[2][0] M[1][1] M[0][2]

</args>

</group>

</constraints>

</instance>

As an illustration, let us consider the XCSP3 formulation
for the 3-order instance of the Magic Square problem, given
above. A magic square of order 3 is an arrangement of num-
bers 1, 2, . . . , 9 in a square grid, where the numbers in each
row, and in each column, and the numbers in the main and
secondary diagonals, all add up to the same number (15).
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Classification

A recurrent issue in benchmarking is the classification of
instances. We can distinguish two common practices which
are not exclusive: qualitative classification and quantitative
classification. A qualitative classification gathers instances
according to some features (nature of the problems, random
generation, . . .). A quantitative classification gathers in-
stances according to their difficulty. The latter is frequently
used in other communities, but to our knowledge, only qual-
itative classification are publicly available for MiniZinc and
XCSP.

Quantitative classification We propose a simple classifi-
cation method based on the results of various solvers. For
example, these results may correspond to those obtained at
successive competitions.

The Virtual Best Solver (VBS) is a theoretical construc-
tion which returns the best answer provided by one of the
solvers. Similarly, the Virtual Worst Solver (VWS) returns
the worst answer provided by one of the solvers.

Easy instances are classified using the VWS: train-
ing (less than 10 seconds); or easy (less than 1000
seconds). Hard instances are classified using the VBS:
medium (less than 1000 seconds); challenging (no time-
out); or hard (timeout or memory exception).

These categories form a partition of the instances. Indeed,
an instance belongs to the first category above whose accep-
tance condition is met. For example, a medium instance is
solved in less than 1000 seconds by the VBS, but more than
1000 seconds by the VWS (otherwise, it would be an easy
instance).

Of course, such a classification attempt should also take
into account the experimental protocols followed for obtain-
ing the results (e.g., computing infrastructures)

Scoring Procedure

The main drawback of the scoring procedure in the CSC
competition is that solving times are only considered for
tie breaking for CSP and not considered at all for optimiza-
tion. On the other hand, the scoring procedure in the Miniz-
inc competition is based on the Borda count voting system,
as explained earlier. Unfortunately, the way points are dis-
tributed in case of indistinguishable answers does not cap-
ture user’s preferences very well. Indeed, if the solver s
solves the first n problems in 0.1 seconds and the n last prob-
lems in 1000 seconds whereas the solver s′ solves the first n
problems in 0.2 seconds and the n last problems in 500 sec-
onds, then both solvers obtain the same score (n) whereas
most users would certainly prefer s′.

To partially address this issue, we propose a scoring
variant. Let t and t′ respectively denote wck(p, s) and
wck(p, s′), i.e., the wall clock times of solvers s and s′ when
solving the problem p. In case of indistinguishable answers,
s scores f(t, t′) = t′÷(t+t′) according to the Borda system.
Here, we define g(t, t′) = g(t)+(1−g(t)−g(t′))×f(t, t′)
in which some points are given by contract g(t) = 1 ÷ 2 ×
(log

a
(t+1)+1) (a = 10) where g(t) is a strictly decreasing

function from 0.5 toward 0. The remaining points are shared

between the two solvers using Function f . Using Function
g in the previous example, solvers s and s′ are respectively
scored 0.81×n and 1.19×n points: s′ is therefore preferred
to s.

This idea arose because in competitions there is usually
a significant number of easy problems. Only using Func-
tion f introduces a bias toward solvers that solve easy prob-
lems very quickly. Besides, one of the main drawback of the
Borda count is that it does not satisfy the Condorcet crite-
rion, i.e., a solver who wins a duel against each other candi-
date is not always the winner of the competition.

In future competitions, it would certainly be relevant to
modify the scoring procedure, while being careful that it re-
mains consistent with the competition rules. For instance,
the Borda count does not satisfy the independence of clones
criterion, stating that the winner must not change when a
non-winning solver is duplicated (considered twice). So,
rules could impose that each contestant submit at most one
solver (contrary to previous competitions).

Conclusion

In this position paper, we have provided CP feedback on
benchmarking and solver competitions. We have also pre-
sented some innovative developments in terms of problem
representation format and competition rules. We hope that
this material may be useful to the organizers of the interna-
tional planning competitions.
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Abstract

We introduce the MDP-Evaluation Stopping Problem, the op-
timization problem faced by participants of the International
Probabilistic Planning Competition 2014 that focus on their
own performance. It can be constructed as a meta-MDP
where actions correspond to the application of a policy on
a base-MDP, which is intractable in practice. Our theoretical
analysis reveals that there are tractable special cases where
the problem can be reduced to an optimal stopping problem.
We derive approximate strategies of high quality by relax-
ing the general problem to an optimal stopping problem, and
show both theoretically and experimentally that it not only
pays off to pursue luck in the execution of the optimal policy,
but that there are even cases where it is better to be lucky than
good as the execution of a suboptimal base policy is part of
an optimal strategy in the meta-MDP.

Introduction

Markov Decision Processes (MDPs) offer a general frame-
work to describe probabilistic planning problems of varying
complexity. The development of algorithms that act suc-
cessfully in MDPs is important to many AI applications.
Since it is often impossible or intractable to evaluate MDP
algorithms based on a theoretical analysis alone, the Inter-
national Probabilistic Planning Competition (IPPC) was in-
troduced to allow a comparison based on experimental eval-
uation. The idea is to approximate the quality of an MDP
solver by performing a sequence of runs on a problem in-
stance, and by using the average of the obtained results as
an approximation of the expected reward. Following the op-
timal policy (i.e., the policy that maximizes the expected re-
ward) leads to the best result in such a setting.

The work on this paper started with our preparation for
IPPC 2014, where each solver had to perform at least 30
runs within a given time limit, while only the last 30 runs
were used for evaluation. The decision when to stop the
sequence of runs could be taken at any point of the evalua-
tion with knowledge of the rewards that were collected in all
previous runs. We describe the MDP-Evaluation Stopping
Problem (MDP-ESP) as the optimization problem faced by
IPPC participants that focus on their own performance, and
show how it can be constructed as a meta-MDP with actions

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that correspond to the application of a policy on the base-
MDP. Interestingly, the computation of the optimal policy
is no longer the only objective of participating planners, and
the fact that the execution of other policies on the base-MDP
can be part of an optimal strategy for the MDP-ESP leads to
a problem that is intractable in practice.

However, there are special cases where the MDP-ESP
can be reduced to an instance of an optimal stopping prob-
lem (OSP). Two functions that depend only on the num-
ber of remaining runs – one that specifies the target reward
that is necessary to stop, and one that gives the policy that
is applied otherwise – suffice to describe an optimal pol-
icy. Based on these observations, we present four approx-
imate algorithms for the general problem. A strategy that
is inspired from a solution to the related Secretary Problem
(SecP) (Dynkin 1963; Ferguson 1989) can be applied even
when a policy for the base-MDP is computed online and not
known in advance. Two other algorithms require the knowl-
edge of the optimal policy and its expected reward. We show
that the expected reward of the optimal policy is a lower
bound for the expected performance of both strategies.

Our final algorithm switches between the application of
the optimal policy and the policy with the highest possible
outcome, which can be computed without notable overhead
in the Trial-based Heuristic Tree Search (THTS) framework
(Keller and Helmert 2013). We show theoretically and em-
pirically that all algorithms outperform the naı̈ve base ap-
proach that ignores the potential of optimizing evaluation
runs in hindsight, and that it pays off to take suboptimal base
policies in addition to the optimal one into account. Finally,
we discuss the influence of the MDP-ESP on the results of
IPPC 2014, and propose potential applications of our algo-
rithms by discussing them in the context of related work.

Background

Markov Decision Processes. In this paper we consider
problems of planning and acting under uncertainty, where an
agent interacts with an uncertain environment by performing
a sequence of runs. The environment is described in terms
of a finite-horizon MDP M = 〈V,A, T,R, s0, h〉 (Puter-
man 1994; Bertsekas and Tsitsiklis 1996) with a factored
representation of states (Boutilier, Dearden, and Goldszmidt
2000) that are induced by a set of state variables V as S =
2V . A is a finite set of actions such that A(s) gives the set of
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Figure 1: An example instance of the NAVIGATION domain
with the policies π⋆ (dotted), π2 (dashed) and π+ (solid).

applicable actions in s ∈ S; T : S × A × S → [0, 1] is the
transition function which defines the probability P[s′ | s, a]
that applying a ∈ A(s) in s ∈ S leads to s′ ∈ S; R(s, a) is
the reward that is gained by applying a ∈ A(s) in s ∈ S; s0
is the initial state; and h ∈ N is the finite horizon.

The agent has access to the declarative model of the
MDP (i. e., transition probabilities and reward function are
known) to compute policies π1, . . . , πn that are executed
in a sequence of runs (φπ1

1 , . . . , φπn

n ). Each policy π in
the set of policies Π maps all states s ∈ S to an action
a ∈ A(s). When a policy π is applied in a state s, the cur-
rent state of the environment transitions to successor state
s′ ∈ S with probability P[s′ | s, π(s)]. A run is a sequence
φπ = (s0, a0, r0 . . . , sh−1, ah−1, rh−1, sh) that starts in s0
and where h actions are applied according to π, i. e., the se-
quence is such that at := π(st), st+1 ∼ T (st, at, ·), and
rt := R(st, at) for all 0 ≤ t < h. We denote the accumu-

lated reward of a run φπ with R(φπ) =
∑h−1

t=0 rt.
The expected reward of a policy π can be computed as the

solution to a set of equations that describes V π := V π(s0),
which is given in terms of state-value functions V π(s) and
action-value functions Qπ(s, a), where

V π(s) =

{

0 if s is terminal

Qπ(s, π(s)) otherwise, and

Qπ(s, a) = R(s, a) +
∑

s′∈S P[s′ | s, a] · V π(s′).

The optimal policy π⋆ can be derived from the related Bell-
man optimality equation (Bellman 1957; Bertsekas 1995) as
the policy with the highest expected reward among all poli-
cies, i. e., as π⋆ := argmaxπ∈Π V π .

Each policy π induces a set of outcomes Oπ , which con-
sists of each accumulated reward r that can be achieved un-
der application of π paired with the probability of r, i. e.,
Oπ = {(r,P[R(φπ) = r]) | P[R(φπ) = r] > 0}. We call
the highest possible outcome Pπ := max(r,p)∈Oπ r of a pol-
icy π the potential of π. We abbreviate the policy with the
highest potential among all policies with π+. Moreover, we
abbreviate the expected reward of π⋆ (π+) with V ⋆ (V +), its
potential with P ⋆ (P+), its set of outcomes with O⋆ (O+)
and a run under the policy with φ⋆ (φ+).

An example MDP is depicted in Figure 1. It shows an
instance of the NAVIGATION domain of IPPC 2011, where
an agent is initially located in grid cell s0 and aims to reach

cell s⋆ by moving within the grid. On its way, the agent has
to cross the middle row at some point, where it gets stuck
with increasing probability from left (20%) to right (80%).
The agent has no possibility to break free once it is stuck,
and it receives a reward of−1 in each step unless it is located
in s⋆. If we consider the IPPC horizon of h = 40, the agent
receives an accumulated reward of R(φ⋆) = −6, R(φπ2) =
−4, and R(φ+) = −2 if it successfully passes the middle
row, and of −40 if it gets stuck regardless of the applied
policy. The expected reward of π⋆ is V ⋆ = −12.8, and it
induces the set of outcomes O⋆ = {(−6, 0.8), (−40, 0.2)}
with potential P ⋆ = −6. For π+, we have V + = −32.4,
O+ = {(−2, 0.2), (−40, 0.8)}, and P+ = −2.

The MDP-Evaluation Stopping Problem. The problem
we face in this paper is the MDP-ESPu

k , where a sequence
of at least k > 0 and at most u ≥ k runs is performed on
an MDP. A strategy σ assigns policies π1, . . . , πn to runs
on the MDP and stops the evaluation after n (k ≤ n ≤ u)
runs. The objective is to find a strategy σ that maximizes the
average accumulated reward of the last k runs, i.e., where

Ru
k(σ) :=

1

k
·

n
∑

i=n−k+1

R(φπi

i )

is maximal in expectation. The quality of a strategy σ is
measured in terms of its expected average reward E[Ru

k(σ)].
An instance of the MDP-ESP not only optimizes the eval-

uation of a sequence of policies on a base-MDP, it can be
described in terms of a meta-MDP itself. A state in the
meta-MDP is given by a sequence of rewards (r1, . . . , rn),
where ri := R(φπi

i ) for i = 1, . . . , n is the accumulated
reward of the runs that were performed before reaching a
state. The meta-MDP provides an action aπ for each pol-
icy π ∈ Π, which encodes the execution of policy π on the
base-MDP. Furthermore, there is a single action a⊗ that en-
codes the decision to stop the MDP-ESP and evaluate the
meta-run under σ based on the result of the last k runs on
the base-MDP. We describe the transition function of the
meta-MDP in terms of its actions: a⊗ is not applicable in
a state (r1, . . . , rn) if n < k, and it is the only applicable
action in a state (r1, . . . , ru). Its application leads determin-
istically to an absorbing terminal state and yields a reward
R((r1, . . . , rn), a⊗) =

1
k
·
∑n

i=n−k+1 ri. The application of

an action aπ in state (r1, . . . , rn) incurs no reward and leads
to a state (r1, . . . , rn, r), where r is drawn according to the
outcome function r ∼ Oπ of the executed policy π.

Theoretical Analysis

Upper and Lower Bounds. Most optimization problems
on MDPs have in common that the theoretical upper bound
of the expected reward of a policy is less than or equal to
the expected reward V ⋆ of the optimal policy π⋆. Exam-
ples include the Multi-Armed Bandit problem and Online
Reinforcement Learning (RL), where a logarithmic regret on
V ⋆ must be accepted (Lai and Robbins 1985) since all runs
are evaluation runs and π⋆ must be derived from experience
of the interaction with the environment. In Offline RL (or
Probabilistic Planning), all runs are evaluation runs as well,



8

but π⋆ can be computed before evaluation starts and V ⋆ can
hence be achieved if π⋆ is available (Sutton and Barto 1998).

This is different in the MDP-ESP. Since the agent is al-
lowed to decide in hindsight if the last k runs were good
enough to be used for evaluation, there are strategies that al-
low an expected performance that is at least as good as V ⋆

for all instances of the MDP-ESPu
k . Moreover, it is impossi-

ble to achieve a result that is higher than P+.

Theorem 1. V ⋆ ≤ max
σ

E[Ru
k(σ)] ≤ P+ for all k > 0 and

u ≥ k.

Proof sketch: We start with a discussion of the lower bound
V ⋆ by considering the subset of instances where u = k.
The MDP-ESPk

k, where each performed run is an evaluation
run reduces to Offline RL, and the optimal strategy is hence
the strategy that only executes π⋆. (We denote the strategy
that executes π⋆ in each run and never stops prematurely
with σπ⋆ in this proof sketch). Since the expected reward of
each run under π⋆ is V ⋆, the expected average reward of the
whole sequence of k runs is V ⋆ as well. If we apply σπ⋆

to instances where u > k, the additional, prepended runs
have no effect as they are not used for evaluation. Therefore,
E[Ru

k(σπ⋆)] = V ⋆ for any instance of the MDP-ESP, and
the lower bound is as stated in Theorem 1.
P+ is an upper bound of the MDP-ESPu

k since it is the
highest possible outcome of all policies, and it is therefore
impossible to achieve a higher expected reward in a run and
a higher expected average reward in a sequence of k runs.
Moreover, the bound is tight for the MDP-ESP∞

k , i. e., the
subset of instances with an infinite number of runs and a
finite number of evaluation runs. Since any sequence of out-
comes will occur eventually in an infinite number of runs,
the optimal strategy for the MDP-ESP∞

k applies π+ in every
run until a sequence of k runs in a row yields P+, and the
expected average reward of this strategy is P+.

Optimal Strategies. Even though we have provided tight
upper and lower bounds for the MDP-ESP, the expected re-
ward of optimal policies in the space between the discussed
extreme cases is not yet clear. It is not hard to show that the
expected reward of the MDP-ESPu

k under an optimal strat-
egy increases strictly from V ⋆ to P+ with increasing u for
all k (unless π⋆ = π+ and π⋆ deterministic, in which case
maxσ E[R

u
k(σ)] = V ⋆ = P+ for all k > 0 and u ≥ k).

We omit a formal proof sketch for space reasons, though,
and turn our attention to the MDP-ESPu

1 instead. It corre-
sponds to a finite-horizon version of the House-Selling Prob-
lem (Karlin 1962), where offers come in sequentially for a
house an agent wishes to sell. The offers are drawn from a
known probability distribution, and the agent has to accept
or decline each offer right after receiving it. The agent aims
to sell the house for the highest price among at most u offers.
The subset of instances where only a single run is used for
evaluation is interesting for our purposes because an optimal
strategy can be described with two simple functions: the tar-
get reward function t : {1, . . . , u − k} → R describes the
average reward t(n) of the last k runs that must have been
achieved in a state (r1, . . . , ru−n) to apply a⊗, and the pol-
icy application function app : {1, . . . , u− k} → Π specifies
the policy that is taken otherwise.

n π⋆ π2 π+ app(n)

1 −12.8 −22 −32.4 π⋆

2 −7.36 −8.4 −10.64 π⋆

3 −6.272 −5.68 −6.288 π2

4 −5.936 −4.84 −4.944 π2

5 −5.768 −4.42 −4.272 π+

6 −5.654 −4.136 −3.8176 π+

Table 1: The optimal strategy for the MDP-ESPu
1 on the

NAVIGATION instance of Figure 1 applies app(n) if the cur-
rent result is less than t(n) (in bold) and stops otherwise.

A solution for the MDP-ESPu
1 is to compute these func-

tions by applying backward induction, a popular method to
solve full information optimal stopping problems where an
increasing number of available runs u is considered (Gilbert
and Mosteller 1966). We know that it is optimal to ap-
ply π⋆ in the MDP-ESP1

1, and the expected reward is V ⋆,
i. e., app(1) = π⋆. Now consider the MDP-ESP2

1: if, after
the first run, our current result is higher than V ⋆, we stop
the evaluation, since the remaining problem is exactly the
MDP-ESP1

1 with expected reward V ⋆. Otherwise, we apply
app(1) = π⋆. The target reward function is therefore such
that t(1) = V ⋆. The policy that is applied in the first run of
the MDP-ESP2

1, app(2), can be computed as the policy that
maximizes the expected reward given t(1), which in turn al-
lows the computation of t(2) and so on.

Take for example the NAVIGATION domain that was pre-
sented earlier. We have app(1) = π⋆ and t(1) = V ⋆ =
−12.8. If we apply π⋆ in the first run of the MDP-ESP2

1,
we achieve a reward of −6 with probability 0.8 and of −40
with probability 0.2. Since we prefer not to stop in the latter
case, we get t(2) = (0.8 · (−6))+ (0.2 · t(1)) = −7.36. Ta-
ble 1 shows these computations for all three policies of the
NAVIGATION instance that are depicted in Figure 1. It re-
veals that it is optimal to execute π+ if five or more runs are
left, and to stop only if a run successfully crosses the middle
row and yields a reward of −2. If three or four runs are left,
the strategy proposes the execution of policy π2, and π⋆ is
executed only in the last two runs. The example shows that
restricting to strategies that consider only π⋆ and π+ is not
sufficient for optimal behavior.

Complexity. It is not hard to see that finding an optimal
strategy for the general MDP-ESPu

k is practically intractable.
It corresponds to solving the meta-MDP with a search space
of size (|Π| · Omax)

u with Omax = maxπ∈Π |O
π|, which is

intractable even if |Π| were manageable (which is usually
not the case). We have discussed three special cases of the
MDP-ESP, though, and we have shown that an optimal strat-
egy for two of them – the MDP-ESPk

k and the MDP-ESP∞
k –

can be derived in constant time under the assumption that the
cost of deriving policies in the base-MDP can be neglected.
For the third, we have provided an algorithm that regards all
outcomes of all policies π ∈ Π in at most (u− k) decisions,
and it is hence linear in u, |Π|, and Omax. Even though the
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u = k k < u <∞ u =∞

k = 1 O(1) O(u · |Π| · Omax) O(1)

1 < k <∞ O(1) O
(

(|Π| · Omax)
u
)

O(1)

Table 2: Complexity results for different instances of the
MDP-ESPu

k given an oracle for the underlying base-MDP.

dependence on |Π| is discouraging as the computation of all
policies is intractable, it also shows that efficient approxi-
mations of good quality are possible if we consider only a
subset of Π. The complexity results are summarized in Ta-
ble 2. The manageable cases all have in common that two
simple functions that map the number of remaining runs to
a target reward and a policy suffice to describe the strategy.
In the next section, we show how these ideas can be used to
approximate the general case with strategies of high quality.

Strategies for the MDP-ESP

We consider three possible states of a-priori information:
first, we look at the case where π⋆ and V ⋆ are unknown,
and assume that the computation of a policy and its execu-
tion are interleaved. We continue with MDPs where π⋆ and
V ⋆ can be computed, and present two strategies, one that
aims at avoiding bad luck and one that pushes its luck under
execution of π⋆. In the last part of this section, we present a
strategy that mixes π⋆ and π+ and prove that it is theoreti-
cally superior to the other considered strategies.

Secretary Problem. While most instances of the IPPC are
such that they cannot be solved in the given time, it is always
possible to perform more than k runs. Even if the available
time is distributed equally among all planning steps before-
hand, there are reasons for spare time: the PROST planner
(Keller and Eyerich 2012) that is used for our experiments
detects reward locks; it recognizes states with only one rea-
sonable action; it is able to solve an encountered state even
in larger MDPs if the remaining horizon is small; and it
reuses decisions if it encounters a state more than once.

If the optimal policy is not available, the MDP-ESPu
k is

similar to the SecP, which is a variant of the finite-horizon
House-Selling Problem where the underlying probability
distribution is not revealed to the agent. It involves a single
secretarial position and u applicants which are interviewed
sequentially in a uniformly random order. Applicants can
be ranked unambiguously, and the decision to hire a can-
didate has to be made right after the interview and is irre-
vocable. The objective is to have the highest probability of
selecting the best applicant of the whole group, and it can
be shown that an optimal solution is to reject the first ⌊u

e
⌋

applicants (≈ 36.8%) and select the first subsequent candi-
date that is ranked higher than all candidates before (e.g.,
Ferguson 1989; Bruss 2000).

To apply the SecP strategy to the MDP-ESPu
k , we pretend

that all sequences of k consecutive runs are independent,
identically distributed data points. We perform ⌊u−k+1

e
⌋

runs and stop as soon as the last k runs yield a higher aver-
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Figure 2: Probability of getting stuck x times in 30 runs of
the example NAVIGATION instance.

age reward than all data points before. It is important to note
that the data points are of course not independent and iden-
tically distributed in our setting – each data point depends
on the previous one(s) unless k = 1, since two consecutive
samples differ only in a single reward. Our empirical eval-
uation (where only π⋆ is executed) shows that the SecP is a
strategy that improves over V ⋆ significantly nonetheless.

Meet-The-Expectations. The IPPC benchmarks offer
MDPs of varying complexity, including some instances
where π⋆ can be computed. However, it is always possible
that the execution of a policy is unfortunate. Take, for exam-
ple, the NAVIGATION instance from Figure 1. If we execute
π⋆ for k = 30 runs, the expected reward V ⋆ is achieved if
the agent ends up stuck exactly six times. Figure 2, which
depicts how likely it is that the agent gets stuck, reveals
that the probability that it gets stuck more than six times
is roughly 40%. A strategy that avoids bad luck if more than
k runs are available is a first step in the right direction. We
call the strategy with tσMTE

(n) = V ⋆ and appσMTE
(n) = π⋆

for all n the Meet-The-Expectations (MTE) strategy.

Theorem 2. V ⋆ ≤ E[Ru
k(σMTE)] ≤ P ⋆ for all k > 0 and

u ≥ k.

Proof sketch: If π⋆ is deterministic, all inequalities are triv-
ially equalities. Otherwise, both inequalities hold since only
π⋆ is applied. The first is strict for u > k since we accept
lucky results and improve unlucky ones, and the second is
strict even for most instances of the MDP-ESP∞

1 since MTE
stops with a result between V ⋆ and P+.

Pure Strategy. We have presented a strategy that avoids
bad luck while applying π⋆, so the question naturally arises
how to push the envelope and aim for good luck. After all,
Figure 2 shows that the probability of getting stuck less than
six times is also approximately 40%. Since an optimal target
reward function is intractable in practice even if appσPS

= π⋆

for all n, we use a simulation approach in the Pure Strat-
egy (PS) to estimate tσPS

. PS performs a sequence of m
simulations (⊘1, . . . ,⊘m) (m is a parameter of the algo-
rithm), where each ⊘i consists of u runs (φ⋆

i1, . . . , φ
⋆
iu). We

use the simulations to compute the target reward function
as tσPS

(n) = median(Rn
max(⊘1), . . . ,R

n
max(⊘m)), where

Rn
max(⊘i) = maxl∈{1,...,n}(

1
k

∑l+k−1
s=l R(φ⋆

is)).
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Algorithm 1: Mixed Strategy for MDP-ESPu

k with u > k

1 compute mixed strategy(u, k,m):
2 let all t(n)← −∞, app(n)← π⋆ and n0 ← 1
3 for i = 0, . . . , k do
4 sample run sequences(u, k,m, i)
5 update strategy(u, k, i)

6 sample run sequences(u, k,m, i):
7 for j = 1, . . . ,m do
8 for n = 1, . . . , u do

9 if (n mod k) < i then rn ← sample(π+)
10 else rn ← sample(π⋆)
11 if n > k then

12 tij(n−k)← maxl∈{1,...,n}(
1
k

∑l+k−1
s=l rs)

13 for n = 1, . . . , u− k do
14 ti(n)← median(ti1(n), . . . , tim(n))

15 update strategy(u, k, i):
16 for n = u− k, . . . , n0 do
17 if ti(n) > t(n) then t(n)← ti(n)
18 else
19 for l = n0, . . . , n do

20 if (l mod k) < i then app(n)← π+

21 n0 ← n and return

Theorem 3. V ⋆ ≤ E[Ru
k(σPS)] ≤ P ⋆ for all k > 0 and u ≥

k. For all finite k > 0, E[R∞
k (σPS)] = P ⋆ and E[Ru

k(σPS)]
is monotonically increasing in u and converges to P ⋆.

Proof sketch: V ⋆ and P ⋆ are bounds since only π⋆ is
applied and E[tσPS

(n)] ≥ V ⋆ for a sufficiently large m.
E[tσPS

(n)] increases monotonically in n from V ⋆ to a value
≤ P ⋆ for u > k since the number of considered data points
in the simulations grows, and it reaches P ⋆ for u = ∞ and
therefore E[R∞

k (σPS)] = P ⋆. E[Ru
k(σPS)] is monotonically

increasing since the expected reward is bounded from below
by a probability weighted sum of all target rewards.

Mixed Strategy. π+ can not only be derived when Oπ

is available for all π, but it can be computed as π+ :=
maxπ∈Π Pπ(s0), which is described by the set of equations

Pπ(s) =

{

0 if s is terminal

Wπ(s, π(s)) otherwise, and

Wπ(s, a) = R(s, a) + max
s′∈succ(s,a)

Pπ(s′),

with succ(s, a) := {s′ | P[s′ | s, a] > 0}. Note that the
only difference to the Bellman optimality function is that
Wπ(s, a) only cares about the best outcome while Qπ(s, a)
uses the weighted average of all outcomes. By turning these
equations into assignment operators that extend the backup
function of a THTS algorithm, we can describe algorithms –
in our case a UCT⋆ variant – that derive π+ as a side-effect
of the π⋆ computation and without notable overhead.

While it is possible to use π+ as the base-policy of PS,
it turns out that u has to be prohibitively large to outper-
form PS based on π⋆. Instead, we generate a policy that is
inspired by our analysis of the MDP-ESPu

1 , where a func-
tion appσMS

(n) is used to describe which policy is executed

solely in terms of the number of remaining runs. We restrict
ourselves to the policies π⋆ and π+ in our version of a Mixed
Strategy (MS), but adding more policies is an interesting
(and certainly non-trivial) topic for future work. Initially,
MS computes a function t0 (the index stands for the number
of runs under π+ in each data point) which is equivalent to
tσPS

. MS, which is depicted in Algorithm 1, continues by
performing simulations where π+ is executed in i out of k
runs. The functions tσMS

and appσMS
are updated after the ith

iteration by finding the largest n where t(n) ≥ ti(n), i. e.,
by finding the element in the sequence where the number of
runs is small enough that an additional execution of π+ does
not pay off anymore. Note that our implementation stops the
computation prematurely when a ti does not alter tσMS

in the
update procedure (unlike the depicted Algorithm 1).

Theorem 4. E[Ru
k(σPS)] ≤ E[Ru

k(σMS)] for all k > 0 and
u ≥ k and E[R∞

k (σMS)] = P+ for all finite k > 0.

Proof sketch: If we assume that the number of simulations
is sufficiently high, then it is either not beneficial to apply π+

and MS reduces to PS, or it is beneficial and E[Ru
k(σMS)] >

E[Ru
k(σPS)]. MS converges towards P+ with an increasing

number of u since at some point it pays off to only apply π+

with an expected reward of P+ in the limit.

Experimental Evaluation

To evaluate our algorithms empirically, we perform exper-
iments on the domains of IPPC 2011 and 2014. We use
the UCT⋆ algorithm (Keller and Helmert 2013) to solve the
base-MDP, an algorithm that is specifically designed to find
high-quality policies in finite-horizon MDPs even of larger
size when a declarative model of the MDP is provided. It
is a THTS algorithm that can be described in terms of four
ingredients: the action selection is based on the UCB1 for-
mula (Auer, Cesa-Bianchi, and Fischer 2002), Monte-Carlo
sampling is used to simulate stochastic outcomes, and a par-
tial Bellman backup function is used to propagate collected
information in the search tree. Since we use the implementa-
tion of UCT⋆ that comes with the probabilistic planning sys-
tem PROST, the used heuristic function is the default heuris-
tic of the planner. It performs a lookahead based on a se-
quence of iterative deepening searches on the most-likely
determinization of the MDP (Keller and Eyerich 2012).

We have altered the THTS framework to perform a se-
quence of searches with an increasing horizon, a change that
is inspired by the Reverse Iterative Deepening approach that
is used in GLUTTON (Kolobov et al. 2012). A higher num-
ber of instances can be solved since state-values of solved
states are reused, which occurs more often if the horizon
is increased iteratively (the possibly weaker anytime perfor-
mance is not important here). The resulting algorithm is able
to solve 34 instances of the 120 existing IPPC benchmarks:
four of CROSSING TRAFFIC, five of ELEVATORS, three of
GAME OF LIFE, all NAVIGATION instances, and six both
of SKILL TEACHING and TRIANGLE TIREWORLD. Apart
from the ELEVATORS domain, where π⋆ can be derived for
the instances 1, 2, 4, 7, and 10, the instances with the lowest
indices are solved. The number of evaluation runs k is set to
30 in all experiments, which corresponds to the number of
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Figure 3: Results for an increasing number of available runs
u on the first instance of the CROSSING TRAFFIC domain
with V ⋆ ≈ −4.43, P ⋆ = −4, and P+ = −2.

evaluation runs at both IPPC 2011 and 2014, and the values
for u are increased from 30 to 10000. Each experiment is
conducted 20 times and average results are reported.

Figure 3 shows the average reward of the experiments on
the first instance of CROSSING TRAFFIC with increasing u.
We have selected the instance since comparably small values
of u showcase our theoretical results. Nevertheless, if u is
large enough, any instance could have been selected. Table 3
shows normalized IPPC scores which are computed over the
average of the results of the experiment sets for u = 200 and
u = 1000. A score of 1.0 is assigned to the best performing
strategy, and a score of 0.0 is assigned to an artificial base-
line solver with an average reward of V ⋆ in all instances. All
other scores are normalized with the procedure that is used
at IPPC with the described minimal and maximal values.

The expected reward in the depicted CROSSING TRAFFIC

instance is V ⋆ ≈ −4.43. The simple MTE strategy is al-
ready an improvement over the baseline solver. It reliably
avoids bad luck already with only a few extra runs. How-
ever, it has converged to −4.35, a value that is only little
above V ⋆, in the CROSSING TRAFFIC instance already with
u = 100 and does not improve any further. The same can be
observed in Table 3, where the result does not improve when
u is increased from 200 to 1000. In that experiment set,
merely 35 to 40 runs suffice to avoid bad luck reliably over
all instances, and in between 100 and 200 runs suffice for
convergence. Except for special cases like an MDP-ESPu

1
with |{(r, p) ∈ O⋆ | r ≥ V ⋆}| = 1, MTE converges to a
value that is greater than V ⋆ yet less than P ⋆.

The SecP strategy does not suffer from this problem – the
larger u, the better the result in our experiments. It quickly
outperforms MTE even though the availability of the optimal
policy is no condition for the applicability of the strategy. It
should nevertheless be noted that the presented SecP results
are based on an implementation that executes the optimal
policy in all experiments to allow a better comparison of the

strategies. In this setting, the SecP converges to P ⋆ with
growing u: since only π⋆ is applied, it cannot improve over
P ⋆, and since ⌊u−k+1

e
⌋ grows with u, the target reward and

in turn the expected average reward approach P ⋆.
The two sampling-based strategies yield comparable re-

sults in the experiment on all solvable IPPC instances that
is given in Table 3, and both outperform the other consid-
ered algorithms significantly and in all domains. Obviously,
simulation based approaches are well-suited to create strate-
gies of high quality. It is not surprising that PS outperforms
MTE with increasing u since PS converges to P ⋆ accord-
ing to Theorem 3 while MTE usually does not, and since PS
reduces to MTE if it ever were reasonable. The theoretical
relation between the performance of PS and SecP is an open
question, but it appears that the latter converges to P ⋆ with
a slower pace. PS often has an edge over MS when u and
k are close, since applying π+ is rarely reasonable in these
cases and MS can hence only be misled by its additional
possibilities. Increasing the number of simulations m will
neglect the slight advantage PS has in some instances. The
larger u compared to k, the larger the advantage of MS over
PS. Figure 3, which depicts one of the smaller instances of
the used benchmarks, shows this clearly: MS quickly out-
performs all other strategies (as soon as it starts to mix in
runs under π+) and converges to P+ = −2. Table 3 also
supports this claim since MS outperforms PS in all domains
with u = 1000. The only exception is the ELEVATORS do-
main, where Pπ(s0) = 0 for all policies π since there is a
small chance that no passenger shows up. If ties were bro-
ken in favor of better action-values in our implementation
of π+ (instead of uniformly at random), MS and PS would
perform equally in the ELEVATORS domain.

Discussion
We started with the work at hand due to the evaluation
schema that was used at IPPC 2014. Only three IPPC solvers
made use of the rule that more than 30 runs are allowed: both
versions of PROST and G-PACK, a variant of the GOUR-
MAND planner (Kolobov, Mausam, and Weld 2012). The
latter does not reason over the MDP-ESP, though. It simpli-
fies the original MDP by considering at most N outcomes
for all actions, and computes and executes the policy with
highest expected reward in the simplified MDP. If time al-
lows, this process is repeated with a larger N , which is the
only reason that more than k evaluation runs are performed.

Therefore, only our submissions actually considered the
MDP-ESP as the relevant optimization problem. However,
most of the work described in this paper was done after the
competition – only the SecP strategy and a PS variant with
a target reward that is independent from the number of re-
maining runs were applied at IPPC 2014. Note that both
are strategies that aim at optimizing the evaluation of π⋆ or
a near-optimal policy. PROST 2011 applied the SecP strat-
egy in 33 out of 80 instances, while PROST 2014 used it in
28 and PS in another six instances. Even though we were
able to improve the average reward in 22 (19) instances with
the SecP strategy and in five with the PS variant in the 2014
(2011) version, the total IPPC scores are mostly unaffected:
had we stopped evaluation after 30 runs in all instances with
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CROSSING ELEVATORS GAME NAVIGATION SKILL TIREWORLD Total

u 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

MTE 0.21 0.21 0.26 0.26 0.28 0.28 0.37 0.37 0.23 0.23 0.27 0.27 0.27 0.27

SecP 0.34 0.45 0.34 0.59 0.27 0.52 0.57 0.85 0.37 0.63 0.38 0.68 0.38 0.62

Pure 0.59 0.84 0.59 0.98 0.63 0.98 0.74 0.93 0.57 0.97 0.62 0.96 0.62 0.94

Mixed 0.57 1.00 0.55 0.93 0.68 0.98 0.73 1.00 0.60 0.96 0.62 0.99 0.63 0.98

Table 3: IPPC scores of the proposed algorithms for the MDP-ESPu
30 on instances of IPPC 2011 and 2014 that can be solved

with PROST. The expected reward V ⋆ of the optimal policy π⋆ is used as the minimum for normalization.

both solvers, the final result would differ only slightly with
total IPPC scores of 0.816 (-0.09) and 0.773 (+0.04) for the
PROST versions and of 0.739 (+0.05) for G-PACK. Even
though the differences are small (we believe this is due to the
poor minimum policy at IPPC, the individual results indicate
that considering the MDP-ESP does pay off), we would like
to emphasize that the PROST competition results should not
be used for comparison. Otherwise, this includes instances
where PROST achieved a result that is far above V ⋆.

There are many applications for OSPs, including spon-
sored search (e.g., Babaioff et al. 2007; Zhou and Naro-
ditskiy 2008), online auctions (e.g., Hajiaghayi, Kleinberg,
and Parkes 2004), or optimal stock market behavior (e.g.,
Griffeath and Snell 1974; Shiryaev, Xu, and Zhou 2008).
Most applications are based on variants of the SecP that
differ in the number of applicants that must be selected as
in the Multiple-Choice SecP (MCSP) (Freeman 1983), that
have full information as in the House-Selling Problem or
where the selected values must be maximized under con-
straints on each element as in the Online Knapsack Problem
(Marchetti-Spaccamela and Vercellis 1995). The MDP-ESP
differs from the MCSP in two details: first, the selected ap-
plicants must show up consecutively, and second, the proba-
bility distribution that gives the next sample must be selected
from a known set of probability distributions.

The former difference does not alter the applicability of
our algorithms, since scenarios where k consecutive data
points must be selected exist, e. g., with resources that decay
with time, goods on an assembly line, or in traffic control.
Moreover, our algorithms can also be applied to a variant
of the MDP-ESP where k results can be selected in arbitrary
order. An exemplary application is, as in the MCSP, the plan
to hire k employees. In our scenario, all applicants have pro-
vided application documents, which allow the estimation of
a probability distribution over the candidate’s aptitude (e. g.,
grades or experience influence the expectation and the rest
of the CV the variance and hence the potential). We invite
at most u of the applicants (more than u applicants are nec-
essary since we do not restrict the number of times a “type
of applicant” is selected), and we have to decide right after
the interview if we hire the candidate with knowledge of the
aptitude. This problem differs from the MDP-ESP only in
the way the k applicants are selected. However, it is easy
to see that Theorem 1 also holds, that the MTE algorithm
can be applied with the same bounds on the expected reward
(i. e., Theorem 2 holds) and that Theorems 3 and 4 hold for

versions of PS and MS where line 12 of Algorithm 1 is re-
placed with an equation that sums the k largest rewards in-
dependently from their position. Since this is a simple and
useful generalization of the popular MCSP, it is well-suited
to describe existing OSP applications more realistically.

Conclusion

We have shown how the MDP-ESP is constructed as a meta-
MDP where actions encode the execution of a policy in an
underlying base-MDP. The expected reward of the optimal
policy of the base-MDP is a lower bound for optimal strate-
gies in the MDP-ESP. We have derived a procedure from
the Bellman optimality equation to compute the policy that
maximizes its potential, and have presented an upper bound
for MDP-ESP strategies that corresponds to the potential of
π+. While the general MDP-ESP is intractable in practice,
we have shown that there are special cases – the MDP-ESPk

k,
the MDP-ESP∞

k , and the MDP-ESPu
1 – where the knowl-

edge of π⋆ or π+ suffices to compute an optimal strategy.

We have introduced four different strategies for the MDP-
ESP based on our theoretical analysis. A strategy that is
derived from the related SecP not only allows us to treat
MDPs as MDP-ESP instances even though the optimal strat-
egy cannot be computed , but is furthermore a strategy of
high quality that allows to exceed the average expected re-
ward of the underlying policy both in the experiments pre-
sented in this paper and at IPPC 2014. If π⋆ is available,
we show that avoiding bad luck is already an improvement
over a base policy that stops after k runs of π⋆. However, by
pushing the luck under application of the optimal policy, we
derive a strategy that converges towards P ⋆ and hence to a
result that can only be achieved in a very lucky set of eval-
uation runs. We showed empirically that the corresponding
strategy PS is of high quality if u and k are similar. The
use of MS, which switches between executing π⋆ and π+,
becomes more appealing with an increasing difference be-
tween u and k. It outperforms all other approaches signifi-
cantly in our empirical evaluation and demonstrates that it is
indeed sometimes better to be lucky than good.
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Abstract

The majority of research in the field of automated planning
focuses on the synthesis of plans for problems that are solv-
able. We propose an IPC track to focus on the important
and understudied area of unplannibility: proving that a plan-
ning problem is unsolvable. We will focus on classical plan-
ning problems, as methods for determining whether or not
unplannability can have wider applications for classical plan-
ning problems (e.g., recognizing and avoiding deadends in
the state space) as well as solving planning problems with
uncertainty (e.g., identifying when a deterministic approx-
imation of the problem is unsolvable). The unplannability
track follows similar contests in other fields; for example, the
UNSAT track for the field of Boolean Satisfiability. In a sim-
ilar vein, we hope that the introduction of an unplannability
track will foster new innovation for techniques dedicated to
identifying planning problems that cannot be solved.

Motivation

The International Planning Competition (IPC) has had a
long history of evaluating the state-of-the-art planners on
their ability to synthesize plans for solvable planning prob-
lems. However, the need for effective detection of unsolv-
able instances often is overlooked. We propose an IPC track
that focuses primarily on the task of unplannability: identi-
fying when there is no solution to a given problem.

It is common for competitions in other academic fields
to include a combination of both solvable and unsolv-
able instances in the benchmark domains: see for exam-
ple the SAT (http://www.satcompetition.org/)
and constraint programming competitions (http://www.
minizinc.org/challenge.html). Conversely, the
IPC historically has included only solvable instances for the
planning benchmarks.1 In order to focus on and showcase
the techniques for detecting unplannability, we feel that an
IPC track unique from the satisficing track is warranted.

While largely unstudied, the task of unplannability is an
important and difficult problem. As identified by Bäckström
et al. (2013), the source of many planning problems natu-
rally have an unsolvable counterpart that is as important, if
not more-so, than synthesizing solutions. Examples where

1Exceptions to this generalization typically are viewed as
“bugs” in the benchmark set.

it is useful include identifying human error in manually gen-
erated plans (Goldman, Kuter, and Schneider 2012), pene-
tration detection of software systems (Boddy et al. 2005),
and system verification (Edelkamp, Leue, and Visser 2007)
among others. As another example, Hoffmann et al. prove
a result for cellular automata by enumerating many initial
states for the same goal and identifying which ones have
no solution (Hoffmann, Fatès, and Palacios 2010). For this
work, they use the sound and complete version of FF (Hoff-
mann and Nebel 2001).

In the remainder of this proposal, we survey some of the
existing techniques that may form a basis for competitors
in an unplannability IPC track, outline the specifics of the
proposed track such as the timeline and evaluation, and con-
clude with a discussion.

Existing Approaches

Perhaps the most obvious possible solution to unplannability
is any sound and complete planner. This is the approach
used by (Hoffmann, Fatès, and Palacios 2010), and coupled
with an efficient means of expanding states, this approach
can be quite successful. However, more direct methods have
been considered in the literature recently that aim to target
unplannability in particular.

The first clear attempt to solve problems of unplannability
was by Bäckström, Jonsson, and Ståhlberg (2013). In this
work, Bäckström et al. construct abstractions of the problem
in a systematic way, bounded by a constant k, such that the
unplannability of many planning problems can be detected
efficiently. Their approach is sound, but incomplete unless
k is set to be sufficiently high.

The other approach that aims to tackle unplannability di-
rectly, was by Hoffmann, Kissmann, and Torralba (2014).
Hoffmann et al. adjust the strategies for merge and shrink
so that instead of preserving admissibility, the existence (or
lack thereof) of a solution is preserved. This approach ex-
tended the capability of unplannability detection presented
in (Bäckström, Jonsson, and Ståhlberg 2013), and represents
the state of the art in unplannability detection.

Two additional techniques recently were introduced that
may be amenable to unplannability detection. Keyder, Hoff-
mann, and Haslum (2014) introduce an improved mech-
anism for merging fluents in classical planning problems,
and indicate that their approach may assist in the detection
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of deadends (cf. footnote 7 on page 508). Finally, Suda
(2014) demonstrates how the new planning technique of
property directed reachability can be leveraged to determine
unplannability (cf. Section 5.8 on page 306).

The existing techniques offer a variety of options for de-
tecting unplannability, though these are limited in number.
An IPC track that focuses on unplannability will help to dis-
tinguish which techniques are viable, and pave the way for
new methods in detecting unplannability.

Track Details

Time-line

Following similar tracks in the past, the proposed time-line
for the unplannability track is as follows:

• Jun, 2015: Announcement of the track

• Jul, 2015: Call for domains / expression of interest

• Oct, 2015: Registration deadline

• Nov, 2015: Demo problems provided

• Jan, 2016: (optional) Initial feedback on buggy output

• Feb, 2016: Domain submission deadline

• Mar, 2016: Final planner submission deadline

• Apr, 2016: Paper submission deadline

• Mar - May, 2016: Contest run

• Jun, 2016: Results announced in London

Note the emphasis on a January deadline for the initial plan-
ner feedback phase. While any sound and complete plan-
ner can be used to check for unplannability, existing soft-
ware may be prone to errors when run to completion. Con-
sequently, we hope to iterate on the planners submitted to
mitigate against submissions containing bugs.

Another important note is that we do not necessarily coin-
cide with the next deterministic IPC track. Because the tech-
niques for satisficing planning and unplannability detection
are similar, running the two tracks at alternate times may
allow for greater participation.

Scoring

Since there is no standard certificate of unplannability cur-
rently, and we do not wish to restrict the type of planners
submitted to the inaugural unplannability IPC track, we will
focus on the coverage of problems correctly identified as be-
ing unsolvable. Similar to the optimal IPC track, we will
disqualify a solver for a particular domain if it identifies a
solvable instance incorrectly as having no solution or vice
versa. This increased penalty aims to deter approximate and
unsound solutions.

Orthogonal to the coverage score, we will evaluate the
speed of each technique following the standard IPC runtime
score: sum over all problems T ∗/T , where T ∗ is runtime of
the fastest planner. Further, the time score will serve as a
means for breaking ties in terms of planner coverage. With
regards to computational resources, we will follow the same
requirements as the last IPC-8 competition, 6GB RAM and
30 min computational limits.

Benchmark Domains

Bäckström et al. 2013 introduce a set of unsolvable plan-
ning instances that was extended subsequently by Hoffmann
et al. 2014. We will use these domains with newly gener-
ated problem instances as a seed for the domains in the IPC
track. Although we cannot guarantee that all (or even most)
domains will be ideal unplannability benchmarks, we will
strive to find domains with the following properties: (1) the
problems are a combination of both satisfiable and unsat-
isfiable instances; (2) there is no obvious syntactic differ-
ence between the satisfiable and unsatisfiable instances; and
(3) (at least some of) the satisfiable instances will be dif-
ficult for existing satisficing planners to solve. Point (1)
is important to avoid submissions of the form “return
True” and points (2)+(3) are meant to deter submissions
of the form “if FF fails to solve in under k

seconds, return True”.
Ultimately, we will aim to use domains that exhibit inter-

esting and useful properties with respect to unplannability
and deadend detection; relying in part on the existing prob-
lems where deadends and unsolvable instances play a role.
Potential sources for existing benchmarks include oversub-
scribed problems that encode resources, optimal planning
benchmarks with the added constraint that a plan should
have a cost cheaper than the optimal solution, unsolvable
translations of different planning formalisms (e.g., encod-
ings of conformant or contingent problems), etc.

Discussion

We hope that this track will attract attention and foster re-
search on unsolvable tasks, which to date remains an insular
topic within the ICAPS community. Our motivation in sub-
mitting this proposal to the Workshop on the International
Planning Competition is to promote a dialogue for improv-
ing the endeavour of an unplannability IPC track. To that
end, we have identified the following open questions that
we believe are worth discussing with members of the ICAPS
community interested in shaping the future IPC tracks:

1. What aspects of unsolvable problems should the bench-
marks focus on? E.g., problems where most abstractions
fail to recognize unplannibility, or problems with a hidden
unplannable core.

2. How do we avoid submissions that “game the system”?
The three properties of an ideal benchmark that we listed
earlier offer one step towards achieving this. Another
is the disqualification of a solver for an incorrect an-
swer. Should the solver source be released for verifica-
tion? Should a solver be disqualified entirely for an incor-
rect answer (i.e., false positive or false negative Etc.)?

3. What is an appropriate level of feedback to ensure that
all submissions are reasonably free of errors? An initial
suite of problems will be constructed to verify that the
systems are producing reasonable output for simple prob-
lems. Should more than one such iteration exist?

4. Is it reasonable to schedule an unplannability track at a
time other than the deterministic track? We argued ear-
lier that this would promote a higher participation in the
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unplannability track, but should this track eventually be
co-run or even merged with the classical planning IPC?
E.g., using a mix of solvable and unsolvable instances in
the benchmark domains similar to the satisfiability and
constraint programming contests.
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Abstract

In this paper, we demonstrate that many problems used
in the IPC are more naturally represented as bags in-
stead of sets. These tend to be problems with lots of
objects. In the standard PDDL representations the ob-
jects are all denoted individually by unique names and
this causes the problem solvers to encounter combina-
torial explosions on trying to solve them. Frequently we
don’t care about individual objects, we want something
to happen to a whole set of objects, but currently we
are forced to identify them individually anyway. These
bags of objects are similar to resources in scheduling.
We propose a new formulation for these types of prob-
lems in the current PDDL STRIPS representation. We
analyze the new and original representations in an at-
tempt to determine when each representation performs
better. In this paper’s experiments, the best results were
always obtained on the new representations. All new
representations in this paper were generated manually,
but we are currently developing a system that automat-
ically generates these types of representations from the
original PDDL representation, so throughout this paper
the new representations are called the transformed rep-
resentations.

Introduction

The PDDL based language is based on sets, so each indi-
vidual object is uniquely identified which leads to combina-
torical explosions. A more natural representation for prob-
lems with a large set of objects is a bag based representation
(like resources in scheduling). In this paper we explore prob-
lems from 6 domains. We analyze results on two represen-
tations for each problem. We refer to these representations
as the original and transformed representation, although all
the transformed representations discussed in this paper were
created manually. We are currently developing a transfor-
mation system which creates the new representations auto-
matically and translates the resulting solution back into the
original representation. (Riddle et al. 2015b) The goal of this
paper is to determine whether bagged-based representations
have an advantage over the normal set-based PDDL repre-
sentations for domains with a large number of objects of the
same type.

PDDL (McDermott et al. 1998) is fundamentally based
on sets. In a domain like sokoban-strips-opt-08, each of

the stones are individually identified. For instance, in prob-
lem p20 there are 5 individually identified stones. The goal
state specifies that each stone is at some goal location (at-
goal stone-05), but it doesn’t matter which goal location a
stone is at. This allows us to call each stone “stoneX”. In the
PDDL problem file we can rename all the stones in all the
predicates to stoneX. We must also alter the goal state, other-
wise PDDL’s set semantics mean once one stone is put in any
goal position the problem is solved. In this instance the goal
state becomes (and (at stoneX pos-03-03) (at stoneX
pos-03-04) (at stoneX pos-03-05) (at stoneX pos-03-06)
(at stoneX pos-03-07)), which is equivalent to the original
goal description. For sokoban-strips-opt-08, the domain file
does not have to be altered to use this new representation.

We solved p20 in both representations with Fast Down-
ward (Helmert 2006). Using the blind heuristic in the new
representation it found a 31 cost solution (with 87 steps) in a
search time of 3.07 seconds which expanded 752,651 states
until last jump. Fast Downward’s “until last jump” values
return the number of states for the last fully expanded f-
level. We use these counts throughout this paper to avoid any
stochastic effects caused by search tree ordering. The prob-
lem solver on the original representation ran out of memory
during f-level 31. These representations will have the same
cost optimal solution, so we can look at the last f-level they
both completed. In the original representation, at the end of
f-level 30, Fast Downward expanded 30,006,650 states in
105.7 seconds. At the same f-level in the transformed rep-
resentation Fast Downward expanded 752,651 states in 3.07
seconds. We use blind search to compare the actual size of
the state space. This simple change, ignoring the names of
identical objects, reduces the search tree size by a factor of
40, as can be seen in Table 3. The reduction factor is cal-
culated by dividing the nodes expanded in the original rep-
resentation by the nodes expanded in the transformed rep-
resentation. If both problems are not solved we use the ex-
panded nodes at the last common f-level in this calculation.
This works for the sokoban-strips-opt-08 domain because no
two stones can occupy the same location, so it never tries to
enter (at stoneX pos-4-3) twice within the same state.

We would like to use the same type of representations
in other domains. For example, in the gripper domain we
would like to call all the balls “ballX”. The problem is two
different balls can be in the same location within a state. If
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Table 1: Transformed gripper problem representation

(define (problem strips-gripper-x-1)

(:domain gripper-strips)

(:objects n4 n3 n2 n1 n0 rooma roomb ballX left right)

(:init(room rooma)(room roomb)(ball ballX)(free left)

(free right)(at-robby rooma)(more n0 n1)(more n1 n2)

(more n2 n3)(more n3 n4)(gripper left)(gripper right)

(count ballX rooma n4)

(count ballX roomb n0))

(:goal(and(count ballX roomb n4))))

we enter (at ballX rooma) more than once in a state, then
when one of them is removed all of them will be removed
because of PDDL’s basic set representation. To solve this
problem we create a bag representation that can be used in
PDDL instead.

A Bagged Representation

In order to avoid having multiple copies of the same predi-
cate in a state (e.g., (at ballX rooma)(at ballX rooma))
every predicate that refers to the “objects to be merged” will
need to be replaced by a count predicate. So for instance in
the gripper domain (at ball1 rooma) (at ball2 rooma) (at
ball3 rooma) (at ball4 rooma) will be replaced by (count
ballX rooma 4). This is the equivalent of multiple identical
predicates within the same state. To implement the counts,
we need to do simple arithmetic. Unfortunately only a hand-
ful of optimal planners currently handle PDDL numerical
fluents. We want to create PDDL that can be used by any
PDDL planner, so we add simple counting predicates (more
n1 n2) which allow us to alter the domain actions to in-
crement or decrement the count predicates. The transformed
representation for gripper is shown in Tables 1 and 2.

We created a gripper problem instance p250 with 250
balls. We solve this problem with both representations with
Fast Downward using the blind heuristic. Note that the rep-
resentation used in these experiments merged the grippers
together as well as the balls, as opposed to the PDDL shown
in the tables above. This more complex transformed repre-
sentation is given at (Riddle 2015). With the transformed
representation it found a 749 step solution in a search time
of 1.22 seconds which expanded 1,495 states until last jump.
Whereas with the original representation, Fast Downward
runs out of memory during f-level 6. These representations
will have the same length optimal solution, so we can look
at the last f-level they both completed. In the original repre-
sentation, at the end of f-level 5 Fast Downward expanded
250,502 states in 10.98 seconds. At the end of f-level 5 in
the transformed representation Fast Downward expanded 9
nodes in 1.02 seconds. This change reduces the search tree
size by a factor of 27,834, as can be seen in Table 3.

More Complex Domains

So far the transformations have been fairly easy because the
objects that we wanted to rename only occurred in a sin-
gle predicate. Things become more complex when we have
multiple predicates. For instance in the Barman-opt11-strips
domain, let us assume we do not care which shots contain
which drinks, but only care that there “exists” a shot with

Table 2: Transformed gripper domain representation

( define ( domain gripper-strips )

(:predicates (room ?r)(ball ?b)(gripper ?g)

(at-robby ?r)(count ?b ?r ?n)(free ?g)(carry ?o ?g)

(more ?n1 ?n2))

(:action move :parameters ( ?from ?to )

:precondition (and (room ?from)(room ?to)

(at-robby ?from))

:effect (and (at-robby ?to)(not (at-robby ?from))))

(:action pick :parameters (?n1 ?n0 ?obj ?room ?gripper)

:precondition (and (ball ?obj)(room ?room)

(gripper ?gripper)(at-robby ?room)(free ?gripper)

(more ?n1 ?n0)(count ?obj ?room ?n0))

:effect (and (carry ?obj ?gripper)

(not (count ?obj ?room ?n0))

(count ?obj ?room ?n1)(not (free ?gripper))))

(:action drop :parameters (?n1 ?n0 ?obj ?room ?gripper)

:precondition (and (ball ?obj)(room ?room)

(gripper ?gripper)(carry ?obj ?gripper)(more ?n0 ?n1)

(at-robby ?room)(count ?obj ?room ?n0))

:effect (and (not (count ?obj ?room ?n0))

(count ?obj ?room ?n1)(free ?gripper)

(not (carry ?obj ?gripper)))))

each specified drink. Similarly, we have two hands “right”
and “left” and do not care which hand picks up and holds
something, only that we don’t pick up 3 things! We want
to create the same type of abstracted representation for the
barman domain. Unfortunately now we have multiple predi-
cates that refer to shots. To overcome this problem, we create
macro-predicates.

The transformed barman-opt11-strips problem for
pfile01-001.pddl is given at (Riddle 2015). In the origi-
nal representation, there are a number of predicates that
take a shot as an argument. These are: (ontable ?c -
container), (holding ?h - hand ?c - container), (clean
?c - container), (empty ?c - container), (contains
?c - container ?b - beverage), (used ?c - container
?b - beverage). This kind of distributed representation
is very common in PDDL. It can be used because the
unique identifiers (“shot1” “shot2” etc.) allow it to associate
the distributed predicates with each other. Unfortunately,
the unique identifiers are the cause of the combinatorial
explosion! We combine the predicates into a single macro-
predicate. The initial state in the original representation
had {(ontable shot1), (ontable shot2), (ontable shot3),
(ontable shot4), (clean shot1), (clean shot2), (clean
shot3), (clean shot4), (empty shot1), (empty shot2),
(empty shot3), (empty shot4)}. This is represented in
the new representation as (count1 shotX empty clean
ontable 4), which states that in the initial state there is:
(1) a (clean shotX), (2) an (empty shotX), and (3) an
(ontable shotX) for the same 4 unique shots. This solves
the problem of distributed representations, but it causes
problems with representing the goal state.

The original representation’s partial goal description
was (and (contains shot1 cocktail3), (contains shot2
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cocktail1), (contains shot3 cocktail2)). It contains some
information from our macro-predicate but not all the infor-
mation. We could use (1) variables or (2) existential quan-
tifiers, or (3) an OR construct in our final goal descrip-
tion. Unfortunately many of the current IPC planners do not
allow any of these options in a goal description. Alterna-
tively we create a goal-predicate that only contains the in-
formation required in the goal description. For this prob-
lem that is: (and(count-goal shotX cocktail3 1) (count-
goal shotX cocktail1 1) (count-goal shotX cocktail2
1)). Of course the domain actions must be designed to deal
with the count macro-predicates and the newly created goal-
predicates, these can be seen in the Barman domain file at
(Riddle 2015).

We solve problem pfile01-001.pddl in these two repre-
sentations with Fast Downward using the blind heuristic. In
the new representation it returned a 90 cost solution with
36 steps in a search time of 4.41 seconds which expanded
289,946 states until last jump. In the original representation,
it returned a 90 cost solution with 36 steps in a search time
of 38.91 seconds which expanded 5,967,050 states until last
jump. This reduces the search tree size by a factor of 21, as
is shown in Table 3.

Domains with Lots of Objects

The advantage of the “bagged representation” is that it scales
much better than the standard representation, for instance
you can solve the 250 ball gripper problem shown above.
We present three additional domains to emphasize this point.
The first is the Spanner domain from the IPC 2011 Learning
track, created by Amanda Coles, Andrew Coles, Maria Fox
and Derek Long. The second is the ChildSnack domain from
the sequential track in IPC-2014, created by Raquel Fuente-
taja and Tomás de la Rosa Turbides. The third is the Pizza
domain also created by Raquel Fuentetaja and Tomás de la
Rosa Turbides.

In the Spanner domain, we solve a smaller version of
problem pfile01-001.pddl (which has 30 nuts to tighten and
30 spanners). In the transformed representation we merge all
the nuts and spanners. We keep track of the counts of span-
ners at each location and the number of loose and tightened
nuts.

In the ChildSnack domain, we solve problem child-
snack pfile01.pddl (which has 6 children, 6 breads, 6 con-
tents, and 8 sandwiches). In the transformed representation
we merge the bread, contents, and sandwiches. We keep
track of the counts of each item.

In the Pizza domain, we solve problem rnd-
goal pizza base p02.pddl (which has 5 guests and 16
slices of pizza). In the transformed representation we merge
the slices. We keep track of the counts for each item.

We present a number of experiments on these domains (as
well as the 3 domains presented earlier), but first we discuss
the related research.

Related Research

There has been considerable work on problem reformula-
tion, starting with George Polya’s How to Solve It (1957).

Due to lack of space we will focus on planning-specific re-
formulation research. The Fast Downward system (Helmert
2006) transforms the PDDL representation into a multi-
valued planning task, similar in spirit to SAS+. Using this
representation, the system generates four internal data struc-
tures, which it uses to search for a plan. Helmert (Helmert
2009), extending this work, focused on turning PDDL into a
concise grounded representation of SAS+. Additional work
in this area transforms between PDDL and binary decision
diagrams (Haslum 2007), transforms between PDDL and
causal graphs (Helmert 2006), and identifies and removes
irrelevant parts from a problem representation (Haslum,
Helmert, and Jonsson 2013).

To the best of our knowledge, little research has focused
on transforming a PDDL representation into another PDDL
representation. Two notable exceptions are (Areces et al.
2014; de la Rosa and Fuentetaja 2015), the latter of which
we describe at the end of this section. Instead, it has al-
most exclusively focused on either reformulating PDDL to
a planner’s internal representation or transforming one in-
ternal representation to another. Although these approaches
lead to more knowledge about the connectivity of the search
space, and the power to alter the representation in these inter-
nal forms, there are advantages to altering PDDL. First, the
new representations can be used by any PDDL planner. Sec-
ond, in some domains, creating SAS+ or the domain transi-
tion graphs take a lot of time; this might be avoided by first
transforming to a different PDDL representation and trans-
forming that into SAS+ or an internal representation.

Our system has much in common with symmetry reduc-
tion systems. Fox and Long (1999) group symmetric objects
together in TIM. They require objects to be indistinguish-
able in both the initial state and the goal description. They
keep track of the symmetry groups during planning but only
with respect to the goal description, so they cannot remove
all the symmetries in gripper.

Pochter et. al. (2011) generalize the work by Fox and
Long, by using generators to create automorphic groups.
These groups are based on SAS+ and so are more general
than objects. They still require the symmetric groups to be
indistinguishable in both the initial and goal description.

Domshlak et. al. (2012) extended this work to only re-
quire symmetric groups to be indistinguishable in the goal
description in the DKS system. They compared their work to
Pochter’s system, where they solved 8 more problems over
30 domains.

Metis (Alkhazraji et al. 2014), uses orbit search to do
symmetry breaking. It is an improvement on DKS, since it
does not store extra information with each state. Metis also
includes an incremental LM-cut heuristic and partial order
reduction with strong stubborn sets.

The closest work to our automated system for creating
these transformations is the system by de la Rosa et. al.
(2015). They reformulate PDDL into PDDL and they merge
objects in a similar way. The main differences are 1) we
merge objects if they are the same in the initial state or the
same in the goal description whereas their system merges
objects if they do not appear in the goal description 2) they
explicitly use numeric fluents in their modeling, restricting



20

Table 3: Analysis of both representations across 6 domains using blind search. X signifies the planner was killed because it
ran out of memory under the 2014 IPC constraints. Solution state expansions are “until last jump” to normalize for different
tree orderings on the last level. Reduction Faction of expanded states shows by what factor it has been reduced; we use the last
common f-bound in this calculation if either representation is not solved.

# # states exp. Reduction

SAS+ SAS+ search states last common common solution solution Factor of

domain problem heuristic representation vars actions time expanded f-bound f-bound cost length Expanded States

sokoban p20 blind
transformed 25 120 3.07s 752,651 752,651 30 31 87

40
original 35 312 X X 30,006,650 30 X X

gripper p250 blind
transformed 5 500,002 1.22s 1,495 9 5 749 749

27,834
original 253 2,002 X X 250,502 5 X X

barman-opt11 pfile01-001 blind
transformed 147 4,501 4.41s 289,946 90 36

21
original 62 358 38.91s 5,967,050 90 36

spanner pfile01-001-small blind
transformed 16 1,851 18.38s 8,699,505 126,611 53 111 111

71
original 91 981 X X 9,038,188 53 X X

ChildSnack child-snack pfile01 blind
transformed 74 1,656 1.8s 90,162 272 5 20 20

5,553
original 36 456 X X 1,510,534 5 X X

pizza base p02 blind
transformed 28 2,304 1.05s 10,837 205 6 15 15

3,400
original 37 14,668 X X 705,106 6 X X

them to planners that support them such as metric-FF (Hoff-
mann 2003) 3) both our systems translate the solution back
to the original representation but our system can generate
plans which have different explicit values specified in the
goal state.

Experimental Results

In this section we explore 6 domains using a number of
different problem solving configurations. First we analyze
the representations using blind search. Next we focus on the
gripper domain and look at the effect that small changes to
the PDDL representation have on the SAS+ variables and
actions and therefore on the problem solving ability. Fol-
lowing this we summarize some of the lessons learned from
these experiments.

Blind Search

We discussed the sokoban, gripper and barman domains ear-
lier. Table 3 shows the reduction factor of expanded states
for each problem in these 3 domains is 40, 27,834 and 21
respectively.

In the Spanner domain, we solve a smaller version of
problem pfile01-001.pddl (which has 30 nuts to tighten and
30 spanners) in both representations with Fast Downward
using the blind heuristic. In the transformed representation it
returns a 111 step solution in a search time of 18.38 seconds
which expanded 8,699,505 states until last jump. Whereas
in the original representation it runs out of memory during f-
level 54. At the end of f-level 53 it expanded 9,038,188 states
in 35.08 seconds. At the end of f-level 53 in the transformed
representation it expanded 126,611 nodes in 1.24 seconds.
The new representation for spanner can be seen at (Riddle
2015). The reduction factor for this problem is 71.

In the ChildSnack domain, we solve problem child-
snack pfile01.pddl in both representations with Fast Down-

ward using the blind heuristic. In the transformed represen-
tation it found a 20 step solution in a search time of 1.8 sec-
onds which expanded 90,162 states until last jump. Whereas
in the original representation it runs out of memory during
f-level 6. At the end of f-level 5 it expanded 1,510,534 states
in 82.06 seconds. At the end of f-level 5 in the transformed
representation it expanded 272 nodes in 1.01 seconds. The
new representation for ChildSnack can be seen at (Riddle
2015). The reduction factor for this problem is 5,553.

In the Pizza domain, we solve problem rnd-
goal pizza base p02.pddl in both representations with
Fast Downward using the blind heuristic. In the transformed
representation it found a 15 step solution in a search time
of 1.05 seconds which expanded 10,837 states until last
jump. Whereas in the original representation it runs out of
memory during f-level 7. At the end of f-level 6 it expanded
705,106 states in 34.2 seconds. At the end of f-level 6 in
the transformed representation it evaluated 205 nodes in
1.02 second. The new representation for pizza can be seen
at (Riddle 2015). The reduction factor for this problem is
3,400.

Alternative PDDL Representations Effects

In the gripper example above we used the predicate (count
ballX rooma n4) to represent that there are 4 ballXs in rooma
in the initial state. When you merge all objects of a single
type into an equivalence class, you could just remove that
type from the predicate altogether and make it (count rooma
n4) since the ballX can be assumed implicitly. We tried these
two alternative representations (using both the ball and grip-
per equivalence classes). We wanted to see what effect they
would have on the SAS+ variables and actions created and
also what effect that had on Fast Downward’s problem solv-
ing.

The first two rows of Table 4 show the results on the

Table 4: Analysis of both representations across both representations using iPDB. X signifies the planner ran out of memory
under the 2014 IPC constraints. Solution state expansions are ”until last jump” to normalize for different tree orderings on the
last level.

last-jump total initial

SAS+ SAS+ translate preprocess search total states states heuristic solution solution

domain prob heuristic representation vars actions time time time time expanded expanded estimate cost length

gripper p250 iPDB
with-objects 5 500,002 107.17s 640.50s 1.05s 23.26s 0 750 749 749 749

without-objects 755 500,002 111.81s 738.41s X X X X X X X

gripper p250 iPDB/symba
with-objects 5 2,002 108.22s 74.88s 1.03s 2.62s 0 750 749 749 749

without-objects 507 2,002 119.99s 127.04s 1.21s 3077.64s 1491 1494 36 749 749
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Table 5: Analysis of both representations across both representations using LM cut. Solution state expansions are ”until last
jump” to normalize for different tree orderings on the last level.

last-jump total initial

SAS+ SAS+ translate preprocess search total states states heuristic solution solution

domain prob heuristic representation vars actions time time time time expand expand estimate cost length

gripper p250 LM cut
with-objects 5 500,002 107.79s 665.85s 9777.18s 9790.72s 1492 1497 251 749 749

without-objects 755 500,002 113.25s 729.72s 11820.7s 11843.3s 1492 1497 251 749 749

gripper p250 LM cut/symba
with-objects 5 2,002 108.47s 75.15s 11.01s 11.07s 1492 1497 251 749 749

without-objects 507 2,002 120.78s 131.33s 14.45s 14.55s 1492 1497 251 749 749

gripper problem with-objects and without-objects (when we
have removed ballX and gripperX from the predicates) us-
ing the iPDB heuristic (Haslum et al. 2007). The number of
SAS+ variables explodes in the without-objects representa-
tion, going from 5 to 755. Fast Downward’s ability to find
mutexes is severally hampered by this representation. As a
consequence of this, Fast Downward runs out of memory
while it is still looking for PDBs. While in the with-objects
representation the problem is solved in 23 seconds total time
and goes straight to the solution expanding 750 nodes with
a solution length of 749.

The second two rows of Table 4 show the same two exper-
iments with the only difference being that the translator and
preprocessor software is replaced by that used in SymBA*
(Torralba et al. 2014) which has been altered to work with
Fast Downward. The translator and preprocessor software
are described in (Alcázar and Torralba 2015). These two
rows show that many of the actions are found to be spu-
rious and removed. In addition, the number of SAS+ vari-
ables is also reduced when using the SymBA* preprocessor
and the without-objects representation. Also the preprocess-
ing time is significantly reduced in both representations. The
with-objects representation performs about the same, except
the total time is smaller because the spurious actions are
removed. The without-objects representation is now solved
without running out of memory because of the SAS+ reduc-
tion in size.

The question is whether this behavior is specific to iPDB
or whether the same trends will occur with other heuristics.
To test this we ran the same 4 experiments using LM-cut
(Helmert and Domshlak 2009), the results are shown in Ta-
ble 5. All 4 configurations can solve the problem. In addi-
tion, they all expand exactly the same number of nodes. But
the failure of the original Fast Downward preprocessor to
remove spurious states, means that the first two experiments
take about 10,000 seconds total time. With the SymBA* pre-
processors the last two experiments are solved in 15 seconds
total time. Using LM-cut there is a slight benefit to using
the with-objects representation no matter which preproces-
sor you use.

There is a clear trend: 1) improvement when using the
with-object representation and 2) improvement when using
the SymBA* preprocessor. We will look at one last set of

experiments where we use the Blind heuristic. We ran the
same 4 experiments using the blind heuristic, the results are
shown in Table 6. The preprocessor time using SymBA* is
still lower, but all four experiments expand the same num-
ber of states. Because there are fewer SAS+ variables and
actions, the total time for Fast Downward is an order of mag-
nitude less when using the SymBA* preprocessor. Another
very interesting fact is that the number of nodes expanded
using the blind heuristic is the same as those expanded using
LM cut. LM cut does not seem to exclude any of the nodes
expanded with the blind heuristic, but it does take 3 orders of
magnitude more time. iPDB on the other hand, takes more
time than blind search, but at least does expand fewer nodes
which might be useful in larger problems.

Lessons Learned

Unfortunately the transformed representation is not always
better than the old representation. For instance even the
transformed Sokoban representation has some drawbacks
with the LM-cut and iPDB heuristics, see (Riddle et al.
2015a). This further supports earlier results by (Riddle,
Holte, and Barley 2011) that there is no “best representa-
tion” for all problems within a domain. The main drawbacks
concern: how the SAS+ variables and actions are made, and
how the heuristics are affected. We will discuss each of these
drawbacks in turn.

SAS+ Variables This paper showed that the transformed
representation sometimes gave a larger number of SAS+
variables and actions and sometimes made them smaller.
In some domains such as sokoban, gripper, spanner, and
pizza, the new representation actually has fewer variables
and actions generated. This is a boon to the planners be-
cause they use less memory to represent each state. In other
domains such as barman-opt11 and ChildSnack, more vari-
ables and actions are created. This means the planner will be
using more memory, not less! One solution is to use a bet-
ter SAS+ preprocessor, such as (Alcázar and Torralba 2015),
this is an area we are currently exploring. As shown in Ta-
bles 4, 5, and 6, the SymBA* preprocessor frequently re-
turned fewer variables and actions. These experiments also
highlight how sensitive all the SAS+ preprocessors are to
small changes in the PDDL description. In with-objects we

Table 6: Analysis of both representations across both representations using the Blind heuristic. Solution state expansions are
”until last jump” to normalize for different tree orderings on the last level.

last-jump total initial

SAS+ SAS+ translate preprocess search total states states heuristic solution solution

domain prob heuristic representation vars actions time time time time expanded expanded estimate cost length

gripper p250 Blind
with-objects 5 500,002 107.21s 635.97s 1.19s 14.27s 1495 1498 1 749 749

without-objects 755 500,002 113.0s 710.46s 1.30s 23.89s 1495 1498 1 749 749

gripper p250 Blind/symba
with-objects 5 2,002 108.19s 75.19s 1.18s 1.24s 1495 1498 1 749 749

without-objects 507 2,002 120.63s 128.91s 1.22s 1.32s 1495 1498 1 749 749
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had predicates which always had only one choice of value
”ballX” and ”gripperX”. We removed these two values since
they were implicitly defined, but this caused both preproces-
sors to create more variables. In addition, this caused the
original Fast Downward preprocessor to create more SAS+
actions as well.

Additionally we have found that the number of states ex-
panded in the transformed representation is reduced to such
an extent, that the extra costs of the additional SAS+ vari-
ables are not a problem. This is not always the case. In prob-
lems where you only bagged 2 or 3 objects together and got
an increase in SAS+ variables, the new representation would
likely take longer to solve.

We learned two main lessons concerning SAS+ variables.
The first is that small changes to PDDL representations can
have large impacts in SAS+ representations. This is very im-
portant if you are automatically generating PDDL represen-
tations because you cannot normally try a number of similar
representations and pick the best one. But it is also important
in the main creation of PDDL representations. A designer
needs to carefully try a series of representations to find one
that works well with a problem solver and heuristic combi-
nation.

The second lesson learned is altering the PDDL represen-
tation can greatly reduce the size of the search space and
problem solving time even when heuristics are involved. Be-
cause the search space is reduced to such a large extent, it is
still frequently better to solve a problem in the transformed
space even if the heuristics are less accurate. This is explored
more completely in (Riddle et al. 2015a). So how do we de-
termine which heuristic to use in the transformed domains?

Heuristics Another issue is how the new representations
affect the heuristics, this relates to the section above because
any change to the SAS+ variables will change the heuristics’
predictive power. As we can see in our experiments some-
times the new representation improves the accuracy of the
initial heuristic estimate and sometimes it decreases it.1 This
can be seen in Table 5 and is explored further in (Riddle et al.
2015a). We have made the state space so much smaller, that
the fact that the heuristics are not as good frequently has lit-
tle effect. But finding a heuristic which performs well on the
transformed domain is one of our major research directions.

Currently our results show that blind search almost al-
ways out performs heuristics in the transformed represen-
tation. This allows us to solve more problems than other
IPC problem solvers, but will not scale up in the long run
to really huge problems. The SymBA* problem solver is an-
other direction of exploration. The combination of our re-
duced search space and their bidirectional blind search pro-
vides a very powerful approach. Using this combination we
can solve the first 9 barman-opt14 problems within the IPC
constraints. This is the only approach I know of which cur-
rently solves all these problems. But the transformed repre-
sentation can only get rid of accidental complexity (Haslum
2007), so blind search (even bidirectional search) will only
scale up so far.

1We are assuming that the initial heuristic estimate reflects the
overall accuracy of the heuristics.

We have currently looked at iPDB and LM cut. LM cut
performs poorly on the new representations, iPDB on the
other hand performs equally well on the original and trans-
formed representations (as long as the number of SAS+ vari-
ables does not grow too large). So a combination of iPDB
with the transformed representation using the SymBA* pre-
processor is our current best approach for larger problems
where SymBA* cannot solve them using blind bidirectional
search.

Another approach we are exploring is using RIDA* (Bar-
ley, Franco, and Riddle 2014) to chose between several
different configurations. It uses sampling and its run-time
formulas to decide for this problem which combination of
representation, heuristics and problem solver will have the
greatest chance to solve the problem within the current time
constraints.

Conclusion and Further Research
To scale up PDDL representations to large numbers of ob-
jects, it is better to use a Bagged representation. This allows
much larger problems to be solved with less combinatorial
explosion. We are creating a system for automatically gener-
ating a bagged representation from the original PDDL rep-
resentation (Riddle et al. 2015b), although the PDDL rep-
resentations shown here were created manually. The auto-
mated approach allows the use of a bagged representation
even when you care which object is used, because it trans-
lates the solution back into the original representation. It
does require that the objects to be merged are the same either
in the initial state or in the goal description.

This paper shows that the transformed representation has
a smaller state space. It certainly can solve some problems
more efficiently (the transformed representation combined
with SymBA* is the only system we are aware of which
can solve the first 9 barman-opt14 problems within the IPC
constraints).

There are two major problems with Bagged representa-
tions, the SAS+ representation is very sensitive to how the
PDDL is represented. This is painful when PDDL is created
by hand, but it is even more troublesome when the PDDL is
automatically generated. We are currently exploring subtler
changes in PDDL representations to explore their effect on
the resulting SAS+ representation.

The second major problem is that at least some heuris-
tics find it difficult to provide accurate heuristic estimates in
bagged representations. This is interesting in itself because
the transformed PDDL representations could be (and in the
case of this paper were) created manually. So our current
set of heuristics are not appropriate for all PDDL represen-
tations. We suspect that people have been making PDDL
domains which can be solved with the heuristics we have,
rather than challenging the field with representations where
our heuristics perform poorly. We plan to explore which
heuristics perform better on a bagged representation. Some
heuristics seem to perform equally across most representa-
tions and some do particularly badly on the bagged repre-
sentation.

The transformed representation is certainly not always
better, especially when there are only a few symmetrical ob-
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jects. Currently we use RIDA*’s (Barley, Franco, and Riddle
2014) runtime formula to choose between representations
on a problem by problem basis. We would like to extend it
to choose between heuristics, representations, and problem
solving approaches (e.g., Fast Downward versus SymBA*).

We should include bagged representations in future IPC
competitions. They are an easy way to explore larger spaces,
whether automatically generated or created by hand. It
would be interesting to see which heuristics and problems
solvers work well on these representations and which do not.
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Abstract

As a part of the 2015 DMAP workshop at ICAPS, we
are organizing a semi-official experimental competition
in multi-agent planning. The main aims of the compe-
tition are to consolidate the planners in terms of input
format and formalism, so they can be better compared
and to provide a proof-of-concept of a potential future
IPC track on multi-agent planning. Another aim is
to bring closer the classical and multi-agent planning
communities in terms of comparable benchmarks and
techniques. In this paper we explain our decisions, de-
scribe the formalism and language used and propose
how the IPC track might look like. The success (or
failure) of the competition will show the potential suit-
ability of such a dedicated IPC track.

Introduction
Various forms of multi-agent planning have recently
found their way to the ICAPS (International Confer-
ence on Automated Planning and Scheduling) commu-
nity, partially at the main conference, partially at spe-
cialized workshops such as DMAP’13-’15 (Distributed
and Multi-Agent Planning). Nevertheless, there was
no IPC (International Planning Competition) track for
multi-agent planning yet. The reason lies most prob-
ably in the wide variety of actual problems the term
multi-agent planning covers.
One of the main distinctions can be drawn between

centralized planning for multiple agents, distributed
planning by multiple agents (for a centralized solution)
and distributed planning by multiple agents for multi-
ple agents (themselves). Other than that, the multi-
agent planning problems can range from fully observ-
able, deterministic planning with cooperative agents to
partially observable nondeterministic planning with ad-
versarial agents.
But even if we restrict multi-agent planning to some

well defined subset of the problems, existing planners
can hardly be compared as they use a multitude of
formalisms and input formats. As the organizers of
DMAP’15 we have decided to run an experimental com-
petition of multi-agent planners mainly to address this

Copyright c© 2015, Association for the Advancement of Ar-
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issue and to enable a possible future multi-agent IPC
track.
In this paper we describe the decisions we have made,

the rules and the language we have designed and the
potential for a future multi-agent IPC track.

Aims of CoDMAP

The first decision we had to make was how to restrict
the multi-agent planning problems which would be cov-
ered by the competition. We chose an approach similar
to that of classical planning, that is start with the small-
est possible subset of features and possibly extend them
in the future. We wanted to take classical STRIPS plan-
ning and extend it with the smallest possible feature set
to transform it for the multi-agent setting. Such an ap-
proach was already taken by Brafman&Domshlak in the
case of MA-STRIPS formalism (Brafman and Domsh-
lak 2008).
Before designing the competition, we were aware of

about a dozen of multi-agent planners more-or-less com-
patible with the MA-STRIPS formalism. One of the
main focuses of the competition design was to allow
as many of them as possible to enter the competition
without large-scale modifications. In order to foster our
awareness of the existing planners and their possible ex-
tensions, we have conducted a public poll.
Out of the poll and other considerations arose three

main restrictions of the multi-agent planning model:

STRIPS-like model This means deterministic, non-
durative actions and full observability (with respect
to privacy, which will be discussed later). This seems
to be the simplest model, compatible not only with
most of the current multi-agent planners, but also
with classical planners and classical planning tech-
niques, which is good for comparison, reuse of the
techniques and benchmarks.

cooperative agents This is a very strong assumption,
maybe one of the first candidates to be lifted. On the
other hand, some competitive problems can be con-
verted to cooperative by automatic transformation
of action costs using mechanism design (Nissim and
Brafman 2013).
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offline planning We have decided to stick to the of-
fline planning paradigm as used in classical planning
(input → planning → plan) in contrast to online
planning as used in the probabilistic uncertainty IPC
track.

In order to make the transition as smooth as possible
for most of the planners, we have decided to run two
tracks. The Centralized Track serves as a transitional
track, where the input is centralized and the planners
can be centralized as well, which both contradicts com-
mon assumptions of multi-agent planning. Also most
of the language and formalism requirements (described
later) can be ignored by the planners (but they have to
state that in the description). The other, more ideal,
Distributed Track forces stricter rules and also forces
the planners to consume distributed (factored) input
and run on multiple physical machines in a distributed
fashion (each planning agent on one machine). In both
tracks, the planning systems are evaluated separately
(as in classical IPC), different planners are not inter-
acting.
We have excluded the possibility of a decentralized

track, where planners of multiple competitors would
plan together cooperatively (or non-cooperatively) in
order to find a common plan. Such track would require
us to define some common protocol and is far beyond
the abilities of most current planners.

MA-STRIPS

A crucial point of the competition was to determine a
formalism and an input language. For the formalism,
we have chosen MA-STRIPS for its simplicity and wide
acceptance among existing planners.
MA-STRIPS extends the STRIPS formalism with

two concepts, a concept of factorization and a con-
cept of privacy. A classical planning STRIPS prob-
lem is a tuple Π = 〈P,A, I,G〉, where P is a set of
propositions, A a set of actions, I the initial state and
G the (partial) goal state. In a MA-STRIPS prob-
lem ΠMA = 〈P, {Ai}

n
i=1

, I, G〉, the set of actions is
factored into n sets of actions, each set representing
the capabilities of a single agent. That is agent k can
use only actions in Ak. Other parts of the problem
keep the STRIPS semantics, as well as the actions:
a = 〈pre(a), add(a), del(a)〉.

Privacy follows unambiguously from the factoriza-
tion. A fact p ∈ P is public, if it is shared among two ac-
tions of different agents, that is if p ∈ (pre(ai)∪add(ai)∪
del(ai))∩ (pre(aj)∪ add(aj)∪del(aj)) and ai ∈ Ai, aj ∈
Aj and i 6= j. All facts p′ that are not public are pri-
vate to some agent k s.t. p ∈ pre(ak)∪add(ak)∪del(ak)
for some ak ∈ Ak. Similarly, an action is public if it
contains any public fact in its precondition or effect,
otherwise it is private.
Note, that the MA-STRIPS formalism does not ex-

plicitly define the pragmatics of the public/private sep-
aration, that is, what is the interpretation of privacy for
the agents and the planner. One common understand-

ing is that the agents should not “know” or “observe”
or somehow “use” the other agent’s private information,
which implies a special case of partial observability. We
adopt this interpretation of privacy in the Distributed
Track and allow more freedom in the Centralized Track,
as it is not the only view of privacy possible and espe-
cially if the planner is centralized, interpretations other
than restricted observability are meaningful as well.
Obviously, as MA-STRIPS is a minimal multi-agent

extension of STRIPS, there is a multitude of reasonable
extensions to MA-STRIPS. First of all, the definition
of privacy (in terms of what facts and actions are pub-
lic/private) can be defined much more loosely. Also the
requirement that an action belongs to a single agent
can be relaxed in order to allow joint actions (that is
actions which have to be performed simultaneously by
multiple agents). Similarly the requirement that a fact
is either public or private to a single agent is rather
strict. It is imaginable to have a fact private to a sub-
set of agents. For simplicity, we have decided to exclude
all such extensions from the current competition.

MA-PDDL

Having a common formal model of multi-agent plan-
ning is a great leap forward, but is not enough for the
competition. In order to be able to run the planners on
a common set of benchmarks it is necessary to have a
common input language as is PDDL for classical plan-
ning. As all the planners we are aware of (and which
took part in the poll) use as an input some kind of
modified PDDL or PDDL with some additional infor-
mation (typically defining the factorization and/or the
privacy), we have decided to use an extension of PDDL.
Our primary aim was to be able to express the MA-

STRIPS factorization of actions and public/private sep-
aration using the language, but its expressive power did
not have to be limited to it. There were two existing
candidates, MAPL (Brenner 2003) and MA-PDDL (Ko-
vacs 2012). MAPL was published in 2003 and was
rather a drastic modification of PDDL2.1, introducing
many features not required by us and missing the fac-
torization and privacy definitions. MA-PDDL was a
more consistent extension of PDDL3.1, but still intro-
ducing many features not needed by us and not describ-
ing privacy. Since MA-PDDL was designed as modu-
lar (allowing to use just some of the features) we have
decided to extend MA-PDDL with two new modular
features, factorization of domains and problems and a
definition of privacy of objects and predicates (and thus
implicitly of actions).
In MA-PDDL, the agents are objects which can be

associated with an action based on its :agent field.
The extension of MA-PDDL1 comes in two flavors, a

factored description, which allows the definition of sep-
arate domain and problem description for each agent,

1The extended BNF can be found at
http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF.pdf
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and an unfactored description, which allows the defini-
tion of factorized privacy in a single domain and prob-
lem description.
The rules for defining privacy are common to both

variants. Syntactically, privacy is defined over predicate
(and function) definitions and constants in the domain
description and over objects in the problem description.
In order to be able to represent MA-STRIPS problems,
the privacy is semantically defined over grounded facts,
based on the following set of rules:

1. A public predicate definition grounded with public
objects/constants is a public fact.

2. A public predicate definition grounded with at least
one object/constant private to agent α is a private
fact of agent α (grounding a single predicate defini-
tion with objects private to different agents is not
allowed).

3. A private predicate grounds to a private fact regard-
less of privacy of the objects used for grounding.

This definition of privacy is enough to be able to define
the MA-STRIPS privacy separation, but allows much
more, from defining everything private to defining ev-
erything public, regardless of the use of predicates in
actions (that is a fact used only by one agent can be
declared public or fact used by multiple agents private).
A further restriction of the competition is that all

goals are public, resulting in that all agents have the
same (common) goal. This is mainly for the compati-
bility reasons as many planners do not support private
goals.

Factored MA-PDDL

Factored MA-PDDL descriptions are annotated with
the :factored-privacy requirement. Each agent has its
separate (single-agent) domain and problem descrip-
tion, each containing only the particular agent’s factor
of the global problem. This means, that the domain
contains only public predicates (functions, constants),
private predicates (functions, constants) and actions of
the particular agent. There is no need for explicit def-
inition of the agent (it does not have to be any PDDL
object, etc.). Privacy is defined by the following con-
struct:

( : p r i v a t e . . . )

Which denotes that the enclosed predicates, func-
tions, constants or objects are private to the particular
agent to which the factor belongs to.
Unlike MA-STRIPS, MA-PDDL allows typing. In

the competition, we will keep the PDDL type taxon-
omy the same for all agents, but in general it does not
have to be the same, the type taxonomies in factored
MA-PDDL descriptions only have to be compatible in
the sense that if type1 is defined as subtype of type2 in
one agent’s domain, it has to be so in all agents’ fac-
tored domains where both types are present (and also
including transitive closure).

The PDDL object representing an agent should be
private, if it is not, other agents of the same type are
able to ground and use the other agent’s actions. An
alternative solution may be to use constants to repre-
sent the agents and include only the proper partially
grounded actions in the agent’s domain, or not to use
a PDDL object representing the agent at all (as it is
not required) and having all actions from the perspec-
tive of the particular agent. In general, it is necessary
to model the domains carefully in order to avoid such
anomalies.
Otherwise the factored domain and problem descrip-

tions are all PDDL3.1 (in the competition we use only
the STRIPS + action-costs subset of PDDL).

Unfactored MA-PDDL

An unfactored MA-PDDL description, annotated by
the :unfactored-privacy and :multi-agent requirements, is
little bit more complicated. First of all, the agents (and
thus the following factorization) have to be defined.
The MA-STRIPS formalism does not define an agent

as a part of the multi-agent planning problem, it de-
fines only its capabilities as a set of actions, but most
of the MA-STRIPS planners define agents as some of
the PDDL objects in the problem description, which
are then used for factorization. It is somehow natu-
ral to see the agents to be present in the problem as
PDDL objects. Similarly, the MA-PDDL language as-
sociates agents to actions with an explicit agent pa-
rameter which is a part of the action definition. Any
PDDL object/constant appearing as an agent parame-
ter in some action is considered an agent. The agent
parameter can be typed in order to restrict the agents
only to some types of PDDL objects/constants.
In unfactored MA-PDDL descriptions, privacy is de-

fined using the same construct as in the factored ver-
sion, only the agent parameter must also be specified:

( : p r i v a t e <agent> . . . )

It may be the case that the same predicate is private
to multiple agents (for example if there are multiple
agents of the same PDDL type). If such a predicate can
be grounded using only public objects/constants, then
the resulting fact becomes private for multiple agents.
This is one of the extensions mentioned above, which is
correct, but goes beyond MA-STRIPS and thus will not
be used in the competition. Such situations can always
be prevented by including a variable representing the
agent into the argument of the private predicate defini-
tion, in that case the grounded fact is private to that
particular agent.

The CoDMAP Competition
The full rules, used domains and results are published
at the competition website2. Relation of the centralized
and distributed tracks of the CoDMAP competition to
the existing IPC tracks is shown in Figure 1. Planners

2http://agents.fel.cvut.cz/codmap



27

M1

mem

P1

Pn

... comm
output (plan)
(a1,a2, ..., ak)

input (MA-PDDL factor)

input (MA-PDDL factor)

agent α1

agent αn

...

M1

mem

P1

Pn

...

M1

mem

P1
input (MA-PDDL factor)

distributed CoDMAP:

mem

Pn
input (MA-PDDL factor)

agent α1

agent αn

...

output (agent's plan)

output (agent's plan)

...

(a1,a2, ..., ak)

(a1,a2, ..., ak)

α1 α1 α1

αn αn αn

...

Mn

comm

centralized CoDMAP:

comm
output (plan)
(a1,a2, ..., ak)

input (unfactored MA-PDDL)

or

Figure 1: Comparison of IPC and CoDMAP tracks.

in the classical IPC tracks (both opt. and sat.) take a
pair of PDDL files (domain, problem) as an input, run
on a single machine/single-core and output a sequence
of actions as the plan. The multi-core track differs in
that the planners may run on multiple cores/threads.
CoDMAP consists of two tracks:

• Centralized Track, aiming for maximal compatibility
with classical IPC and existing multi-agent planners

• Distributed Track, aiming for a proper multi-agent
setting.

Centralized Track

In the centralized track, the input of a planner is either
a single unfactored MA-PDDL domain and problem de-
scription, or a separate factored MA-PDDL domain and
problem description for each agent in the planning prob-
lem. The planner runs on a single machine, with no
other restrictions or requirements (the planner may be
as well single-core or multi-core, distributed or not, one
thread per agent or multiple threads per agents, etc.).
The provided input will have factoring and private sep-
aration according to MA-STRIPS, but the planners are
not required to adhere to it. This is in order to enable
planners built on different multi-agent planning mod-
els to enter the competition as well. The output of the
planner must be a sound linear plan.
We do not restrict any communication between plan-

ning agents (if any), nor do we restrict the exchange of
private information.
The rules are intentionally weak not to force the MA-

STRIPS formalism and our view of communication and
privacy on the competing planners. What we request
is to accompany the planner with a short paper ex-
plaining all the parameters of the factorization, privacy,
inter-agent communication (if any), architecture, etc.,

so they can be included in the final results and each par-
ticipant can then derive their own conclusions based on
the similarity of their planner with other competitors.

The difference between the centralized track and clas-
sical multi-core track is mainly in the input format
(MA-PDDL) and also the planners are expected to
somehow utilize the multi-agent nature of the given
problems.

Distributed Track

The distributed track is much more strict in terms of
the rules, but it is rather experimental in the sense that
there are currently no planners capable of entering it
without significant modification. The aim was to pro-
vide a track the way we think a multi-agent planning
competition should look like.

The planners have to be truly distributed as shown
in Figure 1. Each planning agent of such a distributed
planner receives its own factor of the factored MA-
PDDL domain and problem, runs on its own dedicated
machine and outputs its own plan. The MA-PDDL fac-
torization and privacy definition must be adhered to. In
most benchmarks the factorization and privacy defini-
tion will follow the MA-STRIPS model but does not
necessarily have to.

The planning agents of a distributed planner can
communicate over TCP-IP (IP addresses of other plan-
ning agents will be known up-front), but they should
avoid exchanging any private information (all such cases
should be clearly explained in the accompanying pa-
per).

The output is a linear plan for each agent, which can
all be executed in parallel. The actions of all plans in
each time step must not be in mutex (mutual exclusion).
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Evaluation

Because of the very weak rules in the centralized track,
the evaluation will be a comparison rather than true
competition results. Some of the planners will be hardly
comparable and the outcome of the comparison will de-
pend on the interpretation of the results (which will be
published) and the selection of comparable planners,
based on common features.
The planners will be evaluated over a set of 10 bench-

mark domains converted from the classical IPC and 2
new multi-agent domains. The domains will use only
the STRIPS subset of PDDL and some of them ac-
tion costs. The number of agents in each problem is
restricted to at most 10 because of hardware and time
limitations. Each run of the planner will be restricted to
30 minutes and 8GB of memory for all agents together
in the centralized track and for each agent separately
in the distributed track.
The metric used to compare the planners will be cov-

erage over all domains, IPC Score over the plan quality
Q (sum over all problems Q*/Q, where Q* is the cost
of optimal plan or of the best plan found by any of
the planners) and IPC score over the planning time T
(sum over all problems T*/T, where T* is runtime of
the fastest planner). In the distributed track, the plan
quality will be evaluated both in terms of total cost
(sum of costs of all used actions) and makespan (the
maximum timestep of the plan if executed in parallel).
All actions are considered to have a unit duration.
The validity and quality of plans will be evaluated

using the VAL3 tool, which can handle parallel plans
and performs the mutex checks.

CoDMAP as a Future IPC Track

Depending on the results and success of the CoDMAP
competition, we suggest a new multi-agent IPC track
for the next IPC. Ideally, the new IPC track would
have the format of the CoDMAP Distributed Track (al-
ternatively, both sub-tracks might be included), possi-
bly with some enhancements and modifications accord-
ing to the experience with the current competition and
feedback from the participants.
In the CoDMAP competition, most of the competi-

tion domains will be adapted from the existing classi-
cal IPC domains. It would be much more interesting
to come up with new, multi-agent specific domains for
the prospective IPC track in order to explore the spe-
cific features of multiagent planning. It would also be
worth considering some extensions of included features
of the formalism such as joint actions, at least for some
domains. In CoDMAP, we are not explicitly separating
satisficing and optimal planners, which might be useful
in the prospective new multi-agent IPC track.
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Abstract

Deliberative Acting consists of all the reasoning required to
choose, organize and perform actions. Planning techniques
have been mainly used to choose and organize actions, as-
suming that actions are directly executable. We argue instead
that, most often, in real world applications, deliberation is
also required to perform actions, since some form of reason-
ing is required to decide which lower level steps to execute
and how and when to execute them, how to monitor their
execution, and how to react to the world dynamics in order
to achieve the action’s intended effects. Planning techniques
(among other ones, like simulation, synthesis of partial pro-
grams, or automated verification) can be used to perform ac-
tions.

An IPC track on Deliberative Acting requires a major shift
in approach with respect to current tracks. The purpose is not
to compare search engines, their scalability or their perfor-
mance, but to demonstrate deliberation capabilities, includ-
ing the efficient exploitation of low-level capabilities in per-
forming actions, their ability to deal with different kinds of
real world environments, exogenous events, highly dynamic
domains, etc. In this position paper, we provide the motiva-
tions for an IPC track on deliberative acting, a novel notion
of domain for the IPC, some possible examples and an initial
sketch for a roadmap to launch the IPC.

Deliberative Acting

Deliberative Acting consists of all the reasoning required to
choose, organize and perform actions (Ghallab, Nau, and
Traverso 2014; Nau, Ghallab, and Traverso 2015). It in-
cludes two kinds of reasoning: the deliberation needed to
decide which actions to perform, as well as the deliberation
that is needed to perform actions.

Planning techniques have been mainly used to choose
and organize actions, assuming that actions are directly ex-
ecutable, or that the deliberation needed for their execution
is the concern of some other agent mostly decoupled from
planning. We argue instead that, most often, in real world
applications, deliberation is also required to perform actions,
since some form of reasoning is required to decide which
lower level steps to execute and how to execute them in order
to achieve the action’s intended effects. Planning is indeed

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a particular case of deliberation, which can be used both to
decide which actions to perform and to perform actions. The
two deliberation processes of planning and acting are tightly
coupled.

For instance, a planner can generate a plan that includes
the action “open door” for a mobile robot. In this case, plan-
ning is the deliberation activity to chose (among others) an
action to perform. When the robot needs to actually perform
the action “open door”, deliberation may still be needed to
actually open the door, e.g., to decide whether to move closer
to the door in order to be able to grasp the handle, to under-
stand which kind of door it is, to decide whether to pull or
to push the door, whether to grasp it and turn it while mon-
itoring the execution of such activities, or while monitoring
the external environment.

Most often, in order to perform an action, you need a
specification of how to perform it, which cannot be de-
scribed with a descriptive model, i.e., with a (either de-
terministic, nondeterministic, or stochastic) preconditions-
effects model. We need operational models that specify how
to perform an action, i.e., which lower level steps to per-
form/execute and how to perform/execute them in order to
achieve the action’s intended effects. For instance, an oper-
ational model for the action “open door” can specify that,
while the door is not close enough to grasp the handle,
then the robot should activate the command that moves the
robot towards the door, and when the robots reaches the
door, it should activate its sensing capabilities to understand
whether the door is closed, to grasp the handle and then pull
the door while maintaining the handle grasped and monitor-
ing the status of the door. Planning techniques (among other
ones, like simulation, synthesis of partial programs, or au-
tomated verification) can be used to deal with operational
models and to decide how to perform actions.

Figure 1 shows a simplified view of an actor with deliber-
ation capabilities. The actor interacts with the external envi-
ronment and with other actors, which exchange information
with the actor and can set its objectives. The actor has two
main components: A deliberation component and an execu-
tion platform. For instance, the robot’s sensory-motor func-
tions are part of its execution platform, which transforms
commands into corresponding actuations and sensing opera-
tions that carry out these commands. The execution platform
also transforms signals from the sensed world into percepts
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Figure 1: Conceptual view of an actor

and features of the world (e.g., recognition of a physical or
virtual object, or information gathered from the Web). The
actor’s deliberation components will not need a complete
and detailed model of the execution platform, but will need
enough of a model to enable the actor to use its sensory-
motor functions properly.

In order to map its objectives into commands that ulti-
mately achieve these objectives, the actor needs to perform
a number of deliberation functions. For example, the actor
has to commit to goals or tasks meeting its objectives, plan
for those goals or tasks, refine the actions it has planned into
commands that the execution platform can execute, react to
contingent events, and monitor its activities to compare the
predicted with the observed changes and decide whether re-
covery actions are needed. All of this is deliberation.

An IPC track on Deliberative Acting

This track should aim at demonstrating the deliberation ca-
pabilities of an actor in choosing, organizing, but also per-
forming actions. Such deliberation capabilities should show
an intelligent control of a complex behaviour of the actor,
able to interact with a dynamic environment in different
ways depending on the situation. These capabilities should
include:

• Performing actions by refining opportunistically and at
run-time planned actions into executable commands,
e.g. sensory-motor commands, or simulated actions like
graphic animations in a video game, or electronic trans-
actions that require interactions with smart objects.

• Reacting to unexpected exogenous events, i.e., events that
occur because of external factors beyond the actor’s con-
trol. Even if IPC tracks with nondeterministic or prob-
abilistic models allow theoretically to model the uncer-
tainty caused by exogenous events, taking them into ac-

count in such models is often impossible in practice. Most
often exogenous events must be ignored because of the
impracticality of modelling their possible effects in all sit-
uations with every planning operator, and trying to plan
in advance for all of the possibilities. An IPC track should
test the capability of an actor to respond to respond to
events that have not been modelled jointly with planning
operators, as soon as they happen, since they can interfere
with the execution of an action.

• Querying and information gathering, or deliberation on
sensing action and focus of attention. Most of the infor-
mation is not available at planning time, but may become
available at run-time. Even in this case, planning with par-
tially observable domains can deal with lack of informa-
tion. However, most often, the actor needs to plan for and
perform actions to make information available.

• Monitoring the progress of activities, by recognizing and
recovering from failures and adapting to opportunities, by
detecting discrepancies between predictions and observa-
tions, by assessing and diagnosing these discrepancies,
and by deciding about first recovery actions while plan
repair is triggered. The actor should show the ability to
reason on the required monitoring for its actions and how
to do monitoring.

• Goal reasoning, i.e., reasoning at the level of the actor’s
objectives, monitoring the achievement of goals with re-
spect to the evolution of the environment, assessing which
goals can be reached after failures, conflicts or opportuni-
ties arise, and whether to committ to different (e.g., easier
to achieve) goals.

• Planning at different levels of abstraction. Actors should
be able to perform specialized tasks that have to deal with
heterogeneous models. This goes beyond existing hierar-
chical planning techniques, since tasks at different lev-
els may need different kinds of representations of states
and actions (e.g., with discrete or continuous variables).
The actor should be able to integrate specialized planning
techniques at different levels and have ways to translate
among these representations.

A Deliberative Acting IPC Track needs a simulation envi-
ronment where the actor performs actions. Such environ-
ment should have the following characteristics and require-
ments:

• A dynamic environment with expected as well as unex-
pected contingent events

• A high variability of the environment with non stationary
evolutions

• Large diversity of possible tasks

• Timely actions and reactions

• Partial knowledge of the environment

• Possibly noisy perception actions,

• Dynamic interaction with other actors, including different
kinds of actors, e.g., city policy makers and citizens

• High level of autonomy
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• Learning capabilities

• Adaptation to the evolution of the environment

The notion of a domain is significantly different here from
the classical IPC planning domains, i.e., a detailed PDDL
programming of planning operators. The purpose in this
track is not to compare search engines but to demonstrate de-
liberation capabilities. Hence the competition should spec-
ify:

• the actors low-level capabilities

• the set of environments and their possible variability and
dynamics.

• the set of missions and diversity of behaviours

• the set of interactions

• the competence criteria used by the competition to rank
actors

The specification of such capabilities can be partly formal
and partly operational with a simulator or even an exper-
imental setup. Hence the quality of the domain modelling
and programming should be part of the competition.

The IPC track should rely on simulation platforms, able to
integrate rich dynamic environments as well as complex ac-
tors. The platforms should be open and suitable for the spec-
ification of a large set of scenarios.

In practice, in order to start up the IPC, a strategy is to
rely on existing platforms, with possible adaptations. Some
examples that need to be analysed in detail and evaluated are
the following:

• Robotics simulation platforms. For instance, the free
Gazebo Robotic Simulator (http://gazebosim.org/), devel-
oped by the University of Southern California, provides
the ability to simulate populations of robots in complex
indoor and outdoor environments. It is based on a simula-
tion physics engine and programmatic and graphical inter-
faces. Gazebo is free software and has an active commu-
nity of researchers using it. Another interesting example
is MORSE, the Modular OpenRobots Simulation Engine
(https://www.openrobots.org/wiki/morse/). MORSE pro-
vides realistic 3D simulation of both small and large en-
vironments, indoor or outdoor, allowing for multiple au-
tonomous robots. Simulation scenes are generated from
simple Python scripts. MORSE includes components sim-
ulating a set of standard sensors (cameras, laser scan-
ner, GPS, odometry,...), actuators (speed controllers, high-
level waypoints controllers, generic joint controllers) and
robotic bases (quadrotors, ATRV, Pioneer3DX, generic
4 wheel vehicle, PR2,...). The CAD system interfaced
with MORSE, Blender (http://www.blender.org), is an
open source set of tools for modelling physical ob-
jects with shape and appearance for rendering, animation
and physics simulation (rigid and flexible bodies, fluid,
smoke, etc.). See the example in Figure 2.

• Flight Simulators, e.g., the NASA Ames Emergency
flying simulator (http://ti.arc.nasa.gov/news/emergency-
lander-tests/), simulating an environment for an emer-
gency landing system for a damaged aircraft.

Figure 2: Simulation of a PR2 robot in an apartment with
MORSE

• Video games, where the competing actor plays the role
of the human player interacting with the (more or
less intelligent) characters programmed in the game.
In multi-player games, the competing actor could play
the role of the referee controlling all competing ac-
tors. For instance, a video game competition could be
adapted from “The General Video Game AI Competition”
(http://www.gvgai.net/) which provides a software plat-
form for creating controllers for general video game play-
ing.

• Serious games, where the competing actor plays the
role of the trainee in some serious training games in
the industrial or public sector, e.g., for a medical train-
ing program (see. e.g., the Practix solutions for seri-
uos games for doctors - http://www.practix.net/) or seri-
ous games for the training of emergency operations (see,
e.g., PRESTO, Plausible Representation of Emergency
Scenarios for Training Operations, a system for train-
ing in the civil defence sector based on virtual reality -
https://shell.fbk.eu/projects/presto).

• Smart city and community platforms, i.e., simulation envi-
ronments for the development of smart city and commu-
nity services, like the open service platform developed by
the High Impact Initiative on Smart Community at FBK
(http://www.smartcommunitylab.it/).

In many of the above examples, it is possible to bootstrap
the building up of rich domains and scenarios from al-
ready existing open source developments. For example, in
the robotics case, a number of indoor and outdoor environ-
ment models are already available together with models exe-
cution platforms and low level commands (e.g., see the ROS
command libraries1 for PR2 robot2).

1ROS is the Robot Operating System. It provides a set
of libraries for the development of robot applications. See -
http://wiki.ros.org/.

2The PR2 robotics research and development platform. See
https://www.willowgarage.com/pages/pr2/overview
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The Deliberative Acting Community

In spite of the fact that the vision of deliberative acting de-
scribed in (Ghallab, Nau, and Traverso 2014; Nau, Ghallab,
and Traverso 2015) represents an open research challenge,
we believe there is a vibrant community who can be inter-
ested in the IPC Track on deliberative acting. Indeed, some
of the ideas underlying deliberative acting have been advo-
cated even in pioneering work by many authors, including
(Fikes 1971) (Rosenschein and Kaelbling 1986), (Dean and
Wellman 1991), and (Pollack and Horty 1999).

The problems addressed in the competition would be of
of interest for the robotics community, see e.g., (Despouys
and Ingrand 1999; Ingham, Ragno, and Williams 2001;
Kortenkamp and Simmons 2007; Effinger, Williams, and
Hofmann 2010; Beetz, Mösenlechner, and Tenorth 2010) as
well as for the multi-agent community, e.g., (desJardins et
al. 1999; Pappachan and Durfee 2000; Brenner and Nebel
2009).

There is also a lot of work in execution control and mon-
itoring that could be relevant for the IPC. The idea to re-
fine actions into lower level commands by proposing dif-
ferent forms of operational models is present in the work
based on procedures (e.g., RAP (Firby 1987), PRS (Ingrand
et al. 1996), TCA (Simmons 1992), TDL (Simmons and
Apfelbaum 1998)), transformation rules (e.g., XFRM (Beetz
and McDermott 1994)), situation calculus (e.g., GOLEX
(Hähnel, Burgard, and Lakemeyer 1998)), Petri nets and
automata (PLEXIL (Verma et al. 2005), SMACH (Bohren
et al. 2011), or (Wang et al. 1991; Barbier et al. 2006;
Ziparo et al. 2011)). There is also a lot of work in interleav-
ing planning and execution (Koenig 2001; Löhr et al. 2012;
Garcia, Prett, and Morari 1989) that could have some rele-
vance for the IPC.

Related Work

The Reinforcement Learning (RL) competition (http://rl-
competition.org) tests RL algorithms in problems which can
have some similar characteristics to those that we propose.
This ithe case of the “Helicopter Domain”, where a con-
troller has to interact with a simulator of the helicopter, and
to deal with high dimensional, noisy, non-linear dynamics.
However, such competition is specific to RL systems, which
are very suitable for low level control. Each controllable ac-
tion is atomic and directly executable by the simulator of the
helicopter. No real deliberative acting is involved.

The domain specification language for our competition
should allow for, e.g., exogenous and unexpected events, un-
certainty and noise in sensing, uncertainty in the result of
command executions. Some ideas could be taken by existing
IPCs - see, e.g., (Sanner 2010) in the International Proba-
bilistic Planning Competition (IPPC). However, in our com-
petition the problem should not be stated in the usual way:
“given the specification of actions and a goal, find a plan
that achieves the goal”. Such a statement is equivalent to the
specification of a search space and reduces the competition
to a search problem. The problem should be something like
“given a set of low level primitive commands that an actor
can perform, e.g., in a simulated environment, and a prob-

lem to solve, provide both a modeling of actions (which can,
e.g., be refined in some way to the primitive commands) and
a set of deliberation techniques that allow the actor to solve
the problem”. Our competition needs the construction of a
model that is used by the actor, as well the use of automated
deliberation capabilities of the actors.

We will need to base the domain specification language
on experiences from different communities. For instance, in
the case of robotics scenarios, we could rely the ROS com-
mand libraries. (http://wiki.ros.org/). As a further example,
in the case of applications for smart cities and communi-
ties, we could use formal languages that have been used for
the specification of distributed and pervasive flows, see, e.g.,
(Bucchiarone et al. 2009).

Our proposal shares some of the difficulties that the Inter-
national Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS) had to address. We should
learn from the experience gained in ICKEPS. As suggested
by one of the reviewers, we should initially focus on some
precise choice, e.g., by choosing a specific simulation archi-
tecture. We could focus on a simulator in the field of robotics
that allows for a significant number of participants with their
minimum effort. We also agree that the scoring criteria for
the first run is probably not the major issue compared with
the importance of involving the community.

Final Remarks
We realize that we are advocating for a very novel, ambi-
tious, unconventional IPC track. The requirements and do-
mains, including the wide variety of tasks that a competing
actor should perform in the IPC track, can be quite challeng-
ing. Also the choice about the specification language is a ma-
jor shift with respect to current IPCs, which use specification
language defined (and mainly used only) by our community.
This shift could be perceived as one of the major difficul-
ties in involving researchers in the competition. However,
we believe that restricting IPCs to specification languages
that are not used by other communities for real applications
is one of the major barrier to the use in practice of planning
techniques.

The set up and development of simulation platforms for
the IPC would require a significant effort. We tried to ad-
vocate for the re-use of existing simulation engines and to
build up from existing environment and execution platform
models, which once analysed and evaluated, could help in
this task. For this reason we hope that the IPC track that we
propose is not impossible to realize.

In the title, with the sentence “Moving the competition
ahead towards relevant scientific challenges”, we do not
mean that previous competitions were irrelevant. They have
been extremely useful from the beginning, when with the
first IPC at AIPS-98 in Pittsburgh (USA) we understood
the potentialities of certain approaches compared to other
ones. Moreover, it was important to extend the competition
to include different kinds of domains, e.g., nondeterministic
and probabilistic domains. However, the risk is that contin-
uing in the restricted view of “plan generation” where the
search space is fixed for each domain (given the language)
and where actions are directly executable, and planning is
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not integrated with other forms of deliberation, the research
can move apart from useful applications and give raise to
more and more artificial and ad hoc, self justified techniques.
We believe this is not only the risk of competitions in plan-
ning, but it is a general problem for several other fields in AI
and more in general in Computer Science. Every competi-
tion that may be useful at some point can become quickly a
dangerous dead-end for the research community.

For these reasons we hope our proposal will give raise
to some effort in a novel form and a novel approach to de-
signing and setting up planning competitions, in spite of the
difficulties and the huge effort that such approach requires.
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Abstract

The planning competition has traditionally played an
important role in motivating research and advances in
Planning & Scheduling techniques. Despite its pivotal
role in the planning community, some aspects of the
competition have not been engineered yet. This is the
case for the protocol for selecting benchmark instances.
Benchmarks are of critical importance, since they can
significantly affect competition results.

In this paper we describe desirable properties of a se-
lection protocol, discuss methods exploited in past SAT
and planning competitions, and identify challenges that
organisers of future competitions have to address in or-
der to improve reliability and usefulness of the insights
gained by looking at competitions’ results.

Introduction

Competitions are important events to improve a particular
research area. Some examples are the International SATis-
fability Competition (SAT), the Conference on Automated
Deduction ATP System Competition (CASC), the Trading
Agent Competition (TAC) and many others. This strategy
has been used by the AI Planning & Scheduling (P&S)
community to develop innovative planning techniques since
1998 through the International Planning Competition (IPC)
and also to promote the development of knowledge engi-
neering tools and systems since 2005 through the Inter-
national Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS). Both competitions attract
researchers in the AI community, especially IPC due to its
motivational aspect of developing better and more powerful
planning engines to address increasingly large (and hope-
fully complex) problems. Techniques tested in competitions
are then available to be used in real-world applications.

In the IPC, participating planning engines are tested
against several benchmark problems, a few of them are in-
spired by real-world problems. The selection and design of
these benchmark domains and problems instances have be-
come one of the main challenges encountered during the or-
ganisation of this competition. Given a set of target domains,
it is well known that benchmark instances selection can di-
rectly impact results (Howe and Dahlman 2002). Moreover,
the very small number of theoretical studies on complexity
of instances and transition phase (which changes between

domains) (Helmert 2006; Rintanen 2004), and the growing
number of participants exploiting different planning tech-
niques, make the selection and decision of IPC problem
instances a significant challenge for organisers. It is worth
noting that the selection of benchmarks is only one of the
many difficulties faced by competition organisers. Organis-
ing a competition requires a significant amount of work. In
fact, organisers of past competitions had to face a lot of pres-
sure for selecting and generating new domains and problems
by themselves. For addressing the selection issues, organis-
ers have been using different selection strategies and criteria
throughout the years, which have been the target of several
post-competition discussions and criticisms. Given the im-
portance of competitions for the community, the responsi-
bility of generating benchmarks should be shared between
all the members, rather than delegated to organisers only.
Also for this reason, a protocol for selecting benchmarks is
highly desirable.

In this paper, we emphasise and highlight the need for
a protocol for selecting IPC benchmark problems that: is
transparent; reproducible; avoids bias to any particular plan-
ning technique; adapts to the state-of-the-art and the existing
participating planners; allows and motivates new benchmark
domains to be added (e.g., challenging domains from ICK-
EPS); supports the realisation and exclusion of outdated and
uninteresting problems for the participating planners; aims
to evaluate and understand the technological progress in the
long-term and, possibly, fosters the evaluation of planning
techniques in new potential real-world applications.

Desirable Properties

In this section we provide two lists of desirable properties:
one for the selection protocol itself, and one for the selected
benchmark instances. Although properties of the instances
are induced by a proper selection protocol, thus are some-
how implicitly guaranteed by the protocol properties, we
prefer to divide the lists and make their properties clear for
the sake of readability. Desirable properties of a selection
protocol are:

• Transparency. Others can follow the method and, while
considering the same “environmental” conditions, pro-
duce the same (sort of) problems.

• Generality. It can be applied to any set of planners, on
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any target domain.

• Unbiased. It does not favour a system against another.

• History-aware. This avoids tailored algorithms. It limits
the impact of approaches based on learning, which ex-
ploits problems and domains from previous competitions.

• Progress-driven. It motivates technological progress in
new domains and problems.

In order to be useful, a set of benchmark instances must
include problems that are:

• Challenging. Problems must not be trivially solvable or
unsolvable. They must provide information about the per-
formance of participants.

• Interesting. They investigate possible exploitation of
planning in real-world scenario, or test innovative fea-
tures.

• Diverse. They do not refer to the same kind of problems
or models.

• Finite. The selected instances must be in a finite number.
Moreover, the smaller the set of benchmarks, the easier is
to re-run the competition and reproduce results.

It should be noted that the properties we introduce con-
sider also the importance of planning competitions for the
community. IPC is a major event of the planning community,
therefore it should provide also some guidance about appli-
cations, limitations and strengths of the existing solvers, as
well as identifying future avenues of research while situating
the technological progress.

Existing Protocols

In this section we describe the existing techniques that have
been used for selecting benchmark instances in the Inter-
national SAT competition, and in the deterministic track of
International Planning Competitions.

SAT competition

We observed that a very similar selection protocols have
been used in SAT competitions since 2012 (Balint et al.
2012; 2013; Belov et al. 2014a). Hereinafter, we will focus
on the policies used in the latest edition.

In the 2014 SAT competition, two main sets of bench-
marks are considered: (i) uniform random and (ii) appli-
cation and hard combinatorial. The way in which corre-
sponding instances are selected is different. For the first set,
two different sizes – medium and huge – of uniform ran-
dom formulae are generated by using existing generators
(Belov et al. 2014c). The huge benchmarks have millions of
clauses and a clause-to-variable ratio ranges from far from
the phase-transition ratio to relatively close. On the other
hand, medium benchmarks are smaller, but have clause-to-
variable ratio equal to the phase-transition ratio. Remark-
ably, given the theoretical knowledge about complexity of
random SAT instances (Rossi, Van Beek, and Walsh 2006),
the uniform random benchmark selection does not need to
consider the performance of actual solvers; complexity is
theoretically assessed.

A different protocol is used for selecting application and
hard combinatorial benchmarks (Belov et al. 2014b). In such
tracks, it is important to consider the performance of solvers.
Firstly, benchmarks collected by previous competitions (ei-
ther used or unused) and newly submitted benchmarks have
been divided into buckets. The assignment to a specific
bucket is guided by the combinatorial problem the bench-
mark originates from, and the submitter. This partition is
done in order to limit possible biases deriving from the use
of large number of instances that refers to the same problem,
or that have been used in previous competitions.

The empirical hardness of benchmarks is evaluated by us-
ing five well-performing solvers, per track, from the 2012
SAT challenge. To consider differences in performance due
to environment / technological improvements, the CPU run-
times have been scaled. According to solvers performance,
benchmarks have been rated as follows:

Easy Benchmarks solved by all the considered solvers in
less then 1/10-th of the competition’s timeout.

Medium Benchmarks solved by all the solvers within the
competition’s timeout.

Hard Benchmarks solved by at least one solver within the
double of the timeout, and not solved by at least one solver
within the competition’s timeout.

Too-hard Benchmarks unsolved by any solver within two
times the considered cutoff time.

For each track, 300 benchmarks are selected from the
medium and easy classes. The selection process, that must
provide a 50-50 ratio between satisfiable and unsatisfiable
formulae, is controlled by the following constraints:

1. no more than 10% of the instances should come from the
same bucket;

2. the percentage of new benchmarks should be as high as
possible;

3. the ratio of Medium to Hard benchmarks should be as
close to 50-50 as possible. However, this constraint has
been relaxed by selecting 20% of the benchmarks from
Medium, Hard and Too-hard classes. This for reducing
the influence of selected solvers.

4. the performance of the solvers used for the evaluation of
the benchmarks should be as uniform as possible, to avoid
bias due to a specific technique.

International Planning Competition

In the following we describe the protocols used by the organ-
isers of the deterministic track of the IPC 2011 and 2014.
We focus on deterministic track since it is the largest one,
in terms of participants, and thus requires clearly defined
strategies for benchmark selection.

Before describing the protocols, we would remark that
over time, IPC organisers have put more and more effort
in studying suitable techniques for selecting benchmark in-
stances. This is due to a number or reasons: firstly, the
growing number of participants; secondly, the wide range
of problems and domains that can be modelled in PDDL;
thirdly, the importance of guaranteeing an unbiased set of
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instances; and finally, since the IPC has usually been held
every 2-3 years, the difficulty of estimating the progress of
the state of the art.

2011 edition In the deterministic track of the IPC 2011, or-
ganisers adopted two different methods for selecting bench-
marks, according to the fact that data on their difficulty were
available or not (López, Celorrio, and Olaya 2015).

For newly introduced domains, state-of-the-art planners
are used for evaluating the difficulty of reduced test sets
of problems, which are generated using randomised genera-
tors, with some specific parameters. A cutoff of 300 seconds
has been considered for these tests. The easiest problems are
those solved in tens of seconds, the most difficult problems
are those which are unsolvable by considered planners, in
a 300 seconds cutoff. By following a trial-and-error proce-
dure, a suitable set of parameters is found, and can be used
for generating 20 benchmark instances.

For domains used in previous competitions, the publicly
available data is used for ranking planning tasks according
to their expected difficulty, measured by using the Glicko
score, and for selecting them.

2014 edition In the deterministic track of the IPC 2014, or-
ganisers provided a protocol for selecting, within a specific
domain, a set of suitable instances, tailored for the participat-
ing planners.1 They defined as “trivial” instances in which
almost all the planners performed very similar – in terms of
quality of plans for satisficing subtracks, and runtime for the
Agile subtrack – and “too complex” those instances which
are not solved by any planner. For each target domain:

1. identify size;

2. given the sizes, generate between 30 and 50 instances per
domain, using available generators;

3. anonymise planners;

4. run all the planners on the generated instances;

5. collect results, in terms of solved problems and quality of
solutions;

6. order problems by number of planners which solved
them;

7. selection of 20 benchmarks.

In the first step, if the domain has been already used in
previous IPCs, then the sizes of larger benchmark problems
(top half), and also extended them, following the “trend”
used by organisers, are taken. Otherwise, some well-known
planners, either from literature or from IPC 2011, are used.
If no generator is available, all the available instances have
been considered.

In step 7, if between (circa) 10 and 20 instances have
been solved by some considered planners, then select the
top 20 instances accordingly to the order in step 6. If most
of the instances are either trivial or too complex, according
to planners’ performance, then the process is started again
from step 1. Otherwise, trivial and too complex instances
are removed, in order to obtain a final set of 20 problems.

1The protocol can be found at:
http://helios.hud.ac.uk/scommv/IPC-14/selection.html

Figure 1: Number of participants, instances and domains
considered in IPCs since 2006.

Challenges

Having provided the desirable properties of benchmarks
selection protocols, and having introduced protocols used
in two major competitions within the artificial intelligence
area, in this section we discuss the challenges that should
be faced, in order to furtherly improve the importance and
significance of competitions.

As a first remark, we observe that the notion of quality
of benchmarks is missing. In the protocols introduced in the
previous section, organisers do not explicitly mention this
aspect of benchmarks. Although some properties of useful
benchmarks have been identified – and we introduced a few
of them – having a formal definition of quality would be
extremely helpful, and would also allow the exploitation of
knowledge engineering approaches for defining sound se-
lection protocols. Remarkably, a first effort in this direction
was done by the IPC 2011 organisers. They tried to measure
quality of planning tasks as fitness to a normal distribution
(López, Celorrio, and Olaya 2015). In the competitions con-
text, quality of benchmarks is not “static”, but it depends on
the current state of the art, as well as on the potential appli-
cations of the evaluated solvers. In planning, good quality
instances should test planning techniques in real-world ap-
plications. As a matter of fact, the IPC should investigate
pioneering uses of planning.

It is still unclear if there exists a right number of bench-
marks. Figure 1 shows the variation of number of planners,
instances and domains in sequential satisficing subtracks of
the IPC over time. It should be noted that last IPCs organ-
isers had a large set of domains to choose and start from,
while in earlier IPCs benchmarks had to be developed. Com-
monly, it is believed that the larger the set of benchmarks,
the more accurate the overall evaluation of participants. This
leads to computationally expensive competitions, which re-
quire significant amount of CPU and human hours to be
run (although most of the work can be done automatically
through existing IPC software (Linares López, Celorrio, and
Helmert 2013)). Moreover, large set of benchmarks can pos-
sibly include low quality instances, which introduce noise
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in the evaluation. It would be interesting to identify a for-
mal way for estimating the number of required benchmarks
for assessing the performance of a given number of plan-
ning systems, for facilitating planners exploitation outside
the community.

It is worthy to note that in the IPC, differently for most of
the other contests in AI, domains are explicitly given and are
of primary importance. Domains strongly affect the structure
of problems, thus having a significant impact on the plan-
ners’ performance. Therefore, in the IPC both domains and
instances have to be wisely selected. Although techniques
have been described and exploited for selecting problems,
the domain selection process is still some sort of obscure
task, which has not been deeply investigated yet. Interest-
ingly, in IPCs, the trend is to increase the number of con-
sidered domains, and reducing the number of problems per
domain. Also, given the strong impact that different models
of the same domain or different model refinements can have
on the performance of planners (Riddle, Holte, and Barley
2011; Vaquero et al. 2010), it might be interesting to con-
sider, within a competition, more than one specific PDDL
model. Such different models do not have to exploit dif-
ferent PDDL-features; this has been done in previous IPCs.
Sadly, state-of-the-art planners support a very limited subset
of them. Here we suggest to test different ways of encod-
ing the same domain, with the same set of PDDL features.
For instance, using models of blocksworld using 3 or 4 op-
erators, and evaluate planners by considering their average
performance. The generation of different models of domains
could be for example the scope of future ICKEPS competi-
tions. Moreover, the analysis on the different performance
of planners on different models can give useful insights on
knowledge engineering aspects of domain modelling (e.g.,
given a particular model it might be possible to map the
planners that would have the better performance). Such eval-
uation, if put in practice, will significantly increase the al-
ready high pressure on organisers. Once again, we would
like to emphasise that generation and selection of bench-
mark should be done collectively by the community, and
fostered by a shared protocol. For instance, models can be
generated by exploiting crowdsourcing (Zhuo 2015).

All the competitions are using existing techniques for
identifying a large set of promising benchmarks. Such tech-
niques should be as various as possible, i.e. exploiting very
different planning approaches, in order to avoid biases and
identify challenging sets. The actual benchmarks are then
usually selected by considering the performance of partic-
ipants. Even though this reduces the number of useless in-
stances –e.g., trivial or too complex– this can possibly intro-
duce some bias. Specifically, benchmarks might be too fo-
cused on the competitors, thus ignoring the larger situation
of the state of the art.

Current benchmarks selection protocols are mainly fo-
cused on the CPU time needed by a system for solving the
given instances. This helps to discriminate between trivial,
challenging and too complex instances. In tracks where the
runtime is not considered in the metric, like the satisficing
subtrack of the deterministic IPC, this approach can be im-
proved by considering also aspects that are accounted for the

metric. For instance, the presence of multiple solutions, with
different costs, can be useful when evaluating planners that
should return high quality plans.

It has been shown that different configurations of hard-
ware and software can differently affect the performance of
domain-independent planners (Howe and Dahlman 2002).
Given that, it would be interesting to assess the reliability of
a competition results, which are collected on a single sys-
tem, with regards to their generalisation on different infras-
tructures. Potentially, running the competition few times on
different systems and merging results would provide a more
accurate evaluation, but of course, will be extremely costly.

Finally, a competition should also provide a clear picture
about the progress of the state of the art, mainly with regards
to the previous competition. This evaluation is twofold.
Firstly, we are interested in evaluating the progress in terms
of planning performance; i.e., new planners have to be faster,
solve more and more problems, and/or find better plans. Sec-
ondly, the progress also involves the languages used for rep-
resenting knowledge. In particular, are the new languages
able to model more problems? Do they positively affect the
performance of solvers? While the evaluation of the plan-
ners’ performance progress seems to be mostly related to
the size –as an indicator of complexity– of problems that
can be solved, the evaluation of languages is mostly con-
nected with knowledge engineering aspects. On this matter,
a cooperation between the IPC and the ICKEPS is strongly
suggested.

Conclusion
Selecting benchmark instances is a critical task that every AI
competition has to face. It has a dramatic impact on the final
results and, given the pivotal role of competitions within AI
communities, the selection of benchmarks strongly affects
also the future development of the specific area. Given the
importance of benchmark selection, and the high pressure
organisers have to face on this regards, it would be desir-
able that the whole community supports organisers in this
difficult task. In particular, this can be done also by exploit-
ing a protocol. A proper protocol will lead to more reliable
and informative competition results. Even though its central
role, desirable characteristics and properties of a selection
protocol have not been thoroughly discussed yet.

In this paper, we provide a list of desirable properties of
both the selection protocol and the selected instances. We
discuss methods used in SAT and Planning competitions
for selecting benchmarks in order to gain useful insights on
the limitations and strengths of the existing exploited ap-
proaches. Such gained knowledge is then used for highlight-
ing challenges and, possibly, providing avenues for improv-
ing selection protocols in future planning competitions. In
particular, we observe that: (i) a formal technique for select-
ing domain models is missing; (ii) it is unclear what should
be the “right” number of benchmarks; (iii) it might be useful
to consider the evaluation metric – used in the competition
for evaluating planning systems – also in the selection proto-
col. Finally, we would remark the importance of the compe-
tition for assessing the progress of the state of the art, and for
pioneering innovative applications of automated planning.
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