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Abstract

Automated planners have traditionally looked at opti-
mizing cost or duration of plans using complete do-
main information and user preferences, or improving
efficiency of the planning process itself. However as ar-
tificial intelligence becomes more and more part of our
daily lives, interactions between autonomous systems
and humans throw up different challenges. With regards
to automated planning, these not only involve reasoning
with incomplete information and unknown preferences,
but also the ability to account for different aspects of in-
teracting with humans. In my doctoral work, I consider
these issues in the context of planning for synergy in
human-robot cohabitation and planning for collabora-
tive systems involving human computation. In this brief
abstract, I present the overarching goal of my research,
the overall challenges addressed in my work till now
and the state of the current work in progress.

Planning with humans in the loop involves not only the abil-
ity to reason with uncertainty or incompleteness in terms of
both knowledge of the environment and the preferences of
the human colleagues but also the ability to deal with the
different aspects of interacting with humans. As we will see
in course of this discussion, different modes of interacting
with humans introduce different challenges into the planning
process. In my present work I look at two modalities of plan-
ning with humans in the loop. In the first half of this abstract
I will discuss the human-aware planning paradigm and its
role in human-robot cohabitation. Particularly we will look
at how we can achieve both active and passive coordination
among agents sharing resources in the same environment - in
case of active synergy we will look at how an autonomous
agent can offer help without expectations or commitments
from human colleagues, while in case of passive synergy we
will see how the autonomous agent can avoid conflicts of in-
terest while sharing resources. In the second half of the ab-
stract I will describe the role of a planner in human computa-
tion tasks that involve planning and scheduling. Specifically,
we will investigate how the role of a planner changes with
the type (expert or non-expert) of the human collaborators
and the richness of the domain information in the context
of crowdsourced planning dealing with construction of tour
plans and proactive decision systems dealing with disaster
response management.

Figure 1: The scope of human-aware planning - as a subclass
of multi-agent planning with and without some distinctive
features with respect to multi-robot or human-robot teaming.

Synergy in Human-Robot Cohabitation
As robots become ubiquitous in our daily lives, it be-
comes important to model acceptable or desired behaviors
of these autonomous agents that cohabit our environment.
Indeed there has been a lot of work under the umbrella
of “human-aware” planning, both in the context of path
planning (Sisbot et al. 2007; Kuderer et al. 2012) and in
task planning (Koeckemann, Pecora, and Karlsson 2014;
Cirillo, Karlsson, and Saffiotti 2010), that aim to provide so-
cial skills to robots so as to make them produce plans con-
forming to desired behaviors when humans and robots oper-
ate in shared settings. Human-aware planning in fact holds a
unique spot in the area of multi-agent planning as illustrated
in Figure 1. As we move over to multi-agent planning from
classical planning, we have to deal with challenges in co-
ordination, capability and commitment modeling, handling
concurrency, etc. But even within the multi-agent planning
paradigm, introducing a human in the context of multi-robot
teaming produces new challenges like model completeness,
priorities and interaction issues. Further, the presence or ab-
sence of a team itself determines if we can assume shared
goals and expectations. Thus, we can think of human-aware



Figure 2: A mock-up of the Urban Search and Rescue
(USAR) setting used as a running example throughout the
work on human-robot cohabitation.

planning as multi-agent planning which includes the fla-
vors of human-robot interaction, but mostly excludes the
assumptions often made in explicit teaming scenarios. We
will investigate these concepts using a running example of
a typical search and rescue scenario. Figure 2 shows such
an USAR setting, unfolding inside a building with inter-
connected rooms and hallways, with a human commander
CommX and a robot R. The commander has capabilities to
move and conduct triage at specified locations, and he can
also meet with other agents, as well as pickup, dropoff or
handover medkits to accomplish their task. The robot can
similarly move about, search rooms, or handover or deliver
the medkits. It can thus have its own goals (maybe from be-
ing directly assigned by the commander himself or due to
long term task specifications), but can also help the comman-
der in accomplishing his goals by fetching the medkits for
him. In (Talamadupula et al. 2014) we introduced a scheme
for the robot to represent first order beliefs of other agents in
its environment. The question then is can the robot use such
predictive models to make smarter decisions in its future?

Figure 3: Architecture diagram showing different compo-
nents of planning with resource profiles

Planning with Resource Profiles
The first form of synergy that we address is passive synergy,
where the robot tries to avoid conflict of resource usages as it
tries to use the medkits - specifically, in the USAR environ-
ment discussed before, the medkit is a constrained resource,
that is demanded by both the agents. We approach the prob-
lem by using the distribution of goals of the human and the
known model of the human to predict and approximate re-
source usage probabilities over time. Thus the problem of
decoupling the human’s plan and the robot’s plan essentially
boils down to minimizing the overlap between the resource
usages induced by each of these plans. We convert the plan-
ning problem to an integer programming instance in order to
minimize over this overlap elegantly. Recall here again that
we do not have a team setting, and that the human and robot
are not coordinating here to avoid a conflict, so that the onus
is now on the robot to find a fail-safe plan that suits both of
them (given the evidence).

Further we show that by modeling resources at various
levels of abstractions we are able to model different types of
interactions, and by varying the parameters of the IP we can
produce different type of behaviors of the robot like oppor-
tunism, compromise and negotiation (when limited forms of
communication is allowed). The representation of conflicts
in terms of such profiles have an inherent advantage that they
are no longer dependent on the number of agents the robot
has to look out for but only the number of resources it has to
reason with. For further details please refer to (Chakraborti,
Zhang, and Kambhampati 2015).

Planning for Serendipity
Here we look at a case of active synergy - the robot now
actively tries to seek out opportunities to help the human.
Recall that this is not a team setting and hence the human
does not expect the robot to help. So any helpful change the
robot makes to the world will appear as positive exogenous
events to the human while he is executing his plan. We refer
to such exceptions as serendipitous moments for the human,
and since the robot is trying to produce such moments, we
name this planning paradigm as “planning for serendipity”.

Note, however, that the absence of any expectations or
commitments means that all seemingly helpful interventions
do not turn out to be helpful when the plans of the individual
agents are actually executed, which brings us to the concept
of “plan interruptibility” and “plan preservation”.

Plan Interruptibility. This outlines the structure of the
resultant joint human-robot plan such that it conforms to the
notion of serendipitous interventions.

Preservation Constraints. These outline a set of con-
straints on the structure of an interruptible plan that
determines whether it is possible for the robot to produce a
serendipitous intervention or not.

With the help of these two guiding principles we con-
vert the planning problem into an integer programming in-
stance and show how the robot can preempt help both with
and without scope of explicit communication. Please refer
to (Chakraborti et al. 2015) for a detailed analysis.



Figure 4: Crowdsourced Planning - architecture diagram
showing the collaborative blackboard and the interaction be-
tween the planner and the crowd.

Humans as Collaborators
Traditionally mixed initiative planning has looked at scenar-
ios where human experts can bring in their complex do-
main knowledge by critiquing automated planners during
the planning process. A prime example of this is MAPGEN
(Ai-Chang et al. 2004) - the mixed-initiative planning sys-
tem for NASA’s Mars Rover exploration mission. Inter-
estingly, a large subclass of human computation applica-
tions are those directed at tasks that involve planning (e.g.
tour planning) and scheduling (e.g. conference scheduling),
where it is the humans that take part in the actual planning
process. This can be looked upon as a reverse mixed ini-
tiative planning scenario where the humans can range from
a small group of experts (e.g. commanders making battle
plans) to a large crowd (as in crowdsourced tasks on MTurk).

Interestingly, work (Zhang et al. 2012) on such systems
shows that even simple forms of automated oversight on the
human contributors helps in significantly improving the ef-
fectiveness of the crowd. In this work, we argue that the
automated oversight used in these systems can be viewed
as a primitive automated planner, and explore several op-
portunities for more sophisticated automated planning in ef-
fectively steering the crowd. Straightforward adaptation of
current planning technology is, however, hampered by the
mismatch between the capabilities of human workers and
automated planners. We identify and address two important
challenges that need to be overcome before such adaptation
of planning technology can occur: (i) interpreting inputs
of the human workers (and the requester) and (ii) steering
or critiquing plans produced by the human workers, armed
only with incomplete domain and preference models. To
these ends, we have built a tour plan generation system that
uses automated checks and alerts to improve the quality of
plans created by human workers (Manikonda et al. 2014;
Talamadupula and Kambhampati 2013).

Figure 5: Snapshots showing different components of the
award winning AI-MIX interface.

Crowdsourced Planning - AI-MIX
Our work on crowdsourced planning uses the tour planning
scenario to demonstrate the effectiveness of involving an
automated planner in a human planning task. Note that
this is a setting where the domain knowledge is extremely
shallow, but we show that even though with such shallow
models we cannot generate plans, we can still produce
meaningful critiques of the suggested actions in the plan be-
ing constructed. The workflow has three major components -

The Request. This is the task description that provides
a high level idea of the goals that need to be achieved and
the preferences that need to be satisfied. The systems parses
and interprets this information in order to produce subgoals
that the crowd needs to address. The crowd can choose to
do two things in response as follows.

Adding New Activities. The crowd can add a new activity
or action in the plan to address outstanding subgoals or
violated constraints.
Critiquing Existing Activities. The crowd can chose to
critique existing activities if they feel these are invalid given
the constraints or there are better options available.

Throughout this process, the system checks for consisten-
cies in the background and pops up with suggestions to im-
prove the plan quality, and computes the final plan using an-
swer set programming. The work flow is shown in Figure 4
illustrating this iterative process on a shared platform we call
the collaborative or distributed blackboard. Figure 5 shows
a snapshot of the AI-MIX platform that won the People’s
Choice Best System Demonstration Award in ICAPS 2014.
The system was used to build tour plans in the host city of
Portsmouth for interested conference attendees.



Figure 6: Proactive Decision Support (PDS) - an intricate
interplay between data driven decision making and decision
driven data gathering.

Proactive Decision Support - RADAR
Now we look at the other end of the spectrum - collabora-
tive planning where both the domain is almost completely
known, and the human collaborators are also experts in
the domain. Note that this does not mean that the planner
can preclude the humans and produce the optimal plan by
itself because we do not know a priori the exact objective
function the human is trying to optimize. Thus, as in the
previous case of crowdsourced planning, any help from
the automated system would be in terms of suggestions
that improve and optimize the planning process of the
humans. However, with a richer model, it turns out we
can do much more. We thus divide the workflow into two
self-perpetuating components as shown in Figure 6 -

Data Driven Decision Making During planning in
complicated domains in the real world, there is a stream
of information about the world state that needs to be taken
into account during the planning process. In this age of
information, it is easy for humans to get overwhelmed
by the sheer amount of data coming from both structured
(databases) and unstructured (Twitter) sources. Thus the
planning component, while being able to generate and
recognize plans with the detailed domain knowledge, must
also has to be data-centric in its approach.

Decision Driven Data Gathering The planning process
itself generates a demand on more data in the future
(which can thus be proactively anticipated, pre-fetched and
preprocessed) as the world unfolds - thus this completes the
cycle of the data being used for planning and the data being
generated and queried thereof. This process thus involves
detection and alignment of events and verification of trust
and correctness of data from heterogeneous sources.

Figure 7 shows a snapshot of the RADAR prototype cur-
rently under development. The use case we adopt is the real-
time construction of an emergency action strategy (jointly
built by the chiefs of police, health, transport and fire) in
response to a major fire breakout.

Figure 7: Snapshot of the RADAR prototype currently under
development addressing a fire response strategy.

Conclusions and Future Work
So far we have seen the different ways in which planning
with humans in the loop differ from classical planning. How-
ever, much of my work till now has made certain restrictive
assumptions that might be of considerable interest to ex-
pand upon in future. Specifically, with regards to planning
for synergy in human-robot cohabitation, we have so far as-
sumed a single level belief model. In reality however, hu-
mans are seldom completely aloof of other agents in its en-
vironment, which means handling nested beliefs of agents,
which can have significant impact on the outcome of plans.
Further, in all settings involving such human-robot collabo-
ration, researchers have largely overlooked the mismatch of
agent models and its impact on the interaction itself. How
do we know that humans will recognize a help when there is
one? How can the robot act as the human expects it to dur-
ing collaboration so as not to unpleasantly surprise him? In
as much as HRI studies like (Narayanan et al. 2015) will pro-
vide clues as to how to address such issues, a general frame-
work of planning to conform to behavioral expectations will
be a fascinating direction to pursue in future.
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