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Introduction

Search using Subgoal Graphs was a non-dominated ap-
proach in Grid-Based Path-Planning Competitions 2012 and
2013. In this paper, we take advantage of the similarities
between Subgoal Graphs and visibility graphs to show that
Subgoal Graphs can be used, with small modifications, to
quickly find any-angle paths, thus extending their applica-
bility. An any-angle path on a grid is a sequence of grid cor-
ners, where consecutive pairs of corners have line-of-sight
(that is, the straight line between them does not pass through
the interiors of blocked cells). Since movement along any-
angle paths is not constrained to grid edges, any-angle paths
are shorter and more realistic looking than shortest grid
paths (paths that only use grid edges). We describe two
variants of Subgoal Graphs, Simple Subgoal Graphs and N-
Level Subgoal Graphs, and how they can be modified to find
any-angle paths.

(Any-Angle) Simple Subgoal Graphs

Simple Subgoal Graphs (SSGs) (Uras, Koenig, and Hernan-
dez 2013) are constructed from grids whose vertices are
placed at the centers of grid cells and can be used to find
shortest grid paths. For the any-angle version, we move the
vertices of the grid to the corners of grid cells, which does
not change how SSGs are used.

We start with some definitions: A cell corner s is called a
subgoal if and only if it is a convex corner of an obstacle (a
contiguous set of blocked cells). Two cell corners s and u are
called h-reachable if and only if there is a shortest grid path
between them whose length is equal to the Octile distance
(that is, the length of a shortest grid path assuming the grid
has no blocked cells) between them. They are called direct-
h-reachable if and only if they are h-reachable and none of
the shortest grid paths between them pass through a subgoal
(except for s and w).

Simple Subgoal Graphs are constructed by adding edges
between all pairs of direct-h-reachable subgoals. The length
of each edge is the Octile distance between the subgoals it
connects. Figure 1 shows an example of an SSG. Observe
that B3 and F5 are h-reachable but not direct-h-reachable
(due to the subgoal at C4), so there is no edge between them.
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Figure 1: A Simple Subgoal Graph.

To find shortest grid paths using SSGs, one connects the
given start and goal vertices s and g to their respective direct-
h-reachable subgoals and searches this graph with A* to find
a sequence of direct-h-reachable subgoals connecting s and
g, called a shortest high-level path. One can then determine
a shortest grid path between consecutive subgoals to find a
shortest grid path between s and g. For instance, if we were
to use the SSG in Figure 1 to find a shortest grid path be-
tween B1 and H3, we would connect B1 to subgoals A and
B, H3 to subgoal F, and search this graph to find the shortest
high-level path B1-D1-D3-F5-H5-H3. Following this high-
level path on the grid, we obtain the shortest grid path B1-
C1-D1-D2-D3-E4-F5-G5-H5-H4-H3.

Identifying direct-h-reachable subgoals from a given cell
can be done efficiently with a dynamic programming algo-
rithm that uses precomputed clearance values. Using this al-
gorithm, SSGs can be constructed within milliseconds and
the start and goal vertices can be connected to the SSGs
quickly before a search.

To use SSGs to find any-angle paths, we first make the
following observation: Any two corners that are direct-h-
reachable also have line-of-sight (Uras and Koenig 2015b).
This has two implications: 1) SSGs are sparser visibility
graphs and therefore searching them can be significantly
faster. 2) The high-level paths found by searching SSGs are
any-angle paths, so we do not need to refine them into grid
paths. We also use the Euclidean distance (rather than the
Octile distance) as heuristic and as edge lengths to better
guide the search into finding shorter any-angle paths (rather
than shortest grid paths). We use Theta* (Daniel et al. 2010)
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Figure 2: A Two-Level Subgoal Graph. Level 1 subgoals are
shown in red, and level 2 subgoals are shown in blue.
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Figure 3: Path-length suboptimality (y-axis) and runtime (x-
axis, in ms) after smoothing.

instead of A* to find even shorter any-angle paths.

(Any-Angle) N-Level Subgoal Graphs

N-Level Subgoal Graphs (Uras and Koenig 2014) are con-
structed from SSGs by creating a hierarchy among its ver-
tices. This hierarchy is very similar to Contraction Hierar-
chies (Geisberger et al. 2008; Dibbelt, Strasser, and Wag-
ner 2014), and can be used to exclude many vertices from
the search (while maintaining optimality on grids), result-
ing in faster searches. In the resulting graph, each subgoal is
assigned a level such that the following property holds for
each level ¢: In the graph that contains exactly the subgoals
of level 7 or higher (and the edges between them), the length
of a shortest path between any two subgoals does not change
if we remove any subset of level ¢ subgoals (and their asso-
ciated edges) from the graph.

During construction, one can add new edges to the graph
(which allow searches to ignore even more vertices) to fur-
ther improve runtime. Figure 2 shows a Two-Level Subgoal
Graph constructed from the SSG in Figure 1 (by adding an
edge between subgoals D and F). For brevity, we skip the de-
tails of how N-Level Graphs are constructed and searched.

In order to use N-Level Subgoal Graphs to find any-angle
paths, we make the same changes that we do for SSGs. Fur-
thermore, we restrict the construction of N-Level Subgoal
Graphs to add new edges only between subgoals that have
line-of-sight.

Experimental Results

The experiments are run on a PC with a dual-core 3.2GHz
Intel Xeon CPU and 2GB of RAM. We use game maps
and maps with randomly blocked cells in our comparison,

which are available at Nathan Sturtevant’s repository, along
with the instances used for each map.! Figure 3 compares
the runtime/path-suboptimality trade-offs of different any-
angle path-planning algorithms, including the any-angle ver-
sion of Two-Level Subgoal Graphs (Sub-2), on game maps
and maps with randomly blocked cells. The paths found by
all the algorithms except ANYA (which finds shortest any-
angle paths on grids) are smoothed after the search (Botea,
Miiller, and Schaeffer 2004) and the results include smooth-
ing time. The results show that, on game maps, Sub-2 dom-
inates all the algorithms in the experiment except ANYA, in
terms of the runtime/path-suboptimality trade-off. However,
on random maps, it does not perform so well and is dom-
inated by Block A*. More detailed results and a more de-
tailed explanation for the experimental setup can be found
in (Uras and Koenig 2015a). A more detailed comparison
between different variants of Subgoal Graphs can be found
in (Uras and Koenig 2015b).
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