
Reactive Model-based Programming of Mobile Scouts

Eric Timmons
Model-based Embedded and Robotic Systems Group

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Introduction
There is a growing desire in many scientific and exploration
communities to use cheap, small, autonomous vehicles to
perform information gathering tasks. As the number of ve-
hicles used for information gathering tasks increases from
a single large, capable, often remotely operated vehicle to
a collection of smaller, more specialized, autonomous vehi-
cles, so too does the complexity of the planning problem and
burden on the scientists and operators increase. When mul-
tiple vehicles are involved, there are often coordination and
safety constraints that need to be accounted for and the re-
sulting plan is frequently more complex as the vehicles need
to work together.

We envision a system that would allow these information
gathering agents, or scouts, to be goal-directed and inter-
act with their human operators at a cognitive level. Such a
system should have several properties. First, it should allow
the operators to specify the desired behavior of the scouts
directly in terms of goals on hidden state, e.g. “goal=have
picture of building A”, and let the scout worry about making
the plan to achieve that goal with a high level of certainty.
Second, it should allow operators to specify constraints at a
high-level, such as “do not enter area B after 1500” or “land
within one hour of launch”. Third, it should allow operators
to have an adjustable level of control over the system. In
some circumstances the operator may know exactly what the
scout should do, but in other situations, especially in situa-
tions where the operator cannot see live data from the scout,
it would be better for the operator to describe a set of strate-
gies (as macro actions) and let the scout decide when and
where to apply the strategies. The ability to describe macro
actions relevant to the task at hand would have the dual ben-
efit of decreasing planning complexity and increasing oper-
ator trust in scout.

Scouts using such a system would have the potential to
be indispensable tools for a wide variety of human activi-
ties. For the physical sciences, mobile robots could be used
to map pollution levels in the atmosphere or sea while auto-
matically responding to interesting or unexpected readings.
During time critical missions, devices with this technology
could focus their efforts on gathering the information most
pertinent to mission success. For example, a UAV tasked to
assist fire fighters during a forest fire could initially work on
mapping the entire fire. But, if the fire fighters’ escape route

is cut off, the UAV’s mission would change to finding a new
escape route and it would accordingly change its focus to
mapping the areas of the region that show the best promise
for a safe path.

In this paper, we first describe a recent real-world deploy-
ment of autonomous underwater vehicles as a concrete mo-
tivating example. Then, we briefly describe how temporal
plan networks can be used to model much of the problems
of interest.

Scott Reef Demonstration
In March and April 2015, a team of researchers from MIT’s
Computer Science and Artificial Intelligence Laboratory (in-
cluding the author), the Woods Hole Oceanographic Institu-
tion, the Australian Center for Field Robotics, the Univer-
sity of Hawaii, and the University of Rhode Island partici-
pated in a scientific cruise at Scott Reef off the coast of Aus-
tralia to explore the issues that would arise, and strategies
to deal with using multiple heterogeneous autonomous un-
derwater vehicles (AUVs) in close proximity in real-world
operations. Six vehicles were used for this cruise: two Ivers
(Anderson and Crowell 2005) (AUV), one Sirius (AUV),
one Lagrangian float (Schwithal and Roman 2009) (AUV),
one Slocum glider (Jones et al. 2005) (AUV), and one wave
glider (Hine et al. 2009) (autonomous surface vehicle). At
the peak of operations, five vehicles were in the water at the
same time, typically within 1-2 km of the crewed research
vessel.

Each class of vehicle used on this cruise was equipped
with a unique combination of movement and sensor pack-
age. The author worked primarily with the Slocum glider, a
high endurance vehicle that moves by “flying” up and down
the water column without thrusters. The other AUVs were
equipped with sensors that required staying within several
meters of the seabed. Every vehicle except the Slocum glider
carried an acoustic modem, allowing them to be re-tasked
on short notice. The Slocum glider on the other hand could
only be re-tasked when it surfaced (approximately every 30
minutes).

The first half of the cruise focused on providing a risk-
aware path planning capability for the glider (not discussed
further in this paper). The second half was focused on mov-
ing away from the stock script based method of controlling
the glider by providing both decision making capabilities



and elevating the level of at which the operator could specify
the mission goals and constraints.

First, the area of the reef being explored was broken down
into 500m by 500m grid cells. Then, areas of interest in each
grid cell were decided upon by the glider operators, along
with a ranking of each area. Next, any temporal constraints
needed by the operators were determined, such as an area of
interest must be visited before a certain time of day. Coordi-
nation with the other vehicles was done by using the planned
schedule for each of the other vehicles, provided by their re-
spective operators, to encode further temporal constraints on
when the glider could occupy specific grid cells.

The interaction with the glider operators (everything be-
fore encoding the planned schedule of the other vehicles)
was done using RMPL, the Reactive Model-based Program-
ming Language (Willams and Gupta 1999; Ingham, Ragno,
and Williams 2001; Kim, Williams, and Abramson 2001).
RMPL was originally developed in order to enable users to
program autonomous spacecraft in a familiar way — using
Java-like object oriented programming. RMPL combines
plant model specification and a control program within a
single program. A subset of RMPL’s control program syntax
can be compiled into a temporal plan network (described in
the next section). In the TPN generated from the operator’s
specification, the decision variables represented the order in
which to visit the sites of interest.

The TPN resulting from augmenting the operator TPN
with the schedules of the other vehicles was then solved
and the resulting plan encoded as a script executable by the
glider. Every time the glider surfaced, the predicted sched-
ules of the other vehicles (and corresponding temporal con-
straints) were updated and a new script generated for execu-
tion.

Temporal Plan Networks
For this work, temporal plan networks (TPNs for short)
(Kim, Williams, and Abramson 2001) are used to encode the
set of possible plans that can be executed. A TPN couples to-
gether a simple temporal network (Dechter, Meiri, and Pearl
1991) with a set of discrete-valued decision variables that
enable and disable constraints and events. A TPN is a tuple
tpn = 〈Ev, SV,DV,Ep〉.
• Ev is the set of events. Each event e ∈ Ev is atomic, and

has no other attributes except for its identity. Each event e
is also associated with a guard condition guard(e).

• SV is a set of state variables. Each state variable sv ∈
SV is associated with a domain dom(sv).

• DV is a set of decision variables, which is disjoint from
SV . Each decision variable dv ∈ DV is associated with a
finite domain dom(dv), and a guard condition guard(dv).

• Ep is a set of episodes. An episode ep is a tuple
〈fromE, toE, dc, sc, gc〉, where:

– fromE and toE are events (referred to as the from
event and the to event, respectively).

– dc is a constraint on the duration of the episode. For-
mally, dc is a Boolean function from R. We assume

that all duration constraints are simple temporal con-
straints (Dechter, Meiri, and Pearl 1991), of the form
toE − fromE ∈ [lb, ub], for lb, ub ∈ timedom.

– sc is a state constraint. sc describes feasible state tra-
jectories during episode ep. Formally, sc is a Boolean
function from SV × R≥0.
If sc is trivially true, then this episode is called a tempo-
ral constraint. Otherwise, we require that the duration
is non-negative, that is dc(x) is false for all x < 0.

– gc is a guard condition, also referred to as guard(ep),
as described below.

A guard condition, guard, is a Boolean expression com-
posed using arbitrary Boolean combinators (and, or, not) of
expressions of the form dv = v where dv ∈ DV is a deci-
sion variable, and v ∈ dom(dv).

A candidate solution for a TPN tpn = 〈Ev, SV,DV,Ep〉
is a pair sol = 〈s, d〉 where:
• s : Ev → R≥0 ∪ {⊥} is a partial schedule, assigning

times to some of the events (where s(e) 6= ⊥) and not
scheduling other events (where s(e) = ⊥), and

• d is a partial assignment to decision variables, assigning
to each dv ∈ DV either some value in dom(dv) or ⊥.
A candidate solution is a valid solution if all activated

events and episodes are temporally consistent and a trajec-
tory for the state variables exists that satisfies all state con-
straints.

References
Anderson, B., and Crowell, J. 2005. Workhorse auv
- a cost-sensible new autonomous underwater vehicle for
surveys/soundings, search amp; rescue, and research. In
OCEANS, 2005. Proceedings of MTS/IEEE, 1–6.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Hine, R.; Willcox, S.; Hine, G.; and Richardson, T. 2009.
The wave glider: A wave-powered autonomous marine ve-
hicle. In OCEANS 2009, MTS/IEEE Biloxi - Marine Tech-
nology for Our Future: Global and Local Challenges, 1–6.
Ingham, M.; Ragno, R.; and Williams, B. 2001. A reac-
tive model-based programming language for robotic space
explorers.
Jones, C.; Creed, E.; Glenn, S.; Kerfoot, J.; Kohut, J.; Mud-
gal, C.; and Schofield, O. 2005. Slocum glidersa component
of operational oceanography. In Proc. 14th Int. Symp. on
Unmanned Untethered Submersible Technology.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-01), 487–493.
Schwithal, A., and Roman, C. 2009. Development of a
new lagrangian float for studying coastal marine ecosys-
tems. IEEE.
Willams, B., and Gupta, V. 1999. Unifying model-based and
reactive programming in a model-based executive. In Pro-
ceedings of the 10th International Workshop on Principles
of Diagnosis.


