
Autonomous Air Traffic Control for Non-Towered Airports

Zouhair Mahboubi
PhD Candidate

Aeronautics and Astronautics
Stanford University

Stanford, California, USA

Abstract

Half of all reported near mid-air collisions involve at
least one general aviation aircraft, and the majority
of them occur in the vicinity of an airport. This re-
search frames the problem of traffic collision prevention
in the vicinity of non-towered airports as a partially-
observable Markov decision process (POMDP). The so-
lution to this problem will help enable an autonomous
air traffic control system that is non-intrusive, ground-
based and with no additional requirements to participat-
ing aircraft except for radio communication. We present
initial results from recent work under the assumption of
full observability with simulation of aircraft in the traf-
fic pattern. We then outline extensions and future work.

Introduction
Mid-air collisions are a major safety concern in aviation,
which is why the Traffic Alert and Collision Avoidance Sys-
tem is mandated on all large aircraft. Unfortunately, few gen-
eral aviation (GA) aircraft are equipped with the system due
to its high cost and weight.

In its 2000 report, the Aircraft Owners and Pilots Asso-
ciation highlighted that most mid-air collisions happen in
the vicinity of airports (AOPA Air Safety Foundation 2000).
The majority of them occurred in the pattern of non-towered
airports. It is more difficult to get accurate statistics for near
mid-air collision incidents (Kochenderfer, Griffith, and Ol-
szta 2010), but nearly half of those reported through NASA’s
Aviation Safety Reporting System were between two GA
aircraft (Kunzi and Hansman 2011).

With almost 12,000 airports without towers in the US
compared to only 400 with towers, the issue of mid-air col-
lision at non-towered airports is worth addressing. Previous
research have explored various solutions to collision avoid-
ance for GA aircraft (Diefes and Deering 1996). However,
the majority of suggested solutions focus on on-board sen-
sors and systems for detection, alert, and resolution. How-
ever, GA pilots are cost sensitive and their aircraft have lit-
tle power and weight margins for additional payloads, which
makes new on-board systems unlikely to be adopted (AOPA,
EAA, and others 2015).

Recent research recognized the need for a low cost so-
lution. A ground-based surveillance at small airports con-
cept was investigated by Campbell (2014) and demonstrated

promising performance. Their goal is to deploy the sensor at
towered airports and high density non-towered airports. Al-
ternatively, a radio direction finder can be used to determine
the bearing to a transmitting aircraft, and its position can be
triangulated if two or more antennas are available. Addition-
ally, such a system would allow the aircraft to be identifiable
for the purposes of communication.

In this dissertation abstract, we suggest the use of the deci-
sion making under uncertainty framework to the problem of
traffic collision prevention between GA aircraft. We hypoth-
esize that an autonomous air traffic control system (auto-
ATC) can be modeled using a partially observable Markov
decision process (POMDP). For initial work, we assume full
observability and efficiently solve the problem as an MDP
for a reasonable number of aircraft and states. We further
propose the use of structured continuous-time Markov deci-
sion processes (CTMDP) to improve the model.

We envision the auto-ATC at a non-towered airport to be
advisory in nature. The pilot would still be responsible for
maintaining separation, but the system would provide advice
to participating aircraft with the aim of reducing incidents
by issuing high-level recommendations. The aircraft would
be tracked through ground-based sensors in the immediate
vicinity of an airport, and would be expected to fly accord-
ing to a model that can be influenced through the recommen-
dations transmitted over radio. Such a system could also be
useful at busy towered airports as an assistive technology to
ATC controllers. The idea is inspired by the work of Niko-
leris et al. (2014) where 4D trajectories from an expert reper-
toire are uplinked to aircraft operating within an Advanced
Airspace Concept, as well as Gunawardana (2012), where a
module capable of autonomously communicating within the
existing ATC framework is proposed.

In the following sections, we outline how such a system
can be modeled using a POMDP. We then present results
of a proof-of-concept model, including 3D simulations of
aircraft in the pattern. Finally, we present planned exten-
sions to our work with the aim of improving the model’s
accuracy. Note that part of this work is being published in
the upcoming Air Traffic Management Seminar (Mahboubi
and Kochenderfer 2015a), and the suggested future work on
CTMDP was submitted for peer review at the Conference on
Decision and Control (Mahboubi and Kochenderfer 2015b).



Problem Formulation
In this section, we introduce partially observable Markov de-
cision processes (POMDPs) and explain how they can be
used to model the problem of autonomous collision avoid-
ance for aircraft operating at a non-towered airport.

POMDPs model sequential problems where decisions
need to be made under uncertainty. They have been success-
fully used in the context of aircraft collision avoidance by
Billingsley, Kochenderfer, and Chryssanthacopoulos (2012)
as well as Holland, Kochenderfer, and Olson (2013). In this
section, we briefly introduce the concept of POMDPs and
explain how they can be applied to developing the decision-
making component of the auto-ATC system. Because our
goal is to investigate this new concept, we make a few sim-
plifying assumptions in our modeling of the problem.

A POMDP is defined by a state space S, action space A,
transition function T , reward functionR, set of observations
Ω, and observation modelO (Kochenderfer 2015). If the cur-
rent state of the process is s ∈ S and we execute action
a ∈ A, then the next state will be s′ ∈ S with probability
T (s′ | s, a). The reward associated with executing a from
s is given by R(s, a), and the observation o available to the
system is distributed according to O(o|s).

The goal in a POMDP is to select actions in a way that
maximizes the expected discounted reward:

E

[ ∞∑
k=0

γkrk

]
(1)

where rk is the reward received in step k and γ ∈ [0, 1) is a
discount factor which decays the value of rewards received
in the future. A decision making policy that is dependent on
the current state is denoted π, and the action recommended
at state s is denoted π(s).

State Space The state space S is composed of a discrete
set of states specifying the locations of K aircraft in the
traffic pattern. A particular state s is represented by a tuple
(s(1), . . . , s(K)), where s(i) ∈ {`1, . . . , `n} represents the
location of the ith aircraft. In this formulation, there are a set
of n = 27 possible locations, e.g., Taxi (`1 = T) and Run-
way (`2 = R). Hence, if there areK aircraft, then |S| = nK .
The set of possible states that can immediately follow a par-
ticular location `i is denotedN (`i). Figure 1 shows a repre-
sentation of the various pattern locations along with possible
transitions between them.

Action Space The action space A is composed of a dis-
crete set of actions specifying a particular aircraft and a
location. Action a = (ai, al) involves commanding air-
craft ai ∈ {1, . . . ,K} to transition immediately to lo-
cation al. If no aircraft is to be addressed, we use a =
(0,∅). The valid set of actions depends on the current
state. We denote the set of actions available from state
s as A(s). For example, if s = (R,U2), then A(s) =
{(0,∅), (1,T), (1,U1), (2,LX2), (2,RX2)}. In this formu-
lation, it is not possible to request an aircraft to depart the
pattern.

F1

GO

Runway (R) U2

LX2

RX2

LDep

RDep

LD3

LB2

F0

LD1LD2 LD0

Taxi (T)RB2

LX1

RD0RD2RD3

RB1

U1

RArr

RD1

LB1

LArr

RX1

Figure 1: Aircraft states in the pattern.

Transition Function The transition function specifies the
probability of transitioning to some next state given the cur-
rent sate and action taken. The probabilities governing the
aircraft transitions are independent from each other:

T (s′ | s, a) =

K∏
i=1

T

(
s′(i) | s(i),

{
al if ai = i

∅ otherwise

)
, (2)

The transition model assumes the following:

• If an aircraft is not being addressed by an action, all of
the possible next states are equally likely with probability
1/|N (s(i))|.

• If the aircraft is being addressed, the commanded state
al is selected with probability α (a cooperation factor),
while other possible states are selected with probability
(1− α)/(|N (s(i))| − 1)

• A pilot will fly the pattern without detailed instructions
from the tower, but will generally take the runway only
when instructed by the system: T (R | T,∅) = 1− α.

Reward Function The reward function is designed to in-
crease aircraft separation while minimizing intervention. We
make the following assumptions:

• The rewards are additive over states and actions, i.e.
R(s, a) = R(s) +R(a).

• Two aircraft occupying the same state result in a cost Cc,
unless they are in one of the states considered safe (Taxi,
Departures, and Arrivals). Each aircraft in the T state in-
curs a cost Ct < Cc to avoid the system grounding all
aircraft.

• There is a cost Ca for issuing an advisory. We define the
advisory-cost ratio β = Ca/Cc.



The reward function can be written by defining s̃ = (s(i) ∈
s : s(i) /∈ {T,LDep,RDep,LArr,Rarr}):

R(s, a) =− Cc(|s̃| − |unique(s̃)|) (3)

− Ct|(s(i) ∈ s : s(i) = T)|

−
{

0 if a = (0,∅)

Ca otherwise

where we use the list comprehension notation (x ∈ X :
F (x)) to mean the list of all elements in X that satisfy the
logical expression F (x). The notation |y| denotes the num-
ber of elements in the list y.

Observation Model
The observations o ∈ Ω are the north-east-down coordinates
of the aircraft relative to a reference point at the airport.
These observations are obtained from a ground-based sen-
sor, and are related to the aircraft state using the observation
model O(o | s). The details of this model are not yet devel-
oped and are part of future work.

Solution Approach
For the purposes of this abstract, we simplify the problem by
assuming full-observability, and therefore solve the POMDP
as an MDP. There are different approaches for finding the
optimal policy for an MDP, and we chose to use a dynamic
programming algorithm known as Gauss-Seidel value itera-
tion (Kochenderfer 2015) due to its simplicity. We begin by
assigning 0 to all states of the value function U . We then
iterate through all the states, updating U as we go along ac-
cording to

U(s)← max
a∈A(s)

[
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)U(s′)

]
(4)

Gauss-Seidel value iteration sweeps over the states repeat-
edly until convergence. Once converged, an optimal policy
π∗ can be extracted from U as follows:

π∗(s) = arg max
a∈A(s)

[
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)U(s′)

]
(5)

Value iteration is an efficient way to solve MDPs since
it is polynomial in the size of the state-space |S|. However,
|S| itself grows exponentially with the number of aircraft.
For example, with four aircraft, there are over 500,000 states
and 100 actions. Fortunately, we can take advantage of the
transitions being sparse, and can compute an optimal solu-
tion in six minutes using a single thread on a 1.9 GHz Intel
i7 CPU.

3D Simulation Framework
The MDP model presented in the previous section is not an
accurate representation of the real world. In practice, aircraft
in the pattern do not all move to the next states at the same
time, and the amount of time they spend in each leg of the
pattern depends on several factors. Therefore, we developed

a higher fidelity 3D aircraft model that would capture some
of these factors. We describe the details and modeling as-
sumptions we made to construct this model.

Each aircraft is parametrized with the following states:
• x = [xN , xE , xD]>, aircraft position in north-east-down

world coordinates,
• V , aircraft airspeed, which is assumed to be along the air-

craft longitudinal axis, and
• ψ, aircraft heading in world coordinates.

Additionally, we assume that the pilot perfectly regulates
the aircraft roll φ and its glide path angle γ. The resulting
equations of motion are:

ẋ = V

[
cosψ
sinψ
− sin γ

]
, ψ̇ =

g tanφ

V
(6)

The equations are integrated using the Euler method. This
model does not account for any wind effects, assumes that
the pilot is maintaining coordinated flight, and neglects any
dynamics associated with achieving the necessary roll and
glide path angles. These are reasonable assumptions for this
model as we are not concerned with the details of the flight
dynamics, but rather with the motion of the aircraft in the
3D world coordinates.

In order to make the aircraft fly around the pattern, we
implemented a two-layer logic controller to emulate a pilot:
• Navigate. The pilot flies towards a waypoint by setting a

desired bearing ψd and altitude hd.
• Aviate. The pilot regulates the aircraft at hd by command-

ing γ and steers towards ψd by commanding φ.
We define target spatial waypoints for each of the loca-

tions in the pattern shown in Fig. 1 with the runway fixed
at (0, 0, 0). The simulation assumes that the pilot flies from
their current waypoint to the next one, and whenever the air-
craft is close to the destination waypoint, the pilot chooses
the next leg they will be flying according to the MDP model
introduced previously. A random position error with Gaus-
sian distribution is added to the east-north-down coordinates
of the destination waypoint. A sample of the resulting tra-
jectories can be seen in Fig. 2.
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Figure 2: 3D simulation of four aircraft in the pattern.
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Figure 3: Position distribution of NMAC events.
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Preliminary Results
We evaluated the policy by running Monte Carlo 3D sim-
ulations. For each policy, a total of 1000 cases are initial-
ized with four aircraft in at random locations in the pattern
and with random airspeeds. The states are then simulated
forward until either a near mid-air collision (NMAC) event
occurs or 20 hours is elapsed.

We compared the performance of the policy obtained
from the MDP formulation to a silent policy which issues
no advisories. A consequence of this silent policy is that the
aircraft eventually end in the taxi state. Hence, the silent pol-
icy has an artificial advantage over the auto-ATC policy in
long-running simulations because collisions are not counted
in the taxi state.

Figure 3 shows the location of all the NMACs as a heat
map on the pattern for both the event driven auto-ATC with
β = 0.5 and the silent ATC. The majority of events oc-
cur when the aircraft are turning from base to final and on
the runway. The other hotspots are other convergence points
such as when aircraft are arriving in the pattern or cutting the
base turn when following an upwind aircraft. These observa-
tions are consistent with the analysis of actual NMAC events
(Kunzi and Hansman 2011) and is not surprising given our
modeling assumptions. The NMACs between these hotspots
(e.g., on the downwind leg) are due to faster aircraft overtak-
ing slower aircraft. Because the simulation horizon is rela-
tively long, both auto-ATC and silent ATC have roughly the
same number of NMAC events (900 and 1000 respectively).
However, while the number of events are similar and the 2D
distribution of the events look similar, there is a difference
in how long it takes for each event to occur.

Figure 4 shows the inverse cumulative density function
(CDF) of the time to first NMAC for different policies. Al-
though it performed well on the MDP transition model, the
β = 0.01 auto-ATC policy performs poorly in the 3D sim-
ulation and is worse than the silent ATC. However, β = 0.5
and β = 1.0 policies perform better than the silent ATC.
This is counter to what we observed in the MDP simulations
where lower β values (i.e., more verbose policies) lead to
less collisions. The difference in performance between the
MDP model and the 3D simulation can be explained by the
fact that in the MDP, the aircraft transition to next state at
the same time, whereas in the 3D simulation, the amount of
time they spend in each leg of the pattern depends on several
factors (airspeed, position noise, etc.)

Future work
For this dissertation abstract, we suggested a concept for an
autonomous ATC that could help reduce the risk of air traffic
collisions in the vicinity of non-towered airports. We showed
how the system can be posed as a POMDP by defining the
states, actions, transitions, rewards and observations.

Although these preliminary results are promising, this
first formulation makes many simplifying assumptions. As
part of this abstract, we outline future work and planned ex-
tensions to increase the accuracy of the model, such as ac-
counting for continuous-time and partial observability.

Accounting for transition times
In the real life, the transitions do not all occur at the same
time as modeled by the MDP and the actions need to be
taken at potentially non-uniform time steps. This could be
accounted for by modeling the problem as a semi-Markov
decision process, where the transition time from one state
to the next follows a probability density function (Puterman
2005). The traditional semi-MDP formulation assumes that
the holding time is the same for all states. However, in our
model, the holding time varies depending on the state. Ad-
ditionally, the MDP is structured since the state is a Carte-
sian product of each aircraft’s location in the pattern. This
makes it difficult to use the traditional formulations for semi-
MDPs. Instead, we are investigating the use of Continuous-
Time Bayesian networks (CTBN) to formulate the dynam-
ics of the problem (Nodelman, Shelton, and Koller 2002).
The decision making can then be posed as a structured
continuous-time Markov decision process (CTMDP) (Kan
and Shelton 2008).

We give a quick outline of how the auto-ATC can be for-
mulated as a CTMDP. A CTBN describes a stochastic pro-
cess which progresses over continuous time. It uses the con-
cept of intensity matricesQ to define the transition from one
state to anot her given an action. An intensity matrix can
be factored into a state duration matrix M and a transition
probability matrix P as:

Q = M(T − I) (7)

In a CTMPD, each action a ∈ A is associated with an in-
tensity matrix Qa = Ma(Ta− I). The transition probability
matrix Ta for each aircraft can be obtained from the transi-
tion function T (s′(i) | s(i), a). The duration matrix Ma con-
tains the rate parameters for the holding time in each state
which is assumed to be distributed according to an expo-
nential time function f(t) = λe−λt. In this manner, we can
define the transition process for each aircraft conditional on
whether it received an ATC advisory or not. The transition
process for the entire system can then be constructed from
the individual Q for each aircraft. This is done by using the
Kronecker product as outlined in (Shelton and Ciardo 2014)
to obtain the full-joint transition intensity matrix.

Kan and Shelton (2008) presented a method of solving
CTMDP using a linear program. Under assumptions of fac-
torisable reward function, an approximate solution can be
computed in linear time. We are currently working on adapt-
ing our problem formulation to this framework (Mahboubi
and Kochenderfer 2015b).

Model uncertainty
A major assumption in this work is that the positions of
the aircraft are exactly known by the system. In practice,
we will need to estimate the location of each aircraft from
the ground sensors. Doing so would require an observation
model and application of Bayes’ rule to track a belief
state over the aircraft positions. The problem can then be
reformulated as a partially observable Markov decision
process (POMDP) (Kaelbling, Littman, and Cassandra
1998).



When combined with the CTMDP formulation, this
leads to a PO-CTMDP, or a continuous-time hidden MDP
(CTHMDP). A literature review indicates that CTHMDPs
have received little attention by the research community
(Yanjie, Baoqun, and Hongsheng 2005).

The parameters for the 3D simulation (airspeeds, turning
radius, controller gains, etc.) were chosen using engineering
judgment. These parameters, along with transition probabil-
ities T (s′ | s, a) and observation model O(o | s) for the
POMDP, could be derived from data collected of aircraft in
the pattern.

Extending the states
The number of states in the pattern and available actions
should be extended. For example, if one aircraft is on left
base and another is on right base, they are on a collision
course but there are no actions in our formulation to prevent
collision. A possible extension would be to add commands
for S turns. In addition, our model has the taxi state acting as
a sink. To enhance realism, it is necessary to incorporate a
better model of aircraft behavior when transitioning between
the runway and taxi states.

Practical implications
We envision the system issuing commands over a Common
Traffic Advisory Frequency. Hence, there needs to be a way
to identify the aircraft in the pattern. One way to achieve
this is to refer to aircraft by their position, transponder code,
or their call-sign inferred through speech recognition (Gu-
nawardana 2012) combined with a VHF direction finder.
Additionally, a practical implementation would require the
ability to handle special cases such as varying number of
aircraft in the pattern, aircraft overflying the runway above
the traffic pattern altitude, and change of runway direction
due to shifting wind.
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