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Abstract

Temporal uncertainty is a basic feature in many real
scheduling and planning problems. How to achieve a
robust schedule or plan which can deal with the tempo-
ral uncertainty is a useful issue in real problems. Cur-
rent research on this issue has introduced different ro-
bustness measures. Although they all reflect the qual-
ity of temporal schedules or plans in different perspec-
tives, the lack of research on the relations and devia-
tions among the measures is a problem. The plan of my
research is to explore a variety of robustness metrics, to
find the relations and differences among them and to fig-
ure out the model of robust model about schedules and
temporal plans. Finally, the goal of my work is to find a
better way to explain robustness in scheduling and tem-
poral planning and use the robustness metrics to achieve
robust schedules and temporal plans.

Motivation
Different kinds of uncertainty exist in real scheduling prob-
lems, e.g., train scheduling with possible delays caused by
natural or human factors, personal travel planning with fluc-
tuating public transportation timetables and manufacture
process scheduling with possibly not working machine. How
to generate robust schedules according to these uncertain
situations has been considered in many research (Banerjee
and Haslum 2011; Policella et al. 2004; 2007). But before
considering approaches to solve such uncertain scheduling
problems, the question of what robustness is needs to be an-
swered first.

Robustness is hard to measure because it is an abstract
concept. However, it is easier to evaluate specific features
related to robustness. And to a certain extent, measuring
robustness-related features can reflect the quality of sched-
ules. Each measure indicates how good the schedule is in
its own view. These views may consider different features
related to robustness such as flexibility, size, stability, etc..
Thus, comparing the same pair of schedules, we may get
different answers to the question, which schedule is more
robust? The goal of my work is to explore a variety of ro-
bustness metrics, to figure out what exactly these metrics
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measure, whether there is any relationship among them, and
even to find out a better way to measure the robustness of
schedules and temporal plans.

Background
Before discussing the measure of schedules or temporal
plans, we will review the current temporal reasoning model
first. Then we will review several different metrics of sched-
ules.

Models of Schedule and Temporal Plan
Dechter, Meiri, and Pearl (1991) introduced the Simple
Temporal Networks (STN) which is a general way to rep-
resent temporal problems. In this subsection, we will review
two main extensions of the original STN.

STN with Uncertainty (STNU) Formally, an STNU (Vi-
dal and Fargier 1999) is an extension of STN which con-
sists of a set of nodes X = XE ∪ XU , representing ex-
ecutable (XE) and uncontrollable (XU ) time points, and a
set of links E = R ∪ C, called requirement and contin-
gent links. Each link eij has a lower bound Lij and upper
bound Uij , representing the constraints Lij ≤ tj− ti ≤ Uij .
Each uncontrollable time point has exactly one incoming
contingent link, whose lower bound is non-negative. In other
words, executable time points correspond to choices of the
agent, contingent links represent uncontrollable durations,
and the uncontrollable time points are when the agent finds
out what duration the environment has chosen. Requirement
links may connect any pair of time points.

Because of the uncertainty feature in STNU, consistency
and controllability are vital (Vidal and Fargier 1999). We
will discuss the controllability of STNU in the next section.

Probabilistic STN (pSTN) It is a natural extension to
the STNU model to associate probabilities with the out-
come (timing) of uncontrollable events (Tsamardinos 2002;
Fang, Yu, and Williams 2014). The pSTN redefines the rep-
resentations of the contingent links. Instead of the lower and
upper bounds of the links, pSTN uses probabilistic distribu-
tions to show the temporal uncertainty. The uncertain dura-
tion Dij = tj − ti : Ω→ R is a random variable describing
the duration of the contingent link.



From the probabilistic STN, we can measure the robust-
ness of schedules and temporal plans by calculating the pos-
sibility of success. Furthermore, the possibility of failure can
be treated as constraint and other more important prefer-
ences could be the objectives (Fang, Yu, and Williams 2014).

Robust Measures on Schedules
In this section, we will review four existing robustness mea-
sures on Partial Order Schedule (POS). A POS is a consis-
tent STN, which is a partial solution of scheduling prob-
lem with resource constraints. By adding additional tempo-
ral constraints, POS resolve all the resource constraints and
maintain the original temporal constraints from the prob-
lem. So a POS represents a set of solutions of the scheduling
problem. And there may be different POS for one problem.
The problem that which POS is the most robust one or more
robust than some other ones is important.

Flexibility This metric measures the flexibility of Partial
Order Schedules (POS) (Aloulou and Portmann 2003).

However, different POS may be got from the same prob-
lem. This metric – flexibility – helps to decide which one
is better. To be more precise, this metric counts the number
of pairs that do not have any explicit or implicit precedence
relations in a POS. The definition of flex is

flex =
|{(ai, aj)|ai ⊀ aj ∧ aj ⊀ ai}|

n(n− 1)
(1)

where the precedence constraints between activities include
both explicit and implicit relations. Thus, the higher flex the
POS gets, the lower degree of interaction among activities it
achieve and the more solutions it represents.

Even though flex implies robustness-related features,
such as independence, it does not consider temporal slacks
or redundancy in the POS. If a POS has low flex but every
time constraint is loose enough to allow a certain range of
diviation, flex is not able to show its advantages.

Fluidity In order to take slacks into account when measur-
ing robustness, Cesta, Oddi, and Smith (1998) introduced
fluidity. It represents the ability to absorb temporal devia-
tion. It is defined as

fldt =

n∑
i=1

n∑
j=1∧j 6=i

slack(ai, aj)

H × n× (n− 1)
× 100 (2)

where H is a fair bound which is large enough to allow all
activities to be executed, and slack(ai, aj) is the width of
the allowed distance interval between two activities. The
higher the fldt is, the lower the risk of cascading change,
the higher tolerance to temporal deviation, and the higher
the probability of changes in response to disruption remain-
ing local.

Improved Fluidity Wilson et al. (2014) proposed an im-
proved metric which measure the total temporal tolerance
of an STN. The authors thought the previous fldt overesti-
mated the robustness by calculating dependent slacks repeat-
edly. For instance, a sequence of activities need to be done
one by one and the total time should be within a certain up-
per bound. Then the temporal slack of the whole sequence

will be calculated as many times as the number of activities
as the original fluidity metric.

The improved fluidity metric treats every activity as two
separated nodes which are a start and an end nodes and every
original constraint as a end-to-start constraint. The fluidity
is optimising the sum of every slack between the start and
end nodes of one activity, which satisfies all the temporal
constraints.

By solving the following LP model, we can get the im-
proved fluidity.

max
∑
t∈T

(end(t)− start(t))

s.j. start(t) ≤ end(t) t ∈ T (3)
start(ti)− end(tj) ≤ c ∀(ti − tj ≤ c) ∈ C

In the formula, T and C are the sets of activities and con-
straints in the original STN separately.

This metric improves the original fluidity by consider-
ing dependency of the activities. And it can be extended to
STNU as well. Wilson et al. introduce a model to calculate
the fluidity of a STNU subject to strongly controllable con-
straints.

Disruptibility The former metrics measure robustness in
terms of the flexibility of a POS. This measure called dis-
ruptibility was introduced by Policella et al. (2004). It con-
siders stability against changes. The definition of dsrp is

dsrp =
1

n

n∑
i=1

slack(ai)

numchanges(ai,∆ai)
(4)

The slack here is different from the one used in fldt. It
represents the temporal variability of a single activity and
equals the difference between the upper bound and the
lower bound of the end time of activity ai. The function
numchanges(ai,∆ai) counts the number of activities which
are changed in the process of right-shifting activity ai by
an amount of time ∆ai. So this metric takes disruption into
account and calculates the influence of temporal delay of ac-
tivities. The essence of this measure estimates the trade-off
between flexibility and the implied changes.

Summary Different robustness measures evaluate the
quality of a schedules from different views. However,
whether the “good” solution appraised by each measure is
really good and whether a better solution according to one
measure will still be the better one according to other mea-
sures, are not guaranteed. For instance, a POS with too much
flexibility will not achieve a high value of disruptibility and
a POS with high fluidity may get low flexibility as well.
Furthermore, regardless of what specific features those mea-
sures exactly take into account, they calculate the average
level across the schedule, which means they ignore the de-
viation in detail. Specifically, if there is a weak point in the
POS such as a link with a tight time constraint or a small
group of activities with strong precedence constraints, then
it is still possible to achieve a good average value when the
rest of the schedule is strong enough. Therefore, we need
a deep view of the relationships and differences among the
metrics. And a better model to calculate robustness of sched-
ules and temporal plans is worth exploring.



Robustness Measures with Dynamic
Controllability

In this section, we introduce the model of robustness mea-
sures of schedules that is dynamically controllable. The ba-
sic idea of the model is to optimise robustness of an STNU
with satisfying the constraints of dynamic controllability.
The robustness in the model is represented by the objective
function f of the optimising problem.

We will use the following notation: For each link eij , lij
and uij are the decision variables, representing the lower and
upper bounds on this link. These are contained by constant
outer bounds Lij ≤ lij ≤ uij ≤ Uij . If, for a particular link,
no outer bounds are available, we set Lij = −∞, Uij =∞.
However, in many of the application problems we consider
(cf. next section) tight outer bounds are given for most links,
which allows the constraint model to be simplified.

min f(lij , uij) eij ∈ R ∪ C
s.t. Lij ≤ lij ≤ uij ≤ Uij eij ∈ R ∪ C

dynamic controllability
other constraints for contingent links

Here, R and C are the sets of requirement and contingent
links separately. And other constraints for contingent links
mean different models for the contingent links could be used
according to different backgrounds of the problems.

Dynamic Controllability (DC)
In an STN (without uncertainty), the tightest bounds on the
difference between any two time points that are implied by
the given links can be computed in polynomial time by an
all-pairs shortest path algorithm. Thus, there is an implicit
requirement link between every pair of time points. If any
link’s bounds are inconsistent (Lij > Uij), the network has
no satisfying assignment (Dechter, Meiri, and Pearl 1991).

Checking dynamic controllability of an STNU was first
shown to be tractable by Morris, Muscettola and Vidal
(2001). Their algorithm repeatedly applies a set of reduc-
tions, tightening the bounds on requirement links, until no
more reductions apply (in which case the network is con-
trollable) or the network becomes inconsistent (implying it
is not controllable).

Morris, Muscettola and Vidal’s (2001) algorithm repeat-
edly examines each triangle of time points in the STNU,
considering at most one contingent link each time. Figure
1 shows a triangle, with time points A, B and C. The link
between A and C is contingent, the other two are require-
ment links. (If eAB is also contingent, it is considered in a
separate triangle. Recall that there is an implicit requirement
link between each pair of time points, including parallel to
the contingent links.) First, it applies the implied (shortest
path) bounds (e.g., LBC ← max(LBC , LAC − UAB) and
UBC ← min(UBC , UAC − LAB)). The next step depends
on the relation between B and C:
• If UBC < 0, B must be scheduled after C (hence, after
C has been observed), so no further adjustments are needed.
This is called the “follow” case.
• If LBC ≥ 0, B must be scheduled before or simulta-
neously with C (i.e., before C has been observed). This

A C

B

[lAC , uAC ]

[lAB , u
AB ] [lBC

, uBC
]

Figure 1: An STNU triangle. The A–C link is contingent.

is called the “precede” case, and the bounds on the eAB
link are updated to LAB ← max(LAB , UAC − UBC) and
UAB ← min(UAB , LAC − LBC).
• If LBC < 0 and UBC ≥ 0, B may be scheduled before or
after C. This case, called the “unordered” case, introduces a
conditional bound, called a “wait”, 〈C,UAC − UBC〉, with
the meaning that execution ofB must wait for eitherC to oc-
cur or at leastUAC−UBC afterA. IfUAC−UBC ≤ LAC ,C
cannot occur before the wait expires, so the wait is replaced
by the unconditional bound LAB ← max(LAB , UAC −
UBC). Otherwise, LAB ← max(LAB , LAC), since the wait
for C will delay B to at least LAC after A.
Tighter bounds on a requirement link propagate to any other
triangle that the link is part of. In addition, the algorithm
performs “wait regression”, in which conditional bounds are
propagated to other links. If 〈C,w〉 is a wait on eAB , where
w ≤ UAC , then (i) if there is any link eDB with upper bound
UDB , a wait 〈C,w−UDB〉 is added to eAD; and (ii) ifw ≥ 0
and there is a contingent link eDB , where B 6= C, with
lower bound LDB , a wait 〈C,w − LDB〉 is added to eAD.

Constraint Model of DC
The constraint model uses essentially the same reduction
rules, but in the form of constraints between the decision
variables that represent link bounds. Constraints are formu-
lated over each triangle of time points in the STNU, consid-
ering at most one contingent link each time.
Shortest path constraints

lAC ≤ uAB + lBC ≤ uAC
lAC ≤ lAB + uBC ≤ uAC
uAC ≤ uAB + uBC

lAB + lBC ≤ lAC

(5)

The shortest path constraints can propagate in any direc-
tion (i.e., from the contingent link eAC to the requirement
links and vice versa.) This may seem contradictory, since a
contingent link may not be squeezed by requirements. How-
ever, lAC and uAC here are not given bounds but decision
variables, whose final values will be the bounds on the con-
tingent link. In some applications (e.g., the problem of min-
imising flexibility which motivated Wah and Xin) these vari-
ables are fixed to the given outer bounds (by adding con-
straints lAC = LAC , uAC = UAC) but other applications
allow the bounds of contingent links to vary.

If no link in the triangle is contingent, these are the only
constraints. Assuming, w.l.o.g., that the eAC link is con-
tingent, what constraints are needed is determined by the
outer bounds on the eBC link, following the cases in Morris,
Muscettola and Vidal’s (2001) algorithm. If UBC < 0, then



uBC < 0 and the triangle must always be in the follow case.
Thus, no additional constraints are needed.
Precede constraints IfLBC ≥ 0, then lBC ≥ 0 and the tri-
angle will be in the precede case. The following constraints
must hold:

uAB ≤ lAC − lBC
lAB ≥ uAC − uBC (6)

This together with (5) is equivalent to

uAB = lAC − lBC
lAB = uAC − uBC (6’)

since lAB ≤ uAB is always required. If LBC < 0 and
UBC ≥ 0, the triangle can be in any case, depending on the
values given to lBC and uBC . The precede constraint then
becomes disjunctive:

(lBC < 0) ∨
(
uAB ≤ lAC − lBC
lAB ≥ uAC − uBC

)
(7)

Triangular wait constraints If it is possible that the trian-
gle may be in the unordered case (LBC < 0 and UBC ≥ 0),
a variable representing the conditional wait bound is added:

wABC ≥ uAC − uBC (8)

Regression of waits (described below) may introduce wait
variables wABX , where X is any uncontrollable time point
(not necessarily in the same triangle as A and B). For each
requirement link eAB and wait variable wABX , the follow-
ing disjunctive constraint must hold:

lAB ≥ min(lAX , wABX) (9)

If UAB ≤ LAX , this simplifies to wABX = lAB . The con-
straint wABX ≤ uAB must also hold.
Wait regression Each wait bound 〈X, t〉 on a link eAB is
represented by a variable wABX . However, as explained in
the next section, many of these constraints are redundant and
can be left out.

If there is a wait wABX and a contingent link eDB , then
wait regression implies the constraint

(wABX < 0) ∨ ( wADX ≥ wABX − lDB ) (10)

It is disjunctive because the regression only applies when
wABX ≥ 0. If eDB is a requirement link, only the weaker
constraint

wADX ≥ wABX − uDB (11)

must hold.

Formulation as a MIP
The disjunctions in constraints (7) and (9) mean the model
is not a linear program. Wah and Xin (2004) used non-linear
constraints to encode the disjunctions (as explained in the
next section) and tackled it with the non-linear programming
solver SNOPT. As an alternative, we formulate a mixed-
integer linear programming (MIP) formulation, where dis-
juctions are encoded using binary (0/1) variables. Although
MIP is an NP-hard problem, MIP solvers such as CPLEX or
Gurobi are often very efficient in practice, and, in particular,

typically more efficient than non-linear solvers. Experiment
results across all application problems confirm this.

The wait bound constraint (9) can be formulated as

if α > 0 then β ≥ 0 else γ ≥ 0

where α = wABX − lAX , β = lAB − lAX and γ =
lAB −wABX are all linear expressions. The disjunction can
be replaced by the following linear constraints

α− xUα ≤ 0 (12a)
α− (1− x)(Lα − 1) > 0 (12b)

β − (1− x)Lβ ≥ 0 (12c)
γ − xLγ ≥ 0 (12d)

where x ∈ {0, 1} is a binary variable, Lα, Lβ and Lγ are
constant lower bounds on α, β and γ, respectively, and Uα
is a constant upper bound on α. This forces α > 0 and β ≥ 0
when x = 1, and α ≤ 0 and γ ≥ 0 when x = 0. In the wait
bound constraint, where α = wABX − lAX , we can choose
Uα = UAB − LAC , because UAB is an upper bound on
wABX (wABX ≤ uAB ≤ UAB) and LAC is a lower bound
on lAC . The wait wABX is lower-bounded by the maximum
of all wait constraints – triangular and regressed – on eAB .
The triangular wait lower bound is wtABX = uAX − uBX ,
and from the shortest path constraint lAX + uBX ≤ uAX
we have wtABX ≥ lAB . Thus, we can choose Lα = LAB −
UAC . For the lower bounds on β = lAB − lAX and γ =
lAB−wABX we have Lβ = LAB−UAC and Lγ = LAB−
UAB , respectively.

The precede constraint (7) and regressed wait bound (10)
are similar, except they have conditions only in one of the
two cases (either “then” or “else”). Where one side of a dis-
junction consists of (a conjunction of) several linear con-
straints, as in (7), it is only necessary to add a constraint like
(12c) for each conjunct, all using the same binary variable.

The wait regression constraint (10) can be strengthened to

(wABC ≤ lAC) ∨ (wADC ≥ wABC − lDB) (10’)

The advantage of this is that one disjunct, wABC ≤ lAC ,
is the same as the branching condition in (9), so both con-
straints can be captured with one binary variable.

Constraint (10’) is valid because regressing a wait wABC
through a contingent link eDB , via (10), is redundant if
wABC is not greater than the lower bound of the contingent
link eAC that causes the wait. If wABC ≤ lAC , the wait
bound constraint (9) implies lAB ≥ wABC ≥ 0. Hence, the
triangle DAB is in the precede case and lAD = −uDA =
−(lDB − lAB) = wABC − lDB , which implies the wait re-
gression constraint (10).

Formulation as an NLP
The non-linear model formulated by Wah and Xin (2004)
uses quadratic constraints and terms in to the objective func-
tion to encode disjunctions. The precede constraint (7) is for-
mulated as follows:

lBC(lAB − uAC + uBC) ≥ 0 (13a)
lBC(uAB − lAC + lBC) ≤ 0 (13b)



For each wait bound constraint (9), they introduce an auxil-
iary variable β and the following constraints:

(lAX − wABX)(lAB − wABX) ≥ 0 (14a)
β ≥ 0 (14b)
β ≥ wABX − lAX (14c)

β(lAB − lAX) ≥ 0 (14d)
Furthermore, a quadratic term β(β − (wABX − lAX)) is
added to the objective function. (This term must be min-
imised; if the problem is one of maximisation, its negative is
used.) Its purpose is to ensure that β is 0 whenwABX ≤ lAX
and otherwise equal to the difference wABX − lAX . For this
to work, the penalty incurred by a non-zero value of this
term outweigh the actual objective function. Note also that
there is a situation in which this formulation fails to impose
the lower bound on lAB , since if lAX = wABX , constraint
(14a) is satisfied even if lAB 6≥ wABX , and (14b)–(14d) are
satisfied by setting β = 0. A similar encoding is used for the
wait regression constraint (10’).

Applications
In this section, we will introduce several applications that
are specific measures of robustness on schedules based
on dynamic controllability. The first measure is a non-
probabilistic measure, which regards the maximum tempo-
ral deviations of the activities as the robustness metric. And
the second measure is a probabilistic one, which optimise
the probability of success as the robustness metric. At last,
we also compare dynamic controllability with strong con-
trol, which shows that dyanmic control enlarge the domain
of solutions which may be helpful in real scheduling prob-
lems.

Robustness with Non-Probabilistic Uncertainty
(Maximum Deviation)
In abstract terms we may define robustness as the greatest
level of disturbance (deviation from expected outcomes) at
which the schedule is still successfully executed. To oper-
ationalise this definition, we have to specify what kind of
disturbances are considered, and how the schedule executive
can use flexibility to cope with them. Here, we exemplify by
assuming (1) that the possible disturbances are deviations in
the time taken to execute an activity from its normal dura-
tion, and (2) a partial-order schedule with a dynamic execu-
tion strategy.

A partial-order schedule (POS) consists of a set of time
constraints between activities such that any realisation that
meets these constraints is also resource feasible. In the de-
terministic case, where the duration of each activity i is a
constant di, the POS can be represented as an STN with
time points tsi and tei for the start and end, respectively,
of each activity. Assuming the duration of each activity can
vary within some bounds, [lsi,ei , usi,ei ], the schedule can be
modelled as an STNU where the link esiei from each ac-
tivity’s start to its ending time point is contingent, while re-
maining time constraints are requirement links. Thus, given
a POS we can ask, what is the maximum deviation (i.e.,
width of the contingent bound) on any activity at which the

STNU is dynamically controllable? This defines our mea-
sure of robustness. To compute it, we solve the following
problem:

max ∆
s.t. lsi,ei = di − δi ≥ 0 ∀i

usi,ei = di + δi ∀i
0 ≤ ∆ ≤ δi ∀i
POS constraints (requirement links)
dynamic controllability (5)–(11)

As explained above, requirement link bounds must be al-
lowed to shrink, but their outer bounds can be set to the given
POS constraints. Since contingent links represent durations,
a hard lower bound Lsiei = 0 applies.

We can also define a one-sided variant of this robustness
metric, accounting for delays only, by fixing lsi,ei = di (i.e.,
adding deviations only to the upper bound).

Robustness with Probabilistic Uncertainty
(Minimum Risk)
It is a natural extension to the STNU model to associate
probabilities with the outcome (timing) of uncontrollable
events (Tsamardinos 2002; Fang, Yu, and Williams 2014).
As mentioned earlier, this allows us to define robustness as
the probability of successful plan or schedule execution.

In the probabilistic STN (pSTN) model proposed by Fang,
Yu and Williams (2014) the duration of each contingent link
eij (i.e., the difference tj − ti) is a random variable Dij .
The model makes no assumption about independence or the
distribution of these variables.

It is straightforward to transfer the STNU representation
of a partial-order schedule, described above, to a pSTN.
Since the random variable Dsiei represents the duration of
an activity it is reasonable to assume it to be non-negative.
The probability of a successful dynamic schedule execution
is then at least

max P (
∧
i lsiei ≤ Dsiei ≤ usiei)

s.t. 0 ≤ lsi,ei ≤ usi,ei ∀i
POS constraints (requirement links)
dynamic controllability (5)–(11)

The objective value is a conservative (lower) bound on the
success probability, because it is the probability that all un-
controllable events fall inside the chosen bounds. The sched-
ule may still execute successfully even if some durations fall
outside these bounds, as the outcomes of other events may
fortuitously compensate so that no constraints are violated.

The form of the objective function depends on the
probability distributions over activity durations. If,
for example, each Dsiei is uniform over an interval
[Lsiei , Usiei ], the probability of each uncertain dura-
tion falling within its bounds equals the proportion of
the interval covered, i.e., P(lsiei ≤ Dsiei ≤ usiei) =
usiei

−lsiei
Usiei

−Lsiei
. Applying the union bound (Boole’s in-

equality), P (
∨
i(Dsiei ≤ lsiei ∨Dsiei ≥ usiei)) ≤∑

i P (Dsiei ≤ lsiei ∨Dsiei ≥ usiei) a still (more) conser-
vative estimate of the success probability can be obtained
with a linear objective function. Other distributions give



rise to a non-linear objective function, which we can only
solve in combination with the non-linear formulation of the
dynamic controllability constraints.

Dynamic vs. Strong Controllability
We compare the quality of solutions that can be obtained
under dynamic and strong controllability constraints on the
test cases used by Fang, Yu and Williams (2014). The au-
thors argue that in many situations, minimising risk (prob-
ability of failure) is too conservative, and may compromise
other objectives (such as cost) too much. Instead, users may
prefer to give an absolute bound on risk and optimise other
metrics subject to this constraint. They propose a pSTN op-
timisation algorithm subject to strong controllability and the
chance constraint∑

eij∈C(1− P(lij ≤ Dij ≤ uij)) ≤ ρ. (15)

(This again makes use of the union bound, and so is conser-
vative in both senses described above. That is, it ensures the
probability of violating a requirement is ρ or less.)

Combining the dynamic controllability model (5)–(11)
with (15) enables us to find dynamic execution strategies
under chance constraints. Whether the constraint is linear or
non-linear, and hence which solvers can be applied, depends
on the probability distributions, as noted above.

Since these problems feature normally distributed uncer-
tain durations, only the non-linear solver is able to tackle
them. We therefore use the non-linear constraint model. The
objective is minimising makespan.

Since a strongly controllable network is also dynami-
cally controllable, the objective value can only improve
(i.e., makespan decrease). Figure 2 shows the distribution
of the improvement achieved under dynamic controllabil-
ity over that achievable under strong controllability. (Results
with strong controllability are generated by Fang, Yu and
Williams’ solver.) The improvement is measured by the re-
duction in makespan from that of the strongly controllable
solution, expressed as a fraction of the latter. This clearly
shows the value of using a dynamic execution strategy. (In
fact, the possible improvement may be even greater since
solutions returned by the non-linear solver are often not op-
timal.) 8.5% of problems are infeasible under strong con-
trollability constraints – that is, no strong (unconditional)
execution strategy exists – but are feasible under dynamic
controllability constraints.

Summary and Future Work
Exploring the metrics of robustness with dynamic controlla-
bility can reflect the quality of schedules and it is worth do-
ing. But to solve such an optimising problem is not easy. The
constraint model of dynamic controllability we considered
follows closely the algorithm by Morris, Muscettola and
Vidal (2001). It is an open question if a different, perhaps
more easily solved, model can be derived from the Morris’
(2006) structural characterisation of dynamic controllability.
Another possible method to improve the performance is to
try other solvers, for instance as meta-CSP which is used to
solve the disjunctive temporal problems (Tsamardinos and
Pollack 2003; Moffitt 2011).
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Figure 2: Reduction in makespan achieved with dynamic as
opposed to strong controllability. Instances in the last col-
umn are infeasible under strong controllability, but have a
valid dynamic execution strategy.

Besides the work to improve the current experiments, the
future plan of my research has some possible directions. The
first direction is combining the robustness measure based
on dynamic controllability and current algorithms (Baner-
jee and Haslum 2011) to solve scheduling problems. Instead
of just measuring the quality of the results, we can find dy-
namically controllable schedules with high objective value.
When a schedule is dyanmically controllable, it can be exe-
cuted successfully if the agent could always observe the past
and make decision for the future (Vidal and Fargier 1999).
Therefore, the results is far more useful than simply judging
the quality of the schedules. However, there is an obvious
difficulty in this approach, which is the run time of solving
an optimising problem with constraints of dynamic control-
lability. So the improvements of the current work is neces-
sary.

Another possible direction is to step from measures of
scheduling towards that of temporal planning. Temporal
planning and scheduling have interdependencies both in ap-
proaches and representations (Smith, Frank, and Jonsson
2000). The robustness measure of scheduling can reflect
the quality of temporal plan to some extent. But planning
focuses on what activities should be done, which contains
more factors that could influence the robustness of the plan.

Last but not least, besides the aim to achieving robust re-
sults, it is also worth optimising other preferences (i.e., min-
imising cost) with a certain range of robustness.
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