

Jerusalem, Israel 7/6/2015

Research Workshop of the
Israel Science Foundation

Proceedings of the 2nd Workshop on

Model Checking and
Automated Planning

(MOCHAP-15)

Edited By:

Sergiy Bogomolov, Daniele Magazzeni, Martin Wehrle

 Organizing Committee

Sergiy Bogomolov
IST Austria, Austria

Daniele Magazzeni
King’s College London, UK

Martin Wehrle
University of Basel, Switzerland

Program Committee

Sergiy Bogomolov, IST Austria, Austria
Dragan Bosnacki, Eindhoven University of Technology, The Netherlands
Giuseppe Della Penna, University of L'Aquila, Italy
Stefan Edelkamp, University of Bremen, Germany
Georgios Fainekos, Arizona State University, USA
Goran Frehse,Verimag, France
Enrico Giunchiglia, University of Genova, Italy
Klaus Havelund, Jet Propulsion Laboratory, USA
Alan J. Hu, University of British Columbia, Canada
Alberto Lluch Lafuente, Technical University of Denmark, Denmark
Daniele Magazzeni, King's College London, UK
Fabio Mercorio, University of Milano Bicocca, Italy
Andrea Orlandini, CNR-ISTC, Italy
Doron Peled, Bar Ilan University, Israel
Erion Plaku, Catholic University of America, USA
Andreas Podelski, University of Freiburg, Germany
Sylvie Thiébaux, Australian National University, Australia
Enrico Tronci, University of Rome “La Sapienza”, Italy
Martin Wehrle, University of Basel, Switzerland

Foreword

There has been a lot of work on the exchanges between the two research areas of model
checking and automated planning. From a high level perspective, model checking and
planning problems are related in the sense that plans (found by a planning system)
correspond to error traces (found by a model checker), and vice versa. The two paradigms of
“planning via model checking” and “directed model checking” are now widely used in
different planning and verification domains.

The purpose of the workshop on Model Checking and Automated Planning (MOCHAP) is to
continue to promote a cross-fertilisation between research on planning and verification,
incrementing the synergy between the two areas.

After the successful first edition of the workshop, held at ICAPS 2014, this year MOCHAP-15
featured again a very rich program. Topics include planning in nondeterministic domains,
planning with LTL, symmetry and partial order reduction, diagnosis and guided search on
hybrid systems. Furthermore, two notable researchers have accepted our invitation to
complete the program: Paolo Traverso, with a talk on "20 Years of Planning via Model
Checking: From Theory to Practice", and Doron Peled, with a talk on "Commutativity based
search".

We thank the members of the Program Committee for their dedicated effort in ensuring the
quality of the papers presented at MOCHAP-15. We thank the invited speakers and all the
authors for presenting their work and for contributing to a successful event.

Sergiy Bogomolov, Daniele Magazzeni, Martin Wehrle
MOCHAP-15 Chairs

Table of Contents

20 Years of Planning via Model Checking: From Theory to Practice (Invited)

Paolo Traverso 5

Stubborn Sets for Fully Observable Nondeterministic Planning

Dominik Winterer, Robert Mattmüller, Martin Wehrle 6

Counterexample-Guided Abstraction Refinement for POND Planning

Jonas Thiem, Robert Mattmüller, Manuela Ortlieb 13

Compiling Away LTL Planning Goals in Polynomial Time

Jorge Torres, Jorge Baier 15

A Unifying Framework for Planning with LTL and Regular Expressions

Eleni Triantafillou, Jorge Baier, Sheila McIlraith 23

Commutativity Based Search (Invited)

Doron Peled 32

On Combining Symmetry with Partial Order Reduction

Dragan Bosnacki 33

UPMurphi Released: PDDL+ Planning for Hybrid Systems

Giuseppe Della Penna, Benedetto Intrigila, Daniele Magazzeni, Fabio Mercorio 35

Hybrid Systems: Guided Search, Abstractions, and Beyond

Sergiy Bogomolov 40

20 Years of Planning via Model Checking: From Theory to Practice

Paolo Traverso
FBK-ICT irst, Centre for Information Technology

I-38123 Trento - Italy

Abstract

Planning via Model Checking is nowadays a well-known
technique. Techniques based on model checking have been
successfully applied for dealing with different kinds of plan-
ning problems. In classical planning domains, LTL based
model checking has been used to guide the search towards
the goal. Classical planners based on BDDs have participated
to the international planning competition since its early edi-
tions. Techniques based on both explicit state and symbolic
model checking have been used to address the problem of
planning under uncertainty, including planning with full ob-
servability in non-deterministic domains (FOND), planning
with partial observability (POND), conformant planning, and
planning in non-deterministic domains with temporally ex-
tended LTL and CTL goals. Techniques for interleaving plan-
ning via model checking and partial plan execution have been
explored. Model checking techniques have also been used
for planning with preferences, and planning in asynchronous
domains. Recently, planning via model checking has been
successfully applied to hybrid systems.
In my talk, I will review some of the different approaches in
planning via model checking. I will then discuss some ap-
plications in different domains, e.g., applications for safety
critical systems, web services and business processes, the dy-
namic management of harbor facilities, and planning for ser-
vices in the field of smart cities and communities. I will dis-
cuss some lessons learned and some future challenges for the
practical application of planning via model checking.

5

Stubborn Sets for Fully Observable Nondeterministic Planning

Dominik Winterer and Robert Mattmüller
University of Freiburg, Germany

{wintered, mattmuel}@informatik.uni-freiburg.de

Martin Wehrle
University of Basel, Switzerland

martin.wehrle@unibas.ch

Abstract

The stubborn set method is a state-space reduction technique,
originally introduced in model checking and then transfered
to classical planning. It was shown that stubborn sets sig-
nificantly improve the performance of optimal determinis-
tic planners by considering only a subset of applicable op-
erators in a state. Fully observable nondeterministic plan-
ning (FOND) extends the formalism of classical planning by
nondeterministic operators. We show that stubborn sets are
also beneficial for FOND problems. We introduce nondeter-
ministic stubborn sets, stubborn sets which preserve strong
cyclic plans. We follow two approaches: Fast Incremen-
tal Planning with stubborn sets from classical planning and
LAO* search with nondeterministic stubborn sets. Our ex-
periments show that both approaches increase coverage and
decrease node generations when compared to their respective
baselines.

Introduction
Classical planning is the problem of finding a sequence of
actions leading from a specified initial state to some goal
state. Whereas in classical planning outcomes of actions
are uniquely determined, fully observable nondeterminis-
tic planning (FOND) permits actions whose outcomes are
uncertain. Such nondeterministic actions can be used to
model, e.g., the failure of an agent’s action. While this is
often addressed by re-planning, strong cyclic plans—trial-
and-error strategies—empower the agent to solve failure sit-
uations without re-planning.

Recently, research in classical planning has shifted to-
wards techniques orthogonal to heuristics such as partial
order reduction which has been transfered from computer
aided verification (Valmari 1989; Godefroid 1995) to op-
timal deterministic planning (Alkhazraji et al. 2012). Fur-
ther research aimed at improving the efficiency of stubborn
set computation and determining a generalized definition of
stubborn sets (Wehrle and Helmert 2014). We address the
stubborn set method combined with two algorithms, Fast In-
cremental Planning (FIP) and LAO*.

Fast Incremental Planning is an algorithm for strong
cyclic planning which solves FOND problems within mul-
tiple runs of an underlying classical planner (Kuter et al.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008). Planner for Relevant Policies (PRP) combines this
idea with a regression search to generalize the policy and
substantially outperforms FIP (Muise, McIlraith, and Beck
2012). Our first step towards estimating the potential of
stubborn sets for FOND planning is to use FIP with an un-
derlying classical planner in combination with stubborn sets
from classical planning. However, the main drawback of
such determinization approaches is that they may find poor
solutions, e.g., strong cyclic plans with high expected costs.

LAO* (Hansen and Zilberstein 2001), originally proposed
to solve MDPs, is an algorithm for strong cyclic planning,
which finds strong cyclic solutions in the nondeterministic
state space. Using an admissible heuristic estimator, it finds
strong cyclic plans of minimal expected costs. It has been
shown that combining LAO* with pattern database heuris-
tics (Mattmüller et al. 2010) is a successful approach to solv-
ing FOND problems. Our contribution is a stubborn set
formalism for nondeterministic state spaces, that preserves
strong cyclic plans. We evaluated both approaches, FIP
with stubborn sets from classical planning and LAO* with
our new formalism. Our results show that both approaches
increase coverage and reduce node generations when com-
pared to their respective baselines without stubborn sets.

Preliminaries
We use an SAS+ based notation (Bäckström and Nebel
1993) to model fully observable nondeterministic planning
problems. States of the world are described by a finite set
of state variables V . Every variable v ∈ V has an associated
finite domain Dv and an extended domain D+

v = Dv] {⊥}
where ⊥ defines the undefined value. A partial state is a
function s with s(v) ∈ D+

v for all v ∈ V . We write vars(s)
for the set of all v with s(v) 6= ⊥. A partial state is a state if
vars(s) = V .

Definition 1 (nondeterministic planning task). A nondeter-
ministic planning task is a 4-tuple Π = 〈V,O, s0, s∗〉, where
V is a finite set of finite-domain variables, O is a finite set
of nondeterministic operators, s0 is a state called the initial
state and s∗ is a partial state called the goal. Each nonde-
terministic operator o = 〈Pre | Eff 〉 has a partial state Pre
called precondition, a finite set of partial states Eff and an
associated non-negative number cost(o) called its cost.

An operator o is applicable in a state s if Pre is sat-

6

isfied in s. The application of a single effect eff ∈ Eff
in s yields the state app(eff , s) that results from up-
dating the values of s with the ones of eff . The
application of o to a state s yields the set of states
o(s) := {app(eff , s) | eff ∈ Eff }. The set of applicable
operators in a state s is denoted by app(s). Sometimes
we want to refer to a particular outcome of an operator
o = 〈Pre | {eff1 , · · · , effk}〉. The determinization of non-
deterministic operator o is o[1], · · · , o[k] with every outcome
o[i] = 〈Pre | {effi}〉. The all-outcomes determinization of
planning task Π = 〈V,O, s0, s∗〉 is Πdet = 〈V,Odet, s0, s∗〉
where Odet is the set of all operator outcomes of O.

An operator is deterministic if |Eff | = 1 . It is nonde-
terministic if |Eff | ≥ 2 . We say a planning task Π =
〈V,O, s0, s∗〉 is deterministic if all of its operators are deter-
ministic. We refer to all variables in the precondition of an
operator o as prevars(o) = vars(Pre) and to all variables
in its effects as effvars =

⋃
i vars(effi).

A solution to a FOND planning task Π with set of states
S is a policy π : S → O ∪ {⊥}, which maps a state to an
appropriate action or is undefined, e.g. π(s) = ⊥. Policy π
is weak if it defines at least one path from the initial state to a
goal state following it. It is closed if following it either leads
to a goal state or to a state where the policy is defined. Policy
π is proper if from every state visited following it there exits
a path to a goal state following it. Policy π is acyclic if it
does not revisit already visited states.

Definition 2 (weak plan, strong cyclic plan, strong plan).
Let Π = 〈V,O, s0, s∗〉 be a planning task.

• A policy for Π is called a weak plan for Π if it is weak.
• A policy for Π is called a strong cyclic plan for Π if it is

closed and proper.
• A policy for Π is called a strong plan for Π if it is closed

proper and acyclic.

A weak plan is a sequence of actions which leads to the
goal if all nondeterministic operator outcomes were deter-
ministic. It corresponds to a plan in classical planning. A
strong plan guarantees that after a maximum number of steps
a goal state is reached. Strong cyclic planning relaxes that
property requiring that the goal is reached within a finite se-
quence of actions. We want to emphasize that the nondeter-
minism in FOND planning is not necessarily the same as in
model checking with nondeterministic models since unlike
strong cyclic plans, counterexamples in model checking are
linear sequences.

Deterministic Stubborn Sets
The first step towards stubborn sets is the definition of op-
erator interference. We follow the definition of Wehrle and
Helmert (2014).

Definition 3 (interference of deterministic operators). Let
o1 and o2 be operators of a deterministic planning task Π
and let s be a state of Π. Operators o1 and o2 interfere in s
if they are both applicable in s, and

• o1 disables o2 in s, i.e., o2 /∈ app(o1(s)), or
• o2 disables o1 in s, i.e., o1 /∈ app(o2(s)), or

1
00

2
10

2
01

2

02

o3(2)o1(1)

o2(1000) o4(1)

Figure 1: Solid: expensive strong cyclic solution. Dotted:
cheap strong cyclic solution. Determinization-based algo-
rithms might not find the cheap solution.

• o1 and o2 conflict in s, i.e., s12 = o1(o2(s)) and s21 =
o2(o1(s)) are both defined and differ: s12 6= s21.
We approximate deterministic operator interference, by

considering it globally for any state s. According to this syn-
tactic notion of interference, two deterministic operators o1
and o2 interfere if the effect of o1 violates the precondition
of o2 (or vice versa) or if o1 and o2 have a common variable
in their effects which they set to different values. Further-
more, we consider that operators which are never jointly ap-
plicable cannot interfere. This is done by checking whether
the preconditions of two operators o1 and o2 are mutually
exclusive (Wehrle and Helmert 2014). For stubborn sets we
need two more definitions. A disjunctive action landmark
(DAL) in state s is a set of operators such that all opera-
tor sequences leading from s to a goal state contain some
operator in the set. A necessary enabling set (NES) for op-
erator o in state s is a set of operators such that all operator
sequences that lead from s to some goal state and include o
contain some operator in the NES before the first occurrence
of o. Both sets can be computed by selecting a variable v
whose value differs from either the goal or the precondition
of the operator to enable. Then, we add each operator which
achieves the desired value of v. As both sets are not uniquely
determined, the pruning power and size of stubborn sets de-
pends on their choices (Wehrle and Helmert 2014).
Definition 4 (deterministic strong stubborn set). Let Π =
〈V,O, s0, s∗〉 be a deterministic planning task and s a state.
A set Ts ⊆ O is a deterministic strong stubborn set (DSSS)
in s if the following conditions hold:

1. Ts contains a disjunctive action landmark in s.
2. For all operators o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s.
3. For all operators o ∈ Ts with o ∈ app(s), Ts contains all

operators that interfere with o in s.
We use FIP combined with an underlying classical plan-

ner using deterministic stubborn sets. Solving FOND prob-
lems with classical planners can lead to costly strong cyclic
plans. Although optimality does not play the major role in
FOND planning, the possibility of finding arbitrarily bad so-
lutions is undesirable. We show that exactly this might hap-
pen.
Example 1. Consider a nondeterministic planning task Π =
〈V,O, s0, s∗〉with variables V = {v1, v2} and the following

7

operators:
• o1 = 〈v1 = 0 | {v1 := 1}, {v2 := 2}〉
• o2 = 〈v1 = 1, v2 = 0 | {>}, {v1 := 0, v2 := 2}〉
• o3 = 〈v1 = 0 | {v2 := 2}, {v2 := 1}〉
• o4 = 〈v1 = 0, v2 = 1 | {>}, {v2 := 2}〉
As cost function we have cost : {o1 7→ 1, o2 7→ 1000, o3 7→
2, o4 7→ 1}, the initial state is s0 = {v1 7→ 0, v2 7→ 0} and
the goal s∗ = {v2 7→ 2}. Assume we perform a run of the
FIP algorithm and its first weak plan would be o[2]1 induc-
ing the fail-state o[1]1 (s0) = 10. In a subsequent weak plan
search, the algorithm considers both outcomes of o2 and
adds them to the policy. This yields a clearly non-optimal
strong cyclic plan, whereas the optimal solution consists of
o3 and o4 (Figure 1). Applying PRP to this example gives
the same solution, since regressing o[2]1 is ineffective.

Nondeterministic Stubborn Sets
Reducing FOND problems to multiple classical planning
problems sometimes leads to poor strong cyclic solutions
since the individual runs of classical planners only guarantee
good weak plans which are not always part of a good strong
cyclic plans. To overcome this, it can be beneficial to plan
in the nondeterministic state space e.g., with LAO* search
(Hansen and Zilberstein 2001) which finds strong cyclic
plans with minimum expected costs under certain assump-
tions. Planning in the nondeterministic state space needs
new definitions of stubborn sets and operator interference
since the former do not consider nondeterministic operators.

For a given nondeterministic planning problem Π, a
straightforward approach would be to directly apply the
original definition of strong stubborn sets on the all-
outcome-determinization of Π, and additionally, to add for
every outcome o[i] of a nondeterministic operator o every
other outcome of o in order to respect o’s nondeterministic
nature. However, as the following example shows, such an
approach is incomplete.
Example 2. Consider the following all-outcomes deter-
minization Πdet = 〈V,Odet, s0, s∗〉 of nondeterministic
planning task Π with variables V = {v1, v2} and the fol-
lowing operators:

• o[1]1 = 〈v1 = 0 | {v1 := 1}〉, o[2]1 = 〈v1 = 0 | {v1 := 2}〉
• o[1]2 = 〈v2 = 0 | {v2 := 1}〉, o[2]2 = 〈v2 = 0 | {v2 := 2}〉
• o[1]3 = 〈v2 = 0 | {v2 := 3}〉, o[2]3 = 〈v2 = 0 | {v2 := 4}〉
• o11 = 〈v1 = 1, v2 = 1 | {v2 := 5}〉
• o12 = 〈v1 = 1, v2 = 2 | {v2 := 5}〉
• o23 = 〈v1 = 2, v2 = 3 | {v2 := 5}〉
• o24 = 〈v1 = 2, v2 = 4 | {v2 := 5}〉
The initial state is s0 = {v1 7→ 0, v2 7→ 0}, and the goal is
s∗ = {v2 7→ 5}. The set {o11, o12, o23, o24} is a disjunc-
tive action landmark in s0 which we add to the candidate set
Ts0 . As all operators in this set are inapplicable in s0, we
have to add a necessary enabling set for all of them. A valid
choice for these necessary enabling sets is based on select-
ing the unsatisfied conditions v2 = 1, v2 = 2, v2 = 3 and

1
00

210 2 20

211 212 2 23 2 34

o1

o2 o3

1
00

201 2 02

11 21 12 22

o2

o1 o1

1
00

203 2 04

13 223 14 24

o3

o1 o1

Figure 2: Postponing o1 in s0 only leads to policies with
dead-ends. The straightforward instantiation is incomplete.

v2 = 4 in the preconditions of o11, o12, o23, o24, respec-
tively, and to add the determinized operators that set these
conditions to true. These achieving operators correspond to
all outcomes of o2 and o3, which are applicable in s0 but
non-interfering with any operator not in Ts0 . Hence, we fi-
nally get Ts0 = {o11, o12, o23, o24, o[1]2 , o

[2]
2 , o

[1]
3 , o

[2]
3 }.

However, Ts0 is insufficient for our purpose because every
strong plan from s0 has to start with o1: Depending on the
nondeterministic outcome of o1 (v1 = 1 or v1 = 2), o2 or
o3 can be applied to satisfy the precondition of an operator
to reach the goal. In contrast, starting with o2 and apply-
ing o1 afterwards might lead to outcomes where no goal is
reachable any more (e.g., v1 = 2 and v2 = 2). The analo-
gous situation occurs when starting with o3 and applying o1
afterwards (Figure 2).

The core problem of our straightforward instantiation is
that deterministic operator interference is an insufficient cri-
terion for nondeterministic operators. Because changing the
order of two non-interfering nondeterministic operators o
and o′ in a strong cyclic plan results in, e.g., outcomes of
o′ getting prefixes of weak plans started by o. While this is
not an issue for all weak plans which contain outcomes of
both operators, it is problematic to those weak plans which
start with an outcome of o but do not contain an outcome of
o′. A solution to this is to demand that such prefixes preserve
the original weak plan which we address with the following
property.
Definition 5 (prefix-compatibility). Let Π be a planning
task and Πdet = 〈V,Odet, s0, s∗〉 its all-outcomes deter-
minization. Two operators o1, o2 ∈ Odet are prefix compat-
ible if for all operator sequences π1 and π2:
• o1π1 is a weak plan implies o2o1π1 is also a weak plan

and
• o2π2 is a weak plan implies o1o2π2 is also a weak plan

Intuitively, two operators o1 and o2 are prefix compatible
if every weak plan starting with o1 is preserved if we put o2
to its front and vice versa. Equipped with prefix compatibil-
ity, we can formulate the definition of a stubborn set for the
nondeterministic state space which has two additional rules
compared to the DSSS definition.
Definition 6 (nondeterministic strong stubborn set). Let
Π = 〈V,O, s0, s∗〉 be a nondeterministic planning task,

8

Πdet = 〈V,Odet, s0, s∗〉 its all-outcomes determinization
and s a state. A set Ts ⊆ Odet, is a nondeterministic strong
stubborn set (NSSS) in s if the following conditions hold:

1. Ts contains a disjunctive action landmark in s for Πdet.
2. For all operators o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s for Πdet.
3. For all operators o ∈ Ts with o ∈ app(s), Ts contains all

operators that interfere with o in s for Πdet.
4. For every outcome o[i] ∈ Ts of nondeterministic operator
o, Ts contains all operators that are not prefix compatible
with o.

5. For every outcome o[i] ∈ Ts of nondeterministic operator
o, Ts contains all other outcomes of o.

Proposition 1. Nondeterministic strong stubborn sets pre-
serve completeness for strong cyclic planning.

Proof. At first we show completeness for strong planning
then we show it for strong cyclic planning. Let π be a strong
plan from state s that induces weak plans πi and πj , such
that there is state s̃ with πi(s̃) = o[i] and πj(s̃) = o[j]. Weak
plans πi and πj have the following structure: πi = αo[i]βi
and πj = αo[j]βj where α is a common operator sequence
without outcomes of nondeterministic operators, and βi,
βj contain also outcomes of nondeterministic operators
respectively. State s̃ is the branching point of πi and πj .
Let ki be the smallest index such that operator oki ∈ πi
is contained in the nondeterministic stubborn set Ts, simi-
larly for kj and πj . We distinguish the following three cases.

(1) oki ∈ α = o1 · · · on. Clearly oki = okj . oki is
applicable since otherwise a necessary enabling set has to
be contained in Ts and at least one operator has to be applied
before oki , contradicting the choice of ki. Since ki is the
smallest index such that oki ∈ Ts, oki does not interfere
with any operator of smaller index because otherwise an
operator applied before oki must be contained in Ts. Also,
this contradicts the choice of ki. Thus we can replace α by
okio1 · · · oki−1oki+1 · · · on.

(2) oki = o[i]. okj /∈ α since otherwise oki ∈ α.
Also, okj cannot be in βj because by the definition of the
NSSS o[j] ∈ Ts. It follows that okj = o[j]. Like in case (1)
oki is applicable and does not interfere with operators of
smaller index for πi, the same holds for okj and πj . Thus
we can move the nondeterministic operator o to the front
resulting in o[i]αβi and o[j]αβj .

(3) oki ∈ βi = on+2 · · · on+mi . okj cannot be in α

since otherwise oki ∈ α. Also, okj 6= o[j] since otherwise
by definition of the NSSS, o[i] would be included in Ts,
contradicting the choice of oki . Therefore okj ∈ βj . Let
s1 · · · sn−1s̃sn+1 · · · sn+mi

be the states visited by πi. We
know as in case (1) that oki does not interfere with operators
of smaller index. Inductively it follows that oki is applicable
in s̃. Also we know that oki and o are prefix compatible
since otherwise o ∈ Ts. This means that o[i]on+2 · · · on+mi

is a weak plan from ok(s̃) = ok(on · · · (o1(s0))). From

the non-interference of ok with operators of smaller index
we get ok(on · · · (o1(s0))) = on(on−1 · · · (o1(ok(s0)))).
Hence we can move ok to the front of πi and πj . If ok is
an outcome of a nondeterministic operator o′ then it has a
sibling o′l which is the smallest index of weak plan πl. This
case is covered by case (2) with πl and πi.

Since a strong plan is a strong cyclic plan without cy-
cles we just have to consider the effect of cycles. NSSS is
state dependent but not path dependent, therefore revisiting
some state s does not affect Ts, concluding the proof.

Nondeterministic stubborn sets are in general not optimal-
ity preserving for strong cyclic planning since prefix com-
patibility leads to operators being added in front of other
ones which can lead to solutions with higher expected costs.

Approximating Prefix Compatibility
The exact notion of prefix compatibility is intractable to
compute because we would have to consider all weak plans.
Therefore we outline how to find a sufficient criterion
for prefix-compatibility. We define Dis(o) as the set of
operator-variable pairs (o′, v) ∈ Odet × V such that o dis-
ables o′ on variable v in any state. Further we define Neg(o)
as the set of goal variables with which o conflicts, i.e.,
eff (o)[v] 6= s∗[v] for goal-related variables v on which o has
an effect. If Dis(o1) = Dis(o2) and Neg(o1) = Neg(o2)
then o1 and o2 are prefix compatible. The idea behind this
is: if two operators o1 and o2 disable the same set of opera-
tors on the same variables, then every deterministic operator
sequence starting with o1 remains applicable if we append
o2 to its front. Also weak plans are preserved since o1 and
o2 do not violate different goal variables.

In some cases, we can weaken this syntactic notion of
prefix compatibility. Consider two non-interfering operators
o1 = 〈Pre | {eff ′1}〉 and o2 = 〈Pre | {eff1 , · · · , effn}〉. If
σ = {s 7→ o1, o1(s) 7→ o2} is a subsequence of a strong
cyclic plan from state s then exchanging the order of o1
and o2 gives an equivalent subsequence since they induce
the same set of states, i.e., o1(o

[i]
2 (s))) = o

[i]
2 (o1(s)) for all

i ≤ n. Therefore if two such operators do not interfere,
it suffices to check Dis(o1) ⊆ Dis(o2) and Neg(o1) ⊆
Neg(o2).

Sometimes nondeterministic operators contain only one
nontrivial effect, i.e. an operator o = 〈Pre | {eff1}, {>}〉.
For every weak plan o[1]π from state s, it exists a finite se-
quence σ = o[2] · · · o[2], repeated applications of o’s trivial
effect, such that σo[1]π is also a weak plan from s. Thus, ev-
ery operator being a prefix of o[1]π preserving the weak plan,
does also preserve σo[1]π. Such operators are therefore triv-
ially prefix compatible to any other deterministic operator.

Efficient Computation
As nondeterministic stubborn sets leave open how the dis-
junctive action landmark and the necessary enabling sets
were chosen, the pruning power of stubborn sets depends
highly on these design choices. We outlined how prefix
compatibility can be syntactically addressed. However, for

9

applicable nondeterministic operators with more than one
nontrivial effect, in the stubborn set we have to add both the
interfering and the non-prefix compatible operators. This
leads to many operators being added to the stubborn set. It
is therefore reasonable to avoid applicable nondeterministic
operators with more than one nontrivial effect from being
added to the stubborn set. Let nontrivial be the set of op-
erators with more than one nontrivial effect. Our intention
is to exclude applicable operators of nontrivial from being
added to the stubborn set. We address this by computing a
weight whenever we have to add a DAL or NES to the stub-
born set. We calculate a weight for each DAL or NES and
chose the DAL or NES with lowest weight according to:

weight(o, s, Ts) =





∞, if o ∈ app(s) ∧ o ∈ nontrivial
K, if o ∈ app(s) ∧ o /∈ nontrivial
1, otherwise

where o is an operator not in stubborn set Ts and K a
nonzero natural number. Our exclude strategy is an exten-
sion of a strategy presented by Laarman et al. (2013) which
penalizes applicable operators not in the current candidate
stubborn set. A coarser strategy towards prefix compatibil-
ity for nontrivial operators is to simply assume that an appli-
cable nontrivial operator is not prefix compatible to all other
operators. On par with the exclude strategy this is feasible
since it avoids the costly computation of the disabling rela-
tion.

A Tighter Envelope
Active operators (Chen and Yao 2009; Wehrle et al. 2013)
approximate the set of operators which can be part of any
weak plan from some state using domain transitions graphs
(DTGs). From a more general point of view, Wehrle et al.
(2013) denote subsets which preserve at least one weak plan
from some state as an envelope. Combining a tight envelope
with stubborn sets may not only exclude operators which are
not in envelopeE from the stubborn set but also prevent cas-
cades from being added to the stubborn set. Of course, the
active operators can also be used for strong cyclic planning
since strong cyclic plans consist of multiple weak plans. We
additionally exploit the structure of strong cyclic plans and
obtain a tighter envelope.

A part-of-a-plan operator o ∈ O in s is a deterministic
operator that is contained in some weak plan starting from s.
This notion is intractable to compute so we have to find a
sufficient criterion for it.
Definition 7 (active operator). Let Π = 〈V,O, s0, s∗〉 be a
deterministic planning task. An active operator o ∈ O in a
state s is an operator that satisfies the following conditions:

1. For every variable v ∈ prevars(o), there is a path in
DTG(v) from s[v] to pre(o)[v], and also from pre(o)[v]
to the goal value s[v] if v is goal-related.

2. For all v ∈ effvars(o) ∩ vars(s∗) there is a path in
DTG(v) from eff1 (o)[v] to s∗[v].
Intuitively, the definition states that an operator is active

if it is part of some weak plan from the corresponding ab-
stracted state in every singleton abstraction of Π. Thus, a
part-of-a-plan operator is always active but not vice versa.

A nondeterministic part-of-a-plan operator o ∈ O in s
is an operator that is contained in some strong plan π start-
ing from s. Like for the part-of-a-plan operators this is in-
tractable to compute.

Proposition 2. Let o be an applicable nondeterministic op-
erator and o[i] one of its outcomes. If o[i] is inactive in state
s then o cannot be part of any strong cyclic plan from s.

Proof. We show this by contradiction. If there were a strong
cyclic plan π from s, such that π(s̃) = o for some state s̃
but o[i] is no part-of-a-plan operator in s. Let further σ =
o1 · · · on be a deterministic operator sequence applicable in
s that leads to s̃. Since o[i] is no part-of-a-plan operator in
s, no weak plan from s does contain o[i]. Therefore σo[i]π′
for an arbitrary operator sequence π′ cannot be a weak plan
from s. This implies that π′ is no weak plan from o[i](s̃).
Thus π is not proper since o(s̃) is reachable following π but
there is no goal state reachable from o(s̃). This contradicts
π being a strong plan. It follows that if any outcome of a
nondeterministic operator o is not active in s, then o cannot
be part of a strong cyclic plan from s.

We denote our new envelope by nondeterministic active
envelope. It can be used for both the DSSS and NSSS.

Experimental Evaluation
We focused our experimental evaluation on the following
two configurations:

1. FIP combined with DSSSs

2. LAO* combined with NSSSs

We further investigated the impact of different envelopes:
full, active, nondeterministic active (Table 1 and Table 2).
Also, we varied the approximation of prefix compatibility
for the NSSS approach (Table 3). We differentiate between
the approach which assumes that every nontrivial operator
is not prefix compatible with all other operators (no prefix)
and the approach where prefix compatibility is syntactically
approximated (syntactic). For the DSSS, disjunctive action
landmarks and necessary enabling sets were computed us-
ing the laarman strategy. For the NSSS we used the exclude
strategy. The interference relation for both the DSSSs and
NSSSs is entirely precomputed which is also true for the
achievers, the NSSSs need the additional precomputation of
the disabling relation. For the underlying classical planner
of FIP, we used greedy best first search. As heuristic estima-
tor, we chose the FF heuristic (Hoffmann and Nebel 2001)
for all approaches.

We evaluated both stubborn set approaches on all FOND
domains of the IPC-2008 and variations of these. Further-
more we added two domains from probabilistic planning to
our benchmark set.1 All experiments were conducted on a
server equipped with AMD Opteron 2.3 GHz CPUs. We set

1First-Responders-new consists of larger instances of the First-
Responders domain. Forest-new is taken by Muise, McIlraith, and
Beck (2012). Tidyup is the Mobile Manipulation domain of Hertle
et al. (2014) adapted for FOND planning. Earth-Observation was
introduced by Aldinger and Löhr (2013).

10

Coverage Node Generations
Domain FIP DSSS DACT NACT FIP DSSS DACT NACT
FR(75) 74 –1 –1 –1 2917345 45.71% 45.71% 45.65%
FR-NEW(91) 75 –1 –1 –1 9849763 65.3% 65.3% 65.29%
FOREST-NEW(90) 16 +4 +4 +4 16463519 10.94% 10.94% 10.94%
FOREST(90) 13 +4 +4 +4 28857372 18.96% 18.96% 18.96%
EARTH(40) 35 –2 –2 –2 5592159 100.0% 100.0% 100.0%
TIDYUP(10) 5 ±0 +5 +5 2307584 99.94% 0.12% 0.1%
TTIREWORLD(40) 3 ±0 ±0 ±0 24805 100.0% 100.0% 100.0%
BW(30) 25 –1 –1 –1 191627 100.0% 100.0% 100.0%
FAULTS(55) 55 ±0 ±0 ±0 160599 100.0% 100.0% 100.0%
Overall 301 +3 +8 +8 66364773 35.13% 31.66% 31.65%

Table 1: Comparison of plain FIP with FIP using DSSS and
different envelopes: full, active (DACT), nondeterministic
active (NACT). Nodes of DACT, NACT in % of plain FIP.

Coverage Node Generations
Domain LAO* NSSS DACT NACT LAO* NSSS DACT NACT
FR(75) 57 +1 +1 +2 323275 85.86% 85.86% 81.51%
FR-NEW(91) 19 –2 –2 –2 455521 100.7% 100.7% 100.77%
FOREST-NEW(90) 3 +3 +2 +3 10989 93.28% 93.28% 93.28%
FOREST(90) 6 +1 +1 +1 17861 100.96% 100.96% 100.96%
EARTH(40) 30 ±0 ±0 ±0 80229 100.0% 100.0% 100.0%
TIDYUP(10) 9 ±0 ±0 ±0 40166 99.95% 72.47% 59.68%
TTIREWORLD(40) 6 ±0 ±0 ±0 27807 100.0% 100.0% 100.0%
BW(30) 21 ±0 ±0 ±0 111845 100.0% 100.0% 100.0%
FAULTS(55) 54 ±0 ±0 ±0 153582 100.0% 100.0% 100.0%
Overall 205 +3 +2 +4 1221275 96.47% 95.57% 94.02%

Table 2: Comparison of plain LAO* with LAO* using NSSS
and different envelopes: full, active (DACT), nondetermin-
istic active (NACT). Nodes of DACT, NACT in % of plain
LAO*.

a time limit of 30 minutes and a memory limit of 4GB for
the Java Runtime Environment. We considered an instance
as solved if the planner finds a solution within its time limit
or proves that none exists.

Results
Our experiments yield the following insights:
• DSSS approach: FIP combined with DSSS significantly

increases coverage and reduces node expansions. This is
particularly pronounced in the domains Forest and Forest-
new. DSSS with active envelope solves five additional
problem instances of the Tidyup domain which has—in
contrast to all other domains—applicable inactive oper-
ators permitting immense pruning (0.1% nodes gener-
ated). In all other domains the effect of active envelope
and also of nondeterministic active envelope is negligi-
ble. In First-Responders and First-Responders-new the
DSSS approach loses one instance because of heuris-
tic tie-breaking. Also, it loses two instances in Earth-

Coverage Node Generations
Domain no prefix syntactic no prefix syntactic
FR(75) 59 –2 264437 96.27%
FR-NEW(91) 17 +1 535598 100.45%
FOREST-NEW(90) 6 +1 21088 56.02%
FOREST(90) 7 –1 18033 72.36%

Table 3: Comparison of no prefix compatibility for nontriv-
ial operators with syntactic approximation. We grouped the
domains where coverage and node generations are equal.
Nodes of syntactic in % of no prefix approach.

Observation and one in Blocksworld. The instances in
Earth-Observation result from the vast number of gener-
ated states. In Blocksworld the DSSS approach fails to
solve the hardest problem solved by the baseline which
solves it close to the time limit (1564s out of 1800s).

• NSSS approach: LAO* search combined with NSSS does
also clearly outperform its baseline in terms of cover-
age and node expansions. But in contrast to the DSSS
approach, node generations are not as drastically re-
duced. Since the LAO* algorithm produces noticeably
more overhead per node than the FIP algorithm, reduc-
ing a single node has greater impact for the LAO* algo-
rithm than for FIP. The coverage increase is most evident
in the domain Forest-new where three additional instances
are solved and First-Responders-new with two addition-
ally solved instances. The loss of two instances in First-
Responders-new is caused by heuristic tie-breaks (100.7%
node expansions). A blind search without stubborn set
does not solve any problem in this domain, whereas in
combination with NSSS, it solves the smallest instance.
Furthermore, active envelope and nondeterministic active
envelope are beneficial in terms of pruning power. We
again see the empirical dominance of nondeterministic
active envelope over active envelope supporting the the-
oretical results.

• Prefix Compatibility: In terms of pruning power, the
approach without prefix compatibility for the nontriv-
ial operators is dominated by the syntactic approxima-
tion of prefix compatibility. Except in the domain First-
Responders-new more nodes are generated because of a
single instance which is caused by heuristic tie-breaking
(100.45% node expansions). The increased pruning
power is reflected in better coverage for First-Responders-
new and Forest-new where two hard additional instances
are solved respectively.

Conclusion
We demonstrated that the stubborn set approach is also ben-
eficial for FOND planning. While this was expectable for
FIP and deterministic strong stubborn sets, we needed a new
formalism for LAO* search, which does not reduce FOND
to classical planning. We provided a novel notion of stub-
born sets and proved that it is completeness preserving.

For the future, we want to focus on how prefix compatibil-
ity can be better approximated and evaluate how the degree
of a nondeterministic operator affects the results of our ap-
proach. As a first step, we noticed that two operators cannot
be prefix compatible if they have mutex preconditions. Also,
it would be interesting to combine PRP with stubborn sets.

Acknowledgments
This work was partly supported by the DFG as part of
the SFB/TR 14 AVACS and by the Swiss National Science
Foundation (SNSF) as part of the project “Automated Refor-
mulation and Pruning in Factored State Spaces (ARAP)”.

11

References
Aldinger, J., and Löhr, J. 2013. Planning for agile earth
observation satellites. In Proceedings of the Workshop on
Planning in Continuous Domains (PCD) at ICAPS 2013.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI 2012), 891–892.
Bäckström, C., and Nebel, B. 1993. Complexity results for
sas+ planning. Computational Intelligence 11:625–655.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In Proceedings of the
21st International Joint Conference on Artifical Intelligence
(IJCAI 2009), 1659–1664.
Godefroid, P. 1995. Partial-order methods for the veri-
fication of concurrent systems: An approach to the state-
explosion problem.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1–2).
Hertle, A.; Dornhege, C.; Keller, T.; Mattmüller, R.; Ortlieb,
M.; and Nebel, B. 2014. An experimental comparison of
classical, FOND and probabilistic planning. In Proceedings
of the 37th Annual German Conference on AI (KI 2014),
297–308.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:2001.
Kuter, U.; Nau, D.; Reisner, E.; and Goldman, R. P. 2008.
Using classical planners to solve nondeterministic planning
problems. In Proceedings of the 18th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2008),
190–197.
Laarman, A.; Pater, E.; van de Pol, J.; and Weber, M. 2013.
Guard-based partial-order reduction. In Proceedings of the
21st International Symposium on Model Checking of Soft-
ware (SPIN 2014), 227–245.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2010), 105–112.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
non-deterministic planning by exploiting state relevance. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2012), 172–180.
Valmari, A. 1989. Stubborn sets for reduced state space
generation. In Proceedings of the Tenth International Con-
ference on Application and Theory of Petri Nets (APN 1989),
1–22.
Wehrle, M., and Helmert. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Pro-
ceedings of the 24th International Conference on Automated
Planning and Scheduling (ICAPS 2014), 323–331.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn sets

and expansion core. In Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS
2013), 251–259.

12

Counterexample-Guided Abstraction Refinement for POND Planning

Jonas Thiem and Robert Mattmüller and Manuela Ortlieb
University of Freiburg, Germany

{thiemj,mattmuel,ortlieb}@informatik.uni-freiburg.de

Abstract

Counterexample-guided abstraction refinement (CEGAR) al-
lows to gradually refine a problem until the required detail
for a solution is reached. We propose the use of CEGAR
to demonstrate unsolvability of partially observable nonde-
terministic planning tasks while avoiding search through the
entire state space.

Partially observable tasks are ubiquitous in planning and
robotics (Oliehoek 2010, p. 3). Sometimes, it is important
to show unsolvability of such a task fast. Examples include
algorithms minimizing necessary sensors, where unsolvabil-
ity proofs are needed to show that a certain sensor cannot
be left out (Mattmüller, Ortlieb, and Wacker 2014), and al-
gorithms for strong and strong cyclic planning (Cimatti et
al. 2003) that first try to find a strong plan, and if strong
plan non-existence has been established, resort to finding a
strong cyclic plan instead. The Counterexample-Guided Ab-
straction Refinement (CEGAR) technique originating from
model checking (Clarke et al. 2003) can be used to speed up
unsolvability proofs and has recently been used for classi-
cal planning (Seipp 2012), and, in a setting closely related
to ours, in the context of games with incomplete informa-
tion (Dimitrova and Finkbeiner 2008). CEGAR works as
follows: It starts with a small initial abstraction of the plan-
ning task and searches for an abstract plan. If no such plan
exists, it makes use of the fact that abstractions induce over-
approximations of reachability and concludes that no con-
crete plan can exist, either. Otherwise, CEGAR tries to con-
cretize the abstract plan found. Either, the solution is con-
cretizable. Then CEGAR terminates. Otherwise, the solu-
tion is spurious and the abstraction must be refined. In our
setting, instead of requiring abstractions where every single
transition is preserved, preserving goal reachability is suffi-
cient. A central question is how to define abstractions (guar-
anteeing over-approximations). A straightforward way for
POND planning is to define an abstract belief state B as a
set of concrete belief states B, where each such B consists
of the set of world states s considered possible in B. Then
the abstract initial state, goal states, and transitions can be
defined easily. E.g., an action precondition ϕ is satisfied in
B iff it is satisfied in some concrete belief state B repre-
sented by B (to ensure over-approximation), and ϕ is satis-
fied in B iff it is satisfied in all states s ∈ B (to account for

the uncertainty of the belief B). Unfortunately, representing
such a set of sets B compactly is hard. On the other hand,
representing a set B of states s compactly is, although expo-
nential in the worst case, often feasible using binary decision
diagrams (BDDs) (Bryant 1986). Therefore, in this work we
approximate abstract belief states B by BDD-encoded sets
of world states B. Furthermore, as abstractions we use sim-
ple projections to patterns P , i.e., sets of variables (Culber-
son and Schaeffer 1996). This raises several questions: (a)
How to define and compute an (approximate) abstraction to
a pattern P efficiently, (b) how to ensure that goal reach-
ability is preserved, and (c) how to refine an abstraction if
necessary. For (a), we use a simple syntactic projection to
P similar to the one used for PDB heuristics in classical
planning. However, when we use sets B of world states as
abstract states and thus let the layers “belief” and “abstrac-
tion” collapse into one, we introduce an error that violates
the over-approximation. We amend this as follows: We only
allow variables in P that can always and unconditionally be
observed, or that are known initially and can never become
unknown. In addition, we forbid observations of variables
outside of the pattern. This guarantees that we only ever pro-
duce singleton abstract belief states. Since we forbid some
observations, we have no longer an over-approximation, but
it can be proven that the goal reachability, possibly along
longer paths, is preserved with the chosen restrictions. Re-
garding (c), we refine an abstraction by collecting all ac-
tions in the abstract policy whose precondition is violated
in the concrete task and add the violated precondition vari-
ables to the refined pattern. If this violates the restriction of
patterns, we immediately move to a pattern consisting of all
variables in the planning task, i.e., to the identity abstrac-
tion. We implemented this variant of the CEGAR algorithm
on top of the MYND planner (Mattmüller et al. 2010). For
the benchmarked unsolvable problems, CEGAR leads to an
increase of 20 to 50 percent in successfully handled unsolv-
able problems. As a downside, solvable problems suffer a
slowdown which gradually widened in our benchmarks. For
future work, we plan to investigate the performance of CE-
GAR as part of the two motivating scenarios, sensor mini-
mization and strong/strong-cyclic planning. We also plan to
investigate alternative abstractions such as the doubly expo-
nential one mentioned above.

13

Acknowledgments
This work was partly supported by the DFG as part of the
SFB/TR 14 AVACS.

References
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence 147(1–2):35–84.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2003. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM (JACM)
50(5):752–794.
Culberson, J. C., and Schaeffer, J. 1996. Searching with pat-
tern databases. In Advances in Artificial Intelligence, 402–
416. Springer-Verlag.
Dimitrova, R., and Finkbeiner, B. 2008. Abstraction refine-
ment for games with incomplete information. In FSTTCS,
175–186. Citeseer.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P.
2010. Pattern database heuristics for fully observable non-
deterministic planning. In Brafman, R.; Geffner, H.; Hoff-
mann, J.; and Kautz, H., eds., Proceedings of the 20th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2010), 105–112.
Mattmüller, R.; Ortlieb, M.; and Wacker, E. 2014. Minimiz-
ing necessary observations for nondeterministic planning. In
KI 2014: Advances in Artificial Intelligence. Springer. 309–
320.
Oliehoek, F. 2010. Value-based planning for teams of agents
in stochastic partially observable environments. Amsterdam
University Press.
Seipp, J. 2012. Counterexample-guided abstraction re-
finement for classical planning. Master’s thesis, Albert-
Ludwigs-Universität Freiburg.

14

Compiling Away LTL Planning Goals in Polynomial Time

Jorge Torres
Department of Computer Science

Pontificia Universidad Católica de Chile
Santiago, Chile

Jorge A. Baier
Department of Computer Science

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract

Linear temporal logic (LTL) is an expressive language that al-
lows specifying temporally extended goals and preferences.
A general approach to dealing with general LTL properties
in planning is by “compiling them away”; i.e., in a pre-
processing phase, all LTL formulas are converted into sim-
ple, non-temporal formulas that can be evaluated in a plan-
ning state. This is accomplished by first generating a finite-
state automaton for the formula, and then by introducing new
fluents that are used to capture all possible runs of the au-
tomaton. Unfortunately, current translation approaches are
worst-case exponential on the size of the LTL formula. In
this paper, we present a polynomial approach to compiling
away LTL goals. Our method relies on the exploitation of al-
ternating automata. Since alternating automata are different
from non-deterministic automata, our translation technique
does not capture all possible runs in a planning state and thus
is very different from previous approaches. We prove that our
translation is sound and complete, and evaluate it empirically
showing that it has strengths and weaknesses. Specifically,
we find classes of formulas in which it seems to outperform
significantly the current state of the art.

Introduction
Linear Temporal Logic (LTL) (Pnueli 1977) is a compelling
language for the specification of goals in AI planning, be-
cause it allows defining constraints on state trajectories
which are more expressive than simple final-state goals,
such as “deliver priority packages before non-priority ones”,
or “while moving from the office to the kitchen, make sure
doorD becomes closed some time after it is opened”. It was
first proposed as the goal specification language of TLPlan
system (Bacchus and Kabanza 1998). Currently, a limited
but compelling subset of LTL has been incorporated into
PDDL3 (Gerevini et al. 2009) for specifying hard and soft
goals.

While there are some systems that natively support the
PDDL3 subset of LTL [e.g., Coles and Coles, 2011], when
planning for general LTL goals, there are two salient ap-
proaches: goal progression (Bacchus and Kabanza 1998)
and compilation approaches (Rintanen 2000; Cresswell and
Coddington 2004; Edelkamp, Jabbar, and Naizih 2006;

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Baier and McIlraith 2006). Goal progression has been
shown to be extremely effective when the goal formula en-
codes some domain-specific control knowledge that prunes
large portions of the search space (Bacchus and Kabanza
2000). In the absence of such expert knowledge, however,
compilation approaches are more effective at planning for
LTL goals since they produce an equivalent classical plan-
ning problem, which can then be fed into optimized off-the-
shelf planners.

State-of-the-art compilation approaches to planning for
LTL goals exploit the relationship between LTL and finite-
state automata (FSA) (Edelkamp 2006; Baier and McIlraith
2006). As a result, the size of the output is worst-case expo-
nential in the size of the LTL goal. Since deciding plan exis-
tence for both LTL and classical goals is PSPACE-complete
(Bylander 1994; De Giacomo and Vardi 1999), none of these
approaches is optimal with respect to computational com-
plexity, since they rely on a potentially exponential compi-
lation. From a practical perspective, this worst case is also
problematic since the size of a planning instance has a direct
influence on planning runtime.

In this paper, we present a novel approach to compile
away general LTL goals into classical goals that runs in
polynomial time on the size of the input that is thus opti-
mal with respect to computational complexity. Like exist-
ing FSA approaches, our compilation exploits a relation be-
tween LTL and automata, but instead of FSA, we exploit al-
ternating automata (AA), a generalization of FSA that does
not seem to be efficiently compilable with techniques used
in previous approaches. Specifically, our compilation han-
dles each non deterministic choice of the AA with a specific
action, hence leaving non-deterministic choices to be de-
cided at planning time. This differs substantially from both
Edelkamp’s and Baier and McIlraith’s approaches, which
represent all runs of the automaton simultaneously in a sin-
gle planning state.

We propose variants of our method that lead to perfor-
mance improvements of planning systems utilizing relaxed-
plan heuristics. Finally, we evaluate our compilation em-
pirically, comparing it against Baier and McIlraith’s—who
below we refer to as B&M. We conclude that our transla-
tion has strengths and weaknesses: it outperforms B&M’s
for classes of formulas that require very large FSA, while
B&M’s seems stronger for shallower, simpler formulas.

15

In the rest of the paper, we outline the required back-
ground, we describe our AA construction for finite LTL
logic, and then show the details of our compilation approach.
We continue describing the details of our empirical eval-
uation. We finish with conclusions. Refer to Torres and
Baier (2015) for a slightly extended version of this paper.

Preliminaries
The following sections describe the background necessary
for the rest of the paper.

Propositional Logic Preliminaries
Given a set of propositions F , the set of literals of F ,
Lit(F), is defined as Lit(F) = F ∪ {¬p | p ∈ F}. The
complement of a literal ` is denoted by `, and is defined as
¬p if ` = p and as p if ` = ¬p, for some p ∈ F . L denotes
{` | ` ∈ L}.

Given a Boolean value function π : P → {false, true},
and a Boolean formula ϕ over P , π |= ϕ denotes that π
satisfies ϕ, and we assume it defined in the standard way. To
simplify notation, we use s |= ϕ, for a set s of propositions,
to abbreviate πs |= ϕ, where πs = {p → true | p ∈ s} ∪
{p → false | p ∈ F \ s}. In addition, we say that s |= R,
when R is a set of Boolean formulas, iff s |= r, for every
r ∈ R.

Deterministic Classical Planning
Deterministic classical planning attempts to model decision
making of an agent in a deterministic world. We use a stan-
dard planning language that allows so-called negative pre-
conditions and conditional effects. A planning problem is a
tuple 〈F,O, I,G〉, where F is a set of propositions, O is a
set of action operators, I ⊆ F defines an initial state, and
G ⊆ Lit(F) defines a goal condition.

Each action operator a is associated with the pair
(prec(a), eff (a)), where prec(a) ⊆ Lit(F) is the precon-
dition of a and eff (a) is a set of conditional effects, each
of the form C → `, where C ⊆ Lit(F) is a condition and
literal ` is the effect. Sometimes we write ` as a shorthand
for the unconditional effect {} → `.

We say that an action a is applicable in a planning state s
iff s |= prec(a). We denote by ρ(s, a) the state that results
from applying a in s. Formally,

ρ(s, a) =(s \ {p | C → ¬p ∈ eff (a), s |= C})∪
{p | C → p ∈ eff (a), s |= C}

if s ∈ F and a is applicable in s; otherwise, δ(a, s) is un-
defined. If α is a sequence of actions and a is an action, we
define ρ(s, αa) as ρ(δ(s, α), a) if ρ(s, α) is defined. Fur-
thermore, if α is the empty sequence, then ρ(s, α) = s.

An action sequence α is applicable in a state s iff ρ(s, α)
is defined. If an action sequence α = a1a2 . . . an is applica-
ble in s, it induces an execution trace σ = s1 . . . sn+1 in s,
where si = ρ(I, a1 . . . ai−1), for every i ∈ {1, . . . , n+ 1}.

An action sequence is a plan for problem 〈F,O, I,G〉 if
α is applicable in I and ρ(I, α) |= G.

Alternating Automata
Alternating automata (AA) are a natural generalization of
non-deterministic finite-state automata (NFA). At a defini-
tional level, the difference between an NFA and an AA is
the transition function. For example, if A is an NFA with
transition function δ, and we have that δ(q, a) = {p, r}, then
this intuitively means thatAmay end up in state p or in state
r as a result of reading symbol a when A was previously in
state q. With an AA, transitions are defined as formulas. For
example, if δ′ is the transition function for an AA A′, then
δ′(q, a) = p ∨ r means, as before, that A′ ends up in p or r
after reading an a in state q. Nevertheless, formulas provide
more expressive power. For example δ′(q, b) = (s ∧ t) ∨ r
can be intuitively understood as A′ will end up in both s and
t or (only) in r after reading a b in state q. In this model,
only positive Boolean formulas are allowed for defining δ.
Definition 1 (Positive Boolean Formula) The set of posi-
tive formulas over a set of propositions P—denoted by
B+(P)—is the set of all Boolean formulas over P and con-
stants ⊥ and > that do not use the connective “¬”.
The formal definition for AA that we use henceforth follows.
Definition 2 (Alternating Automata) An alternating au-
tomata (AA) over words is a tuple A = (Q,Σ, δ, I,F),
where Q is a finite set of states, Σ, the alphabet, is a fi-
nite set of symbols, δ : Q × Σ → B+(Q) is the transition
function, I ⊆ Q are the initial states, and F ⊆ Q is a set of
final states.
As suggested above, any NFA is also an AA. Indeed, given
an NFA with transition function δ, we can generate an equiv-
alent AA with transition function δ′ by simply defining
δ′(q, a) =

∨
p∈P p, when δ(q, a) = P . We observe that

this means δ′(q, a) = ⊥ when P is empty.
As with NFAs, an AA accepts a word w whenever there

exists a run of the AA over w that satisfies a certain prop-
erty. Here is the most important (computational) difference
between AAs and NFAs: a run of an AA is a sequence of
sets of states rather than a sequence of states. Before defin-
ing runs formally, for notational convenience, we extend δ
for any subset T of Q as δ(T, a) =

∧
q∈T δ(q, a) if T 6= ∅

and δ(T, a) = > if T = ∅.
Definition 3 (Run of an AA over a Finite String) A run
of an AA A = (Q,Σ, δ, I,F) over word x1x2 . . . xn is a
sequence Q0Q1 . . . Qn of subsets of Q, where Q0 = I, and
Qi |= δ(Qi−1, xi), for every i ∈ {1, . . . , n}.
Definition 4 A word w is accepted by an AA A iff there is a
run Q0 . . . Qn of A over w such that Qn ⊆ F .

For example, if the definition of an AA A is such that
δ′(q, b) = (s∧ t)∨ r, and I = {q}, then both {q}{s, t} and
{q}{r} are runs of A over word b.

Finite LTL
The focus of this paper is planning with LTL interpreted over
finite state sequences (Baier and McIlraith 2006; De Gia-
como and Vardi 2013). At the syntax level, the finite LTL
we use in this paper is almost identical to regular LTL, ex-
cept for the addition of a “weak next” modality (). The
definition follows.

16

q1start q2

¬p

p

true

q ∧ ¬p

Figure 1: An NFA for formula (p→ q) that expresses
the fact that every time p becomes true in a state, then q has
to be true in the state after or in the future. The input to the
automaton is a (finite) sequence s0 . . . sn of planning states.

Definition 5 (Finite LTL formulas) The set of finite LTL
formulas over a set of propositions P , fLTL(P), is induc-
tively defined as follows:

• p is in fLTL(P), for every p ∈ P .
• If ϕ and ψ are in fLTL(P) then so are ¬ϕ, (ϕ∧ψ), (ϕ∨
ψ), ϕ, ϕ, (ϕUψ), and (ϕRψ).

The truth value of a finite LTL formula is evaluated over a
finite sequence of states. Below we assume that those states
are actually planning states.
Definition 6 Given a sequence of states σ = s0 . . . sn and
a formula ϕ ∈ fLTL(P), we say that σ satisfies ϕ, denoted
as σ |= ϕ, iff it holds that σ, 0 |= ϕ, where, for every i ∈
{0, . . . , n}:

1. σ, i |= p iff si |= p, when p ∈ P .
2. σ, i |= ¬ϕ iff σ, i 6|= ϕ
3. σ, i |= ψ ∧ χ iff σ, i |= ψ and σ, i |= χ
4. σ, i |= ψ ∨ χ iff σ, i |= ψ or σ, i |= χ
5. σ, i |= ψ iff i < n and σ, (i+ 1) |= ψ
6. σ, i |= ψ iff i = n or σ, (i+ 1) |= ψ
7. σ, i |= ψUχ iff there exists k ∈ {i, ..., n} such that
σ, k |= χ and for each j ∈ {i, ..., k − 1}, it holds that
σ, j |= ψ

8. σ, i |= ψ Rχ iff for each k ∈ {i, ..., n} it holds that σ, k |=
χ or there exists a j ∈ {i, ..., k − 1} such that σ, j |= ψ

We sometimes use the macros true def
= p∨¬p, false def

= ¬true,
and ϕ → ψ as ¬ϕ ∨ ψ. Additionally, ϕ, pronounced as
“eventually ϕ” is defined as trueUϕ, and ϕ, pronounced
as “always ϕ” is defined as ¬¬ϕ.

Deterministic Planning with LTL goals
A planning problem with a finite LTL goal is a tuple P =
〈F,O, I,G〉, where F , O, and I are defined as in classical
planning problems, but where G is a formula in fLTL(F).
An action sequence α is a plan for P if α is applicable in I ,
and the execution trace σ induced by the execution of α in I
is such that σ |= G.

There are two approaches to compiling away LTL via
non-deterministic finite-state automata (Edelkamp, Jabbar,
and Naizih 2006; Baier and McIlraith 2006). B&M’s ap-
proach compiles away LTL formulas exploiting the fact that
for every finite LTL formula ϕ it is possible to build an NFA
that accepts the finite models ofϕ. To illustrate this, Figure 1
shows an NFA for (p→ q). B&M represent the NFA
within the planning domain using one fluent per automaton

state. In the example of Figure 1, this means that the new
planning problem contains fluents Eq1 and Eq2 . The trans-
lation is such that if α is a sequence of actions that induces
the execution trace σ = s1 . . . sn, then Eq is true in sn iff
there is some run of the automaton over σ that ends in state
q. B&M’s translation has the following property.
Theorem 1 (Follows from (Baier 2010)) Let P be a clas-
sical planning problem, ϕ be a finite LTL formula, and P ′ be
the instance that results from applying the B&M translation
to P . Moreover, let α be a sequence of actions applicable in
the initial state of P , and let σ and σ′ be, respectively, the
sequences of (planning) states induced by the execution of
α in P and P ′. Finally, let Aϕ be the NFA for ϕ. Then the
following are equivalent statements.

1. There exists a run ρ of Aϕ ending in q.
2. Eq is true in the last state of σ′.

As a corollary of the previous theorem, one obtains that sat-
isfaction of finite LTL formulas can be determined by check-
ing whether or not the disjunction

∨
f∈F Ef holds, where F

denotes the set of final states of Aϕ.
Unfortunately, B&M’s translation is worst-case exponen-

tial (Baier 2010); for example, an NFA for ∧ni=1pi has 2n

states. Baier (2010) proposes a formula-partitioning tech-
nique that allows the method to generate more compact
translations for certain formulas. The method, however, is
not applicable to any formula.

Edelkamp’s approach is similar to B&M’s: it builds a
Büchi automaton (BA), whose states are represented via flu-
ents, compactly representing all runs of the automaton in a
single planning state. The main difference is that the state
of the automaton is updated via specific actions—a process
that they call synchronized update. We modify this idea in
the compilation we give below; however, our compilation is
significantly different since it does not represent all runs of
the automaton in the same planning state. It is important to
remark that the use of BA interpreted as NFA does not yield
a correct translation for general LTL goals, although it is cor-
rect for the PDDL3 subset of LTL (De Giacomo, Masellis,
and Montali 2014).

Alternating Automata and Finite LTL
A central part of our approach is the generation of an AA
from an LTL formula. To do this we modify Muller, Saoudi,
and Schupp’s AA (1988) for infinite LTL formulas. Our AA
is equivalent to a recent proposal by De Giacomo, Masellis,
and Montali (2014). The main difference between our con-
struction and De Giacomo, Masellis, and Montali’s is that
we do not assume a distinguished proposition becomes true
only in the final state. On the other hand, we require a spe-
cial state (qF) that indicates the sequence should finish. The
use of such a state is the main difference between our AA for
finite LTL and Muller, Saoudi, and Schupp’s AA for infinite
LTL.

We require the LTL input formula to be written in nega-
tion normal form (NNF); i.e., a form in which negations can
be applied only to atomic formula. This transformation can
be done in linear time (Gerth et al. 1995).

17

Let ϕ be in fLTL(F) and sub(ϕ) be the set of the
subformulas of ϕ, including ϕ. We define Aϕ =
(Q, 2F , δ, qϕ, {qF }), where Q = {qα | α ∈ sub(ϕ)} ∪
{qF } and:

δ(q`, s) =

{>, if ` ∈ Lit(F) and s |= `

⊥, if ` ∈ Lit(F) and s 6|= `

δ(qF , s) = ⊥
δ(qα∨β , s) = δ(qα, s) ∨ δ(qβ , s)
δ(qα∧β , s) = δ(qα, s) ∧ δ(qβ , s)

δ(qα) = qα
δ(qα) = qF ∨ qα

δ(qαU β , s) = δ(qβ , s) ∨ (δ(qα, s) ∧ qαU β)

δ(qαR β , s) = δ(qβ , s) ∧ (qF ∨ δ(qα, s) ∨ qαR β)

Theorem 2 Given an LTL formula ϕ and a finite sequence
of states σ, Aϕ accepts σ iff σ |= ϕ.
Proof sketch: Suppose that σ = x1x2 . . . xn ∈ σ∗. Then
it can be proven by induction on the construction of ϕ the
following lemma: σ, i |= ϕ if and only if exists a sequence
r = Qi−1Qi . . . Qn, such that: Qi−1 = {ϕ}, Qn ⊆ {qF },
for each subset Qj in the sequence r it holds that Qj ⊆
sub(ϕ) ∪ {qF } and for each j ∈ {i, i + 1, . . . , n} it holds
that Qj |= δ(Qj−1, xj). �

Compiling Away finite LTL Properties
Now we propose an approach to compiling away finite LTL
properties using the AA construction described above.

First, we argue that the idea underlying both Edelkamp’s
and B&M’s translations would not yield an efficient trans-
lation if applied to AA. Recall in both approaches if
Eq1 , . . . , Eqn are true in a planning state s, then there are
n runs of the automaton, each of which ends in q1, . . . , qn
(Theorem 1). In other words, the planning state keeps track
of all of the runs of the automaton. To apply the same prin-
ciple to AA, we would need to introduce one fluent for each
subset of states of the AA, therefore generating a number of
fluents exponential on the size of the original formula. This
is because runs of AA are sequences of sets of states, so we
would require states of the form ER, where R is a set of
states.

To produce an efficient translation, we renounce the idea
of representing all runs of the automaton in a single planning
state. Our translation will then only keep track of a single
run.

Translating LTL via LTL Synchronization
Our compilation approach takes as input an LTL plan-
ning problem P and produces a new planning problem P ′,
which is is like P but contains additional fluents and ac-
tions. Like previous compilations, AG is represented in P ′
with additional fluents, one for each state of the automa-
ton for G. Like in Edelkamp’s compilation P ′ contains
specific actions—below referred to as synchronization ac-
tions—whose only purpose is to update the truth values of

those additional fluents. A plan for P ′ alternates one action
from the original problem P with a number of synchroniza-
tion actions. Unlike any other previous compilation, P ′ does
not represent all possible runs of the automaton in a single
planning state.

Synchronization actions update the state of the automa-
ton following the definition of the δ function. The most no-
table characteristic that distinguishes synchronization from
the Edelkamp’ s translation is that non-determinism inher-
ent to the AA is modeled using alternative actions, each of
which represents the different non-deterministic options of
the AA. As such if there are n possible non-deterministic
choices, via the applications of synchronization actions there
will be n reachable planning states, each representing a sin-
gle run.

Given a planning problem P = 〈F,O, I,G〉, our transla-
tion generates a problem P ′ in which there is one (new) flu-
ent q for each state q of the AAAG. The compilation is such
that the following property holds: if α = a1a2 . . . an is ap-
plicable in the initial state of P , then there exists a setAα of
action sequences of the form α0a1α1a2α2 . . . anαn, where
each αi is a sequence of synchronization actions whose sole
objective is to update the fluents representing AG’s state.

Our theoretical result below says that our compilation can
represent all runs, but only one run at a time. Specifically,
each of the sequences ofAα corresponds to some run of AG
over the state sequence induced by α over P . Moreover, if
α′ ∈ Aα, Eq is true in the state resulting from performing
sequence α′ in P ′ iff q is contained in the last element of a
run that corresponds to α′.

We we are ready to define P ′. Assume the AA for G has
the form AG = (Q,Σ, δ, q0, {qf}).

Fluents P ′ has the same fluents as P plus fluents for the
representation of the states of the automaton (Q), flags for
controlling the different modes (copy, sync, world), and
a special fluent ok, which becomes false if the goal has been
falsified. Finally, it includes the set QS = {qS | q ∈ Q}
which are “copies” of the automata fluents, which we de-
scribe in detail below. Formally, F ′ = F ∪ Q ∪ QS ∪
{copy, sync,world,ok}.

The set of operators O′ is the union of the sets Ow and
Os.

World Mode Set Ow contains the same actions in O, but
preconditions are modified to allow execution only in “world
mode”. Effects, on the other hand are modified to allow the
execution of the copy action, which initiates the synchro-
nization phase, and which is described below. Formally,
Ow = {a′ | a ∈ O}, and for all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world},
eff (a′) = eff (a) ∪ {copy,¬world}.

Synchronization Mode The synchronization mode can be
divided in three consecutive phases. In the first phase, we
execute the copy action which in the successor states adds
a copy qS for each fluent q that is currently true, deleting q.
Intuitively, during synchronization, each qS defines the state
of the automaton prior to synchronization. The precondition

18

Sync Action Precondition Effect
trans(qS`) {sync,ok, qS` , `} {¬qS` }
trans(qSF) {sync,ok, qSF } {¬qSF ,¬ok}
trans(qSα∧β) {sync,ok, qSα∧β} {qSα , qSβ ,¬qSα∧β}
trans1(qSα∨β) {sync,ok, qSα∨β} {qSα ,¬qSα∨β}
trans2(qSα∨β) {sync,ok, qSα∨β} {qSβ ,¬qSα∨β}
trans(qSα) {sync,ok, qSα} {qα,¬qSα}
trans1(qSα) {sync,ok, qSα} {qF ,¬qSα}
trans2(qSα) {sync,ok, qSα} {qα,¬qSα}
trans1(qSαU β) {sync,ok, qSαU β} {qSβ ,¬qSαU β}
trans2(qSαU β) {sync,ok, qSαU β} {qSα , qαU β ,¬qSαU β}
trans1(qSα R β) {sync,ok, qSα R β} {qSβ , qF ,¬qSα R β}
trans2(qSα R β) {sync,ok, qSα R β} {qSβ , qSα ,¬qSα R β}
trans3(qSα R β) {sync,ok, qSα R β} {qSβ , qα R β ,¬qSα R β}

Table 1: The synchronization actions for LTL goal G in
NNF. Above `, αRβ, αUβ, and α are assumed to be in
the set of subformulas of G. In addition, ` is assumed to be
a literal.

of copy is simply {copy,ok}, while its effect is defined by:

eff (copy) = {q → qS , q → ¬q | q ∈ Q}∪{sync,¬copy}
As soon as the sync fluent becomes true, the second

phase of synchronization begins. Here the only executable
actions are those that update the state of the automaton,
which are defined in Table 1. Note that one of the actions
deletes the ok fluent. This can happen, for example while
synchronizing a formula that actually expresses the fact that
the action sequence has to conclude now.

When no more synchronization actions are possible, we
enter the third phase of synchronization. Here only action
world is executable; its only objective is to reestablish world
mode. The precondition of world is {sync,ok} ∪QS , and
its effect is {world,¬sync}.

The set Os is defined as the one containing actions copy,
world, and all actions defined in Table 1.
New Initial State The initial state of the original problem
P intuitively needs to be “processed” by AG before starting
to plan. Therefore, we define I ′ as I ∪ {qG, copy,ok}.
New Goal Finally, the goal of the problem is to reach
a state in which no state fluent in Q is true, except for
qf , which may be true. Therefore, we define G′ =

{world,ok} ∪ (Q \ {qF }).

Properties
There are two important properties that can be proven about
our translation. First, our translation is correct.
Theorem 3 (Correctness) Let P = 〈F,O, I,G〉 be a plan-
ning problem with an LTL goal and P ′ = 〈F ′, O′, I ′, G′〉
be the translated instance. Then P has a plan a1a2 . . . an
iff P ′ has a plan α0a1α1a2α2 . . . anαn, in which for each
i ∈ {0, . . . , n}, αi is a sequence of actions in Os.
Proof sketch: We show each sequence of actions αi simu-
lates the behavior of the automata, i.e., whenever t is a plan-
ning state whose next action must be copy and qβ ∈ t, then
ρ(t, αi) satisfies δ(qβ , t).
For this, let’s define tS as the subset of all the automata

fluents QS that are added during the execution of the se-
quence of actions αi. We will prove the following lemma
by induction on the construction of ϕ: If qSϕ ∈ tS , then
ρ(t, αi) |= δ(qϕ, t):
Observe that if qSϕ ∈ tS , then there must be an action
trans(qSϕ) that was executed in αi. This is because ρ(t, αi)∩
QS = ∅ and only trans(qSϕ) can delete qSϕ from the current
state. The second observation is: If some action trans adds
qSα , then qSα ∈ tS . This is by definition of tS . If the action
adds qψ , then qψ ∈ ρ(t, αi), because the only action that
deletes fluents in Q is copy.

• ϕ = `. Assume ` is positive literal. Then there is a plan-
ning state s in which trans(qS`) was executed. Since the
precondition requires ` ∈ s and ` can only be added by an
action from Ow, then ` ∈ t. By definition, δ(q`, t) = >,
and it is clear that ρ(t, αi) |= δ(qϕ, t). The argument is
analogous for a negative literal `.

We will not consider the case for qF . It is never desirable
to synchronize that state, because the special fluent ok is
removed, leading to a dead end. Now, assume that qSϕ ∈ tS
implies ρ(t, αi) |= δ(qϕ, t) for every ϕ with less than m
operators. The proof sketch for each case can be verified by
the reader as follows:

• For each ϕ, it is clear that a version of trans(qSϕ) is exe-
cuted due to the first observation.

• If qψ is added by trans, then qψ ∈ ρ(t, αi) due to the
second observation. This implies that ρ(t, αi) |= qψ .

• If qSα is added by trans, then qSα ∈ tS . By induction hy-
pothesis, ρ(t, αi) |= δ(qα, t), because α is a strict subfor-
mula of ϕ and has less than m operators.

• Finally, using entailment (for positive boolean formulae)
and the definition of the transitions for the alternating au-
tomata Aϕ, it can be verified that ρ(t, αi) |= δ(qϕ, t).

• The argument is similar for the other versions of trans.

To conclude our theorem, note that if t is a planning state,
qβ ∈ t and the next action to execute is copy, then qSβ ∈ tS .
Using the lemma, this implies ρ(t, αi) |= δ(qϕ, t). �

Second, the size of the plan for P ′ is linear on the size of
the plan for P .
Theorem 4 (Bounded synchronizations) If T is a reach-
able planning state from I ′ and T ∩QS 6= ∅, then there is a
sequence of trans actions σ such that δ(T, copy·σ)∩QS = ∅
and |σ| ∈ O(|G|).
Proof: Note that T is a state in world mode getting ready to
go into synchronization mode after the copy action has been
executed. The main idea of the proof is to choose the order
of the subformulae to be synchronized, where the first one
corresponds to the largest subformula of the current state,
the second one corresponds to the second largest subformula
and so on. Note that when an action trans(qSα) is executed,
it always happens that at most two fluents qSβ and qSγ are
added, and the formulae β and γ are strict subformulae of α.
This means that a subformula will never get synchronized
twice in a single synchronization phase σ. Since the number

19

of subformulae is linear on |G|, this means that the length of
σ must be O(|G|). �

Towards More Efficient Translations
The translation we have presented above can be modified
slightly for obtaining improved performance. The following
are modifications that we have considered.
An Order for Synchronization Actions Consider the
goal formula is α ∧ β and that currently both qα and qβ
are true. The planner has two equivalent ways of complet-
ing the synchronization: by executing first trans(qα) and
then trans(qβ), or by inverting this sequence. By enforcing
an order between these synchronizations, we can reduce the
branching factor at synchronization phase. Such an order is
simple to enforce by modifying preconditions and effects of
synchronization actions so that states are synchronized fol-
lowing a topological order of the parse tree of G.
Positive Goals The goal condition of the translated in-
stance requires being in and every q ∈ Q to be false. On
the other hand, action copy, which has to be performed af-
ter each world action, has precisely the effect of making
every q ∈ Q false. This may significantly hurt perfor-
mance if search relies on heuristics that relax negative ef-
fects of actions, like the FF heuristic (Hoffmann and Nebel
2001), which is key to the performance of state-of-the-art
planning systems (Richter and Helmert 2009). To improve
heuristic guidance, we define a new fluent qD, for each
q ∈ Q, with the intuitive meaning that qD becomes true
when trans(q) cannot be executed in the future. For every
action trans(qSα) that does not add qα, we include the condi-
tional effect {qβ | β ∈ super(α)} → qDα , where super(α)
is the set of subformulas of G that are proper superformulas
of α. Using a function f that takes a fLTL(F) formula and
generates a propositional formula, the new goal f(G) can be
recursively written as follows:

• If ϕ = p and p ∈ Lit(F), then f(p) = qDp .

• If ϕ = α ∧ β, then f(ϕ) = qDϕ ∧ f(α) ∧ f(β)

• If ϕ = α ∨ β, then f(ϕ) = qDϕ ∧ (f(α) ∨ f(β))

• If ϕ = β or ϕ = β, then f(ϕ) = qDϕ ∧ f(β)

• If ϕ = α ? β, where ? ∈ {U,R}, then f(ϕ) = qDϕ ∧ f(β)

Empirical Evaluation
The objective of our evaluation was to compare our approach
with existing translation approaches, over a range of general
LTL goals, to understand when it is convenient to use one or
other approach. We chose to compare to B&M’s rather than
Edelkamp’s because the former seems to yield better per-
formance (Baier, Bacchus, and McIlraith 2009). We do not
compare against other existing systems that handle PDDL3
natively, such as LPRPG-P (Coles and Coles 2011), because
efficient translations for the (restricted) subset of LTL of
PDDL3 into NFA are known (Gerevini et al. 2009).

We considered both LAMA (Richter, Helmert, and West-
phal 2008) and FFX (Thiébaux, Hoffmann, and Nebel
2005), because both are modern planners supporting derived
predicates (required by B&M). We observed that LAMA’s

preprocessing time where high, sometimes exceeding plan-
ning time by 1 to 2 orders of magnitude, and thus decided to
report results we obtained with FFX . We used an 800MHz-
CPU machine running Linux. Processes were limited to 1
GB of RAM and 15 min. runtime.

There are no planning benchmarks with general LTL
goals, so we chose two of the domains (rovers and open-
stacks) of the 2006 International Planning Competition,
which included LTL preferences (but not goals), and gener-
ated our own problems, with some of our goals inspired by
the preferences. In addition, we considered the blocksworld.

Our translator was implemented in SWI-Prolog. It takes
a domain and a problem in PDDL with an LTL goal as in-
put and generates PDDL domain and problem files. It also
receives an additional parameter specifying the translation
mode which can be any of the following: simple, OSA, PG,
and OSA+PG, where simple is the translation of Section ,
and OSA, PG are the optimizations described in Section .
OSA+PG is the combination of OSA and PG.

Table 2 shows a representative selection of the results we
obtained. It shows translation time (TT), plan length (PL),
planning time (PT), the number of planning states that were
evaluated before the goal was reached (PS). Times are dis-
played in seconds. For our translators we also include the
length of the plan without synchronization actions (WPL).
NR means the planner/translator did not return a plan.

We observe mixed results. B&M yields superior results
on some problems: for example p01 and p03 of openstacks,
which are of the form

∧n
i=1 pi, where n = 3 and n = 5

for p01 and p03, respectively. The performance gap is prob-
ably due to the fact that (1) the B&M problem requires fewer
actions in the plan and (2) B&M’s output for these goals is
quite compact on the size of the formula. On the other hand,
there are other goal formulas in which our approach out-
performs B&M. For example, p09 and p11 in openstacks,
which are of the form: 

∧n
i=1 pi, where n = 5 and

n = 4 for p09 and p11, respectively. Even though the outer
 can be removed yielding an equivalent formula, B&M
generates an output exponential in n, which results in higher
translation time and eventually in the the planner running
out of memory.

By observing the rest of the data, we conclude that
B&M returns an output that is significantly larger than
our approaches for the following classes of formulas:
αU(

∧n
i=1 βi), αU(

∧n
i=1 βi U γi), (

∨n
i=1 αi)Uβ, and

(
∨n
i=1 αi Rβi)Uβ, with n ≥ 4, yielding finally an “NR”.

Being polynomial, our translation handles these formulas
reasonably well: low translation times, and a compact out-
put. In many cases, this allows the planner to return a solu-
tion.

The use of positive goals has an important influence in
performance possibly because the heuristic is more accurate,
leading to fewer expansions. OSA, on the other hand, seems
to negatively affect planning performance in FFX . The rea-
son is the following: FFX will frequently choose the wrong
synchronization action and therefore its enforced hill climb-
ing algorithm will often fail. This behavior may not be ob-
served in planners that use complete search algorithms.

20

Openstacks Domain
B&M’s translator Non-PG + Non-OSA Non-PG + OSA PG + Non-OSA PG + OSA

TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS TT PL WPL PT PS TT PL WPL PT PS
p01 0.246 23 0.02 34 0.455 142 21 5.41 196938 0.474 265 21 8.78 179157 0.462 166 23 0.05 1412 0.483 274 22 0.21 3100
p02 0.377 23 0.10 34 0.459 117 21 9.08 294097 0.481 287 21 10.57 202873 0.469 167 23 0.05 1413 0.491 297 22 0.23 3217
p03 0.268 25 0.02 36 0.477 199 23 78.71 1364638 0.503 433 23 48.62 834783 0.504 212 24 0.22 5905 0.536 448 24 1.01 12172
p04 22.390 0 NR NR 0.478 133 23 149.88 1958261 0.518 457 23 53.27 876816 0.513 213 24 0.22 5906 0.548 473 24 1.05 12292
p05 0.256 24 0.10 214 0.466 166 21 20.15 533753 0.491 331 21 18.44 341998 0.484 197 22 0.41 10439 0.509 342 22 0.48 6498
p06 0.266 24 0.13 224 0.474 215 22 138.11 1892750 0.510 415 22 35.84 635715 0.506 231 22 1.53 35117 0.542 410 22 1.07 13364
p07 2.423 2 96.98 3 0.474 21 2 0.41 8907 0.504 49 2 0.95 14569 0.495 19 2 0.00 86 0.529 44 2 0.04 498
p08 4.567 2 0.00 3 0.477 20 2 2.58 51965 0.510 52 2 0.67 10967 0.505 32 2 0.07 1634 0.535 48 2 0.07 1002
p09 21.947 0 NR NR 0.479 133 23 150.20 1958261 0.515 457 23 53.05 876816 0.515 213 24 0.22 5906 0.548 473 24 1.06 12292
p10 0.380 23 0.10 34 0.457 117 21 9.14 294097 0.480 287 21 10.62 202873 0.474 167 23 0.05 1413 0.499 297 22 0.22 3217
p11 1.599 0 NR NR 0.472 125 22 31.93 755539 0.498 369 22 23.41 418240 0.489 192 24 0.10 2763 0.517 382 23 0.48 6176
p12 0.373 23 0.10 34 0.463 136 21 6.44 222245 0.486 309 21 10.86 203461 0.475 167 23 0.05 1413 0.501 319 22 0.25 3421
p13 1.594 0 NR NR 0.470 156 22 22.49 592081 0.504 392 22 24.04 417585 0.496 192 24 0.10 2763 0.527 405 23 0.52 6573
p14 21.852 0 NR NR 0.482 179 23 103.30 1573433 0.523 481 23 54.07 872446 0.525 213 24 0.23 5906 0.564 497 24 1.17 13074

Rovers Domain
p01 0.242 4 0.00 5 0.460 25 4 0.03 1757 0.471 31 4 0.04 1353 0.462 22 4 0.00 64 0.469 28 4 0.00 62
p02 0.255 7 0.00 10 0.468 45 7 0.55 25490 0.487 73 7 1.84 44002 0.475 42 7 0.01 316 0.489 69 7 0.01 181
p03 0.270 10 0.01 15 0.481 68 10 7.67 264568 0.501 133 10 41.78 522432 0.490 66 10 0.02 452 0.505 129 10 0.03 425
p04 0.407 10 0.05 16 0.481 62 10 68.39 1173227 0.507 144 10 46.04 544034 0.498 67 10 0.02 453 0.517 140 10 0.02 448
p05 1.639 0 NR NR 0.494 0 0 NR NR 0.539 1 0 NR NR 0.517 106 15 0.05 1324 0.545 252 15 0.07 1201
p06 0.299 3 0.01 4 0.499 19 2 0.04 1522 0.528 49 2 0.04 847 0.525 17 3 0.00 43 0.548 47 3 0.02 301
p07 0.301 3 0.01 4 0.501 19 2 0.03 1290 0.537 49 2 0.05 962 0.522 26 5 0.01 148 0.554 78 5 0.20 3494
p08 NR 0 NR NR 0.505 22 2 0.36 12158 0.542 52 2 0.17 3381 0.532 30 5 0.08 2291 0.567 83 5 0.40 6896
p09 2.010 2 0.00 3 0.504 20 2 0.07 2394 0.539 52 2 0.10 1769 0.537 27 5 0.02 200 0.567 83 5 0.25 4180

Blocksworld Domain
p01 0.234 2 0.00 3 0.452 24 2 0.11 3451 0.481 49 2 0.07 1612 0.470 21 2 0.00 34 0.502 43 2 0.00 106
p02 0.243 2 0.01 3 0.467 28 2 2.66 48436 0.508 61 2 1.08 14118 0.513 25 2 0.00 53 0.550 55 2 0.02 172
p03 0.251 2 0.01 3 0.486 32 2 84.40 637178 0.535 73 2 17.99 104398 0.566 29 2 0.01 81 0.609 67 2 0.04 256
p04 1.627 2 0.02 3 0.448 22 2 0.12 4115 0.472 46 2 0.04 792 0.464 19 2 0.00 32 0.490 41 2 0.01 146
p05 22.220 0 NR NR 0.458 25 2 1.94 45113 0.492 55 2 0.31 4692 0.486 22 2 0.00 50 0.523 50 2 0.01 228
p06 471.574 0 NR NR 0.471 28 2 38.99 474906 0.514 64 2 2.52 24761 0.522 25 2 0.01 77 0.559 59 2 0.04 330
p07 9.801 1 0.00 2 0.446 11 1 0.00 88 0.473 31 1 0.01 122 0.464 8 1 0.00 12 0.494 25 1 0.00 85
p08 423.327 1 0.00 2 0.463 11 1 0.01 172 0.494 37 1 0.02 248 0.490 8 1 0.00 16 0.523 31 1 0.01 147
p09 NR 0 NR NR 0.473 11 1 0.02 285 0.519 43 1 0.05 492 0.527 8 1 0.00 22 0.566 37 1 0.02 269
p10 0.383 2 0.58 4 0.443 24 2 0.09 3607 0.470 46 2 0.01 357 0.465 22 2 0.00 101 0.489 41 2 0.01 97
p11 1.809 0 NR NR 0.456 27 2 1.80 44666 0.490 55 2 0.06 1067 0.487 25 2 0.00 194 0.519 50 2 0.02 162
p12 25.655 0 NR NR 0.470 30 2 48.30 610049 0.509 64 2 0.31 3325 0.520 28 2 0.04 514 0.558 59 2 0.04 287
p13 3.813 0 NR NR 0.457 25 2 0.16 5680 0.489 52 2 0.09 1700 0.483 22 2 0.00 35 0.517 46 2 0.00 150
p14 182.181 0 NR NR 0.476 29 2 6.16 122233 0.517 64 2 1.15 14576 0.532 26 2 0.01 54 0.567 58 2 0.03 257
p15 NR 0 NR NR 0.495 0 0 NR NR 0.547 76 2 19.13 106729 0.584 30 2 0.01 82 0.638 70 2 0.06 396

Table 2: Experimental results for a variety of LTL planning tasks.

Conclusions
We proposed polynomial-time translations of LTL into final-
state goals, which, unlike existing translations are optimal
with respect to computational complexity. The main differ-
ence between our approach and state-of-the-art NFA-based
translations is that we use AA, and represent a single run
of the AA in the planning state. We conclude from our ex-
perimental data that it seems more convenient to use an our
AA translation precisely when the output generated by the
NFA-based translation is exponentially large in the size of
the formula. Otherwise, it seems that NFA-based transla-
tions are more efficient because they do not require synchro-
nization actions, which require longer plans, and possibly
higher planning times. Obviously, a combination of both
translation approaches into one single translator should be
possible. Investigating such a combination is left for future
work.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI), 788–795.

Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.

Baier, J. A. 2010. Effective Search Techniques for Non-
Classical Planning via Reformulation. Ph.D. in Computer
Science, University of Toronto.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1-
2):165–204.

Coles, A. J., and Coles, A. 2011. LPRPG-P: relaxed plan
heuristics for planning with preferences.

Cresswell, S., and Coddington, A. M. 2004. Compilation of
LTL goal formulas into PDDL. In de Mántaras, R. L., and
Saitta, L., eds., Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI), 985–986. Valencia,
Spain: IOS Press.

De Giacomo, G., and Vardi, M. Y. 1999. Automata-theoretic
approach to planning for temporally extended goals. In Bi-
undo, S., and Fox, M., eds., ECP, volume 1809 of LNCS,
226–238. Durham, UK: Springer.

De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI).

De Giacomo, G.; Masellis, R. D.; and Montali, M. 2014.
Reasoning on LTL on finite traces: Insensitivity to infinite-

21

ness. In Proceedings of the 28th AAAI Conference on Artifi-
cial Intelligence (AAAI), 1027–1033.
Edelkamp, S.; Jabbar, S.; and Naizih, M. 2006. Large-scale
optimal PDDL3 planning with MIPS-XXL. In 5th Interna-
tional Planning Competition Booklet (IPC-2006), 28–30.
Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Gerth, R.; Peled, D.; Vardi, M. Y.; and Wolper, P. 1995.
Simple on-the-fly automatic verification of linear temporal
logic. In Proceedings of the 15th International Symposium
on Protocol Specification, Testing and Verification (PSTV),
3–18.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Muller, D. E.; Saoudi, A.; and Schupp, P. E. 1988. Weak
Alternating Automata Give a Simple Explanation of Why
Most Temporal and Dynamic Logics are Decidable in Expo-
nential Time. In Proceedings of the 3rd Annual Symposium
on Logic in Computer Science (LICS), 422–427.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science (FOCS), 46–57.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS).
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence (AAAI), 975–982.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed., Proceedings of the
14th European Conference on Artificial Intelligence (ECAI),
526–530. Berlin, Germany: IOS Press.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1-2):38–69.
Torres, J., and Baier, J. A. 2015. Polynomial-time reformu-
lations of ltl temporally extended goals into final-state goals.
In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI).

22

A Unifying Framework for Planning with LTL and Regular Expressions

Eleni Triantafillou
Department of Computer Science

University of Toronto
Toronto, Canada

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada

Abstract

Temporally extended goals are critical to the specification of
many real-world planning problems. Such goals are typically
specified in the subset of Linear Temporal Logic (LTL) found
in the Planning Domain Description Language, PDDL3.0. In
this paper, we propose LTL-RE, a high-level language that
supports the specification of a wide variety of temporal goals,
not only using LTL but also using regular expressions. LTL-
RE derives its formal foundation from finite Linear Dynamic
Logic (LDLf), and its expressive power is no less than that of
regular expressions. LTL-RE augments LDLf with planning-
friendly syntax including LTL and typical programming lan-
guage constructs. It is also designed for use with AI au-
tomated planning transition systems, supporting both state-,
action-, and path-oriented temporal goal specification. Build-
ing on recent work focused on LTL, we propose a translation
of LTL-RE into Alternating Automata, which are then em-
bedded directly in domain descriptions for use with classical
planners. We evaluate the behavior of our translator and the
resultant planning problems, with comparison to alternative
LTL translators.

1 Introduction
Most real-world planning problems involve complex goals
that are temporally extended, necessitate the optimization
of preferences or other quality measures, require adherence
to safety constraints and directives, and/or may require or
benefit from following a prescribed high-level script that
specifies how the task is to be realized. By way of illustra-
tion, consider a logistics company that transports packages.
Package delivery may be governed by the following types of
(possibly inconsistent) goals:
• Always ship frozen food in a refrigerated truck.

• Prefer to deliver priority packages before regular packages.

• If the customer is a preferred customer, then always apply a 15%
discount to the final bill.

• Prefer to deliver domestic packages within 24 hours of receipt.

• While a truck is at a location and not full, load all packages
bound for a different destination on the truck; drive to the next
destination; unload all packages to be delivered to this destina-
tion.

While some forms of non-classical goal1 specification
were initially realized via special-purpose planners such as
the Hierarchical Task Network (HTN) planner SHOP2 (e.g.,

1A classical planning goal is limited to a conjunction of prop-
erties that must hold in the final state.

(Erol, Hendler, and Nau 1994)) or TLPLAN, the pioneering
planning system that accepts Linear Temporal Logic (LTL)
pruning rules (Bacchus and Kabanza 1998), more recent
efforts have focused on incorporating such non-classical
goals, which include both temporally extended goals and
preferences, into state-of-the-art domain independent plan-
ners (e.g., (Rintanen 2000; Doherty and Kvarnström 2001;
Cresswell and Coddington 2004; Edelkamp 2006; Baier
and McIlraith 2006; Benton, Kambhampati, and Do 2006;
Baier, Fritz, and McIlraith 2007; Coles and Coles 2011;
Lago, Pistore, and Traverso 2002)). Such systems have been
used in service of a diversity of planning and non-planning
applications from genomic rearrangement (Uras and Erdem
2010) and program test generation (Razavi, Farzan, and
McIlraith 2014) to story generation (Haslum 2012), auto-
mated diagnosis (Grastien et al. 2007; Sohrabi, Baier, and
McIlraith 2010), and verification (Albarghouthi, Baier, and
McIlraith 2009; Patrizi et al. 2011). In recognition of the
planning community’s need for non-classical planning ob-
jectives, PDDL3.0 (Gerevini et al. 2009) was designed to
capture a useful subset of LTL constraints which can either
be cast as hard constraints on the plan or aggregated in a
weighted sum to construct an objective function of soft con-
straints for optimization in the context of plan generation.

The provision of planning systems that accept temporally
extended goals is at the heart of synergies between the AI
Automated Planning community and the Model Checking
community, where similar types of constraints are used to
specify safety and liveness properties for software and hard-
ware verification, and to specify target behavior for the syn-
thesis of software and controllers. Historically the model
checking community has specified such properties in a tem-
poral logic such as LTL, or one of its branching time coun-
terparts – CTL or CTL∗. Such temporal logics are very good
at specifying state-centric properties but they don’t provide
a natural vehicle for specifying action-centric properties –
procedural properties involving the actions of a domain.

In a series of well-received lectures between 2011 and
2013, Moshe Vardi advocated convincingly for both the ben-
efits of LTL, but also for its limitations in the context of
industry-driven verification tasks (e.g., (Vardi 2012)). In re-
sponse, Vardi advocated for Linear Dynamic Logic (LDL), a
temporal logic that combines LTL and Regular Expressions
(REs) in a manner that avoids the exponential blowup that
typically plagues REs in such a context. Subsequently, De
Giacomo and Vardi (2013), proposed LDLf , which defines

23

LDL over finite traces, citing automated planning among the
applications for the logic.

While the AI planning community has increasingly stud-
ied state-centric path constraints in the form of temporally
extended goals (TEGs), there has been far less examination
of temporally extended goals that take the form of REs. An
exception to this is the work of Baier, Fritz, and McIlraith
(2007; 2008) which supports planning with action-centric
procedural control/goals in a Golog-like language that cap-
tures the syntax of REs. A second exception is the work by
Shaparau, Pistore, and Traverso (2008) which, building on
previous work on the EAGLE goal language (Lago, Pistore,
and Traverso 2002), also provides a form of REs for tempo-
rally extended goal specification.

In this paper we propose a goal specification language,
LTL-RE, that supports both LTL and REs. However, unlike
previous work noted above, it has its formal underpinnings
in one uniform language – LDLf – capturing the semantics
of LDLf while at the same time augmenting LDLf with fur-
ther syntax that we believe is more compelling to an end
user charged with specifying goals or constraints for plan
generation. LTL- RE is able to specify goals with respect
to planning domain actions as well as state properties in
the form of REs, using compelling programming constructs
such as “if then else” and “while” loops. We define the syn-
tax and semantics of LTL- RE and examine how to plan
for LTL-RE goals using state-of-the-art domain independent
planners via a reformulation into finite state automata. Un-
like previous reformulation approaches that exploited Non-
deterministic Finite State Automata (NFAs) (e.g., (Baier and
McIlraith 2006)), we exploit an approach based on Alternat-
ing Automata following Torres and Baier (2015) that avoids
the worst-case exponential blow-up inherent to NFAs. This
workshop paper represents a work in progress. We present
our algorithm and report on experimental results to date,
contrasting the efficacy of our reformulation to LTL-specific
LDL reformulations based on NFAs and Alternating Au-
tomata.

2 Preliminaries
In this section we recount how transition systems are com-
pactly described using a planning language and review the
syntax and semantics of LTL, LDL and their finite trace
counterparts, LTLf and LDLf .

2.1 A Planning-Language Transition System
The objective of this paper is to show how to plan for a rich
goal language based on LTL and REs uniformly captured
in LDLf . We assume that the “world” for which we want
to build our plan is described by a deterministic transition
system compactly described by an initial state and a set of
actions. In AI automated planning such a transition system
is typically specified using the Planning Domain Descrip-
tion Language (PDDL) of which there are several variants
of differing expressivity (McDermott 1998).

Formally, a transition system is given by a tuple (P,A, I),
where P is a set of propositions, which we use to describe a
state,A is a set of actions, and I ⊆ P is the initial state. For

every action a ∈ A, prec(a) and eff (a) denote, respectively,
the preconditions and effects of a. prec(a) is a set of fluent
literals over P and eff (a) is a set of elements of the form
C → L, where C is a set of literals over P and L is a literal
over P . When C → L is an effect of a, and a is applied on
a state s in which C holds, then L must hold in the state that
results from applying a in s.

An action a is applicable in a state s ⊆ 2P if s |= prec(a).
If a is applicable in s, then partial function δ : 22

P × A is
defined such that:

δ(s, a) = s\{p | C → ¬p ∈ eff (a)}∪{p | C → p ∈ eff (a)}
If a is not applicable in s, then δ(a, s) is undefined.

A sequence of actions a0a1 . . . an−1 is applicable in s0 if
δ(si, ai) is defined for each i ∈ {0, . . . , n − 1}. A state
trace s0s1 . . . sn+1 is induced by the execution of α =
a0a1 . . . an in a state s iff (1) α is applicable in s, (2) s = s0,
and (3) δ(si, ai) = si+1, for every i ∈ {0, . . . , n− 1}.

2.2 From Propositional Dynamic Logic to LDL

Propositional Dynamic Logic (PDL) was introduced by Fis-
cher and Ladner (1979) to describe interesting properties
of programs, such as correctness and termination. In PDL,
terms are actions and propositions, and modal operators are
exploited to directly reference regular programs within the
language. This allows, for instance, the use of a test operator
which results in the blocking of the program if the property
that is being tested is false. It also supports nondeterministic
choice of actions, sequencing of actions in a program, and
the repetition of a program for a nondeterministic number of
iterations. Within PDL, it is also possible to define program-
ming constructs such as “if then else” and “while do”.

LDL is an extension of PDL, which carries over the rich
expressive properties of PDL but interpretted with respect
to linear traces, just as LTL is used in planning and model
checking to express interesting state-centric properties of
linear traces (e.g., TEGs). LDL is a logic that is expressively
equivalent to Monadic Second Order Logic (MSO), and is
strictly more powerful than first order logic (FOL), or equiv-
alently, LTL. In their 2013 paper, De Giacomo and Vardi ar-
gue that LDLf witnesses the marriage of the best properties
of REs on finite traces (REf) and LTLf , namely the rich ex-
pressivity of RE with the declarative convenience LTLf (De
Giacomo and Vardi 2013). Since, however, in our opinion
LDLf is still not a very intuitive specification mechanism, we
augment it with syntax to allow for a more intuitive expres-
sion of temporal and dynamic properties and clarify its use
in the context of a transition system expressed via a planning
language, such as PDDL.

2.3 LTLf and LDLf
LTLf : LTL is a modal temporal logic, first proposed for veri-
fication (Pnueli 1977). It supports the expression of rich path
properties using modalities that include always (2), eventu-
ally (3), until (U), and next (). These temporal modalities
can be arbitrarily nested over well-formed formulae defined
over standard logical constructs such at ¬, ∨, ∧, etc. LTLf
is a finite variant of LTL that has been used extensively for

24

the specification of TEGs in automated planning. Below we
review the semantics of LTLf .

Given a finite trace π over an alphabet 2P , and an instant,
i of the trace, the LTLf operators are defined below.

• π, i |= ϕ iff i < last ∧ π, i+ 1 |= ϕ

• π, i |= ϕ1 Uϕ2 iff for some j such that i ≤ j ≤ last, we
have that π, j |= ϕ2 and for all k, i ≤ k < j, we have that
π, k |= ϕ2

The operators  and  can be defined in terms of the
above modal operators. Intuitively, φ denotes that formula
φ holds in every state of the trace from the current instant
forward, while φ denotes that φ will hold at some instant
in the subtrace from the current instant forward. More for-
mally,

• π, i |= ϕ iff π, i |= trueUϕ

• π, i |= ϕ iff π, i |= ¬¬ϕ
LDLf : LDLf (De Giacomo and Vardi 2013) features the prop-
erties of PDL, but formulae are evaluated over finite linear
traces. The syntax of LDLf is defined as follows:
ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
ρ ::= φ | ϕ? |ρ1 + ρ2 | ρ1; ρ2 | ρ∗
where A denotes atomic propositions, φ denotes a propo-

sitional formula over atomic propositions, ρ denotes path ex-
pressions, which are regular expressions over propositional
formulas φ, together with the test construct ?. Finally, ϕ de-
notes LDLf formulas formed by applying Boolean connec-
tives, combined with the modal operator 〈ρ〉ϕ.

The modal operator 〈ρ〉ϕ evaluates to true in a state if
there exists a trace, starting from the current state, which
satisfies ρ and ends in a state which satisfies ϕ. Its dual op-
erator, [ρ]ϕ, which can be defined as ¬〈ρ〉¬ϕ, is true in a
state if all traces starting from that state which satisfy ρ end
in a state that satisfies ϕ.

For a given finite trace π over an alphabet 2P , and an in-
stant, i, of the trace, i ∈ {0, . . . , last}, we inductively de-
fine what it means for an LDLf formula ϕ to be true, i.e
π, i |= ϕ:

• π, i |= A, for A ∈ P iff A ∈ π(i)

• π, i |= ¬ϕ iff π, i 6|= ϕ

• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′

• π, i |= 〈ρ〉ϕ iff for some j such that i ≤ j ≤ last, we have
that (i, j) ∈ R(ρ, π) and π, j |= ϕ

where the relation R(ρ, s) is defined inductively as follows:

• R(φ, s) = {(i, i+ 1) | π(i) |= φ} (φ propositional)

• R(φ?, s) = {(i, i) | π, i |= φ}
• R(ρ1 + ρ2, s) = R(ρ1, s) ∪R(ρ2, s)

• R(ρ1; ρ2, s) = {(i, j) | exists k such that (i, k) ∈
R(ρ1, s) and (k, j) ∈ R(ρ2, s)

• R(ρ∗, s) = {(i, i) ∪ (i, j) | exists k such that (i, k) ∈
R(ρ, s) and (k, j) ∈ R(ρ∗, s)}

3 A Goal Language over LTL & REs
3.1 Overview
In this paper we propose Linear Temporal Logic with Reg-
ular Expressions for finite traces (LTL- RE)2, a high-level
language for the specification of temporally extended goals
that are evaluated over finite traces. This language functions
as a unifying framework, by supporting syntax from LTL and
LDL, programming constructs “if-then-else” and “while”,
and a modality “final”, for expressing properties that must
hold in the last state of a finite trace. It also supports direct
reference to planning language actions from within LTL-RE
through the use of a special predicate, “occ” which ranges
over the ground actions in a planning problem description,
A.

LTL- RE is as expressive as LDLf , which is equivalent
to Monadic Second Order Logic. This is strictly more ex-
pressive than LTLf . This fact allows the definition of LTL
operators, and the constructs ”if then else”, ”while” and ”fi-
nal” in terms of the syntax of LDLf , as we demonstrate in a
following section.

3.2 The Syntax of LTL-RE
Given a transition system (P,A, I), as defined in Section
2.1, the syntax of LTL-RE is given by the following gram-
mar:

φ ::=p : p ∈ P | occ(a) : a ∈ A | ¬φ | φ1 ∧ φ2
ϕ ::=φ | ¬ϕ | ϕ1 ∧ ϕ2 | final φ | 〈ρ〉ϕ | ϕ1 Uϕ2 |

ϕ | ϕ |ϕ

ρ ::=φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗ |
if-then-else(ϕ, ρ1, ρ2) | while(ϕ, ρ)

With this syntax, we can express typical LTL goals such
as ‘‘Always have your phone and eventually be at home.”

have(Phone) ∧at(Home)

but also TEGs that take the form of regular expressions, such
as “If it’s night time then take a taxi home, else take the
subway.”

if-then-else(night, occ(taxi(Home)), occ(subway(Home)))

3.3 Semantics
LTL-RE is interpreted over a pair π = (σ, α), where α is a
sequence of actions, and σ is the sequence of states induced
by the execution of α in a certain state.

We say that π |= ϕ, where ϕ is an LTL-RE formula, π =
(σ, α), σ = s0 . . . sn, and α = a0 . . . an−1 iff π, 0 |= ϕ.
Now we assume we include the same definitions in LDLf ’s
semantics that were listed in the previous section, taking into
account that π(i) now refers the the i-th state, i.e., si. In
addition we add the following rule for the occ operator:

• π, i |= occ(a) iff i < n and ai = a

2not to be confused with RELTL (e.g., (Eisner and Fisman
2007)).

25

This operator is what makes it possible to directly refer
to actions within the language, and not merely through their
effects on the state properties. Specifically, occ(a) is true
in the current state, if a is the next planning action to be
executed.

Now we define the semantics for the “if-then-else” and
“while” programming constructs. Following (Fischer and
Ladner 1979), we can express these constructs in terms of
standard LDL operators.

• π, i |= if-then-else(ψ,ϕ1, ϕ2) if π, i |= ψ?;ϕ1+¬ψ?;ϕ2

• π, i |= while(ψ,ϕ) if π, i |= (ψ?;ϕ)∗;¬ψ
We also define the semantics for the LTL operators , ,

 and U can be rewritten using the syntax of LDLf while
preserving their semantics as defined in the previous section.
This is shown in (De Giacomo et al. 2014).
• π, i |= ϕ iff π, i |= 〈true〉ϕ ∧ i < last

• π, i |= ϕ iff π, i |= 〈true∗〉ϕ
• π, i |= ϕ iff π, i |= [true∗]ϕ

• π, i |= ψUϕ iff π, i |= 〈(ψ?; true)∗〉ϕ
Finally, we define the semantics for the modality final:

• π, i |= final ϕ iff π, i |= ϕ ∧ i = last

3.4 Planning for an LTL-RE Goal
We end this section by defining what it means to plan for an
LTL-RE goal.
Definition 3.1. Let R = (P,A, I) be a transition system
and ϕ be an LTL-RE formula. Then the sequence of action
α is a plan forϕ overR iff α is applicable in I and generates
a state trace σ over I such that (σ, α) |= ϕ.

4 Planning for LTL-RE Goals with Standard
Planners

In this section we show how we can plan for LTL-RE goals
using state-of-the-art planners. To this end, we use a two-
step approach that follows (Torres and Baier 2015). In the
first stage, we build an alternating automaton for the LTL-
RE formula. Then, we show how this automaton can be
used to compile the temporal goal into a non-temporal (final-
state) goal. We do this by exploiting the fact that the dynam-
ics of an alternating automaton can be encoded efficiently in
a new transition system that is built from the original plan-
ning domain transition system.

4.1 Alternating Automata on Words
An Alternating Automaton on Words (AA) on the alphabet
2P is a tuple A defined as: A = (2P , Q, q0, δ, F), where
Q is a finite nonempty set of states, q0 is the initial state,
F is a set of accepting states, and δ is a transition function
δ : Q × 2P → B+(Q), where B+(Q) is a set of positive
Boolean formulas whose atoms are states of Q.

A run of an AA A = (2P , Q, q0, δ, F) over word w =
b1 . . . bn is a sequence of subsets of Q, Q0Q1 . . . Qn, such
that Q0 = {q0}, and Qi+1 |= δ(q, bi), for every q ∈ Qi, and
every i ∈ {0, . . . , n− 1}. An AA accepts a word w if it has
a run ending in a subset of F .

4.2 From LDLf to AA
Following (Fischer and Ladner 1979; De Giacomo and Vardi
2013), the Fisher-Ladner Closure of a LDLf formula ϕ is a
set CLϕ of LDLf formulas, recursively defined as follows:
ϕ ∈ CLϕ
¬ψ ∈ CLϕ if ψ ∈ CLϕ and ψ not of the form ¬ψ′
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
〈ρ〉ϕ ∈ CLϕ implies ϕ ∈ CLϕ
〈φ〉ϕ ∈ CLϕ implies φ ∈ CLϕ (φ propositional)
〈ψ?〉ϕ ∈ CLϕ implies ψ ∈ CLϕ
〈ρ1; ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉〈ρ2〉ϕ ∈ CLϕ
〈ρ1 + ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉ϕ, 〈ρ2〉ϕ ∈ CLϕ
〈ρ∗〉ϕ ∈ CLϕ implies 〈ρ〉〈ρ∗〉ϕ ∈ CLϕ
De Giacomo and Vardi define an AA which accepts all

and only the traces that satisfy a given LDLf formula. Specif-
ically, given a set of propositions P , and a LDLf formula
ϕ which is in Negation Normal Form (NNF), the automa-
ton for ϕ that is defined in (De Giacomo and Vardi 2013)
is given by: A′ϕ = (2P , CLϕ, ϕ, δ

′, {}), where 2P is the
alphabet, CLϕ, denoting the Fisher-Ladner Closure of the
formula ϕ is the state set, and δ′ is their transition function.

We define an automaton Aϕ for a set of propositions P
and a LDLf formula in NNF ϕ as follows:Aϕ = (2P , CLϕ∪
{qF }, ϕ, δ, {qF }), where qF is a special automaton state in
which the AA transitions when the trace has ended. Also, δ
is the transition function, which differs from the aforemen-
tioned δ′ only in the transition for [φ]ϕ, as we elaborate on
later. For an interpretation Π, and assuming that A stands for
a propositional formula, we define δ below.
δ(A,Π) = true if A ∈ Π
δ(A,Π) = false if A /∈ Π
δ(qF ,Π) = false
δ(ϕ1 ∧ ϕ2,Π) = δ(ϕ1) ∧ δ(ϕ1)
δ(ϕ1 ∨ ϕ2,Π) = δ(ϕ1) ∨ δ(ϕ1)

δ(〈φ〉ϕ,Π) =

{
ϕ if Π |= φ (φ propositional)
false if Π 6|= φ

δ(〈ψ?〉ϕ,Π) = δ(ψ,Π) ∧ δ(ϕ,Π)
δ(〈ρ1 + ρ2〉ϕ,Π) = δ(〈ρ1〉ϕ,Π) ∨ δ(〈ρ2〉ϕ,Π)
δ(〈ρ1; ρ2〉ϕ,Π) = δ(〈ρ1〉〈ρ2〉ϕ,Π)

δ(〈ρ∗〉ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∨ δ(〈ρ〉〈ρ∗〉ϕ,Π) o/w

δ([φ]ϕ,Π) =

{
ϕ ∨ qF if Π |= φ (φ propositional)
true if Π 6|= φ

δ([ψ?]ϕ,Π) = δ(nnf(¬ψ),Π) ∨ δ(ϕ,Π)
δ([ρ1 + ρ2]ϕ,Π) = δ([ρ1]ϕ,Π) ∧ δ([ρ2]ϕ,Π)
δ([ρ1; ρ2]ϕ,Π) = δ([ρ1][ρ2]ϕ,Π)

δ([ρ∗]ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∧ δ([ρ][ρ∗]ϕ,Π) o/w

It is important to note that a LDLf formula can be rewritten
to an equivalent LDLf formula which is in NNF in linear
time. Further, that the state set of the AA for a LDLf formula
ϕ, namely CLϕ is linear in the size of ϕ.

Theorem 4.1. Let ϕ be an LDLf formula and Aϕ the AA
defined above. Then, for any interpretation π, π |= ϕ iff Aϕ
accepts π.

26

Proof. The correctness of the theorem stems from Theorem
17 in (De Giacomo and Vardi 2013). Our only modifica-
tion to the AA presented in that paper is in the transition
δ([φ]ϕ,Π): In the first of the two cases for this transition (ie
when Π |= φ), we add the disjunction with qf . To see why
this is necessary, consider the case where Π contains a sin-
gle state, and in that state φ is true and ϕ is false. Then, since
Π |= φ, we are in the first of the two cases of this transition,
so we transition to a state in which ϕ ∨ qf , ie false ∨ qf ,
is true. Had we not included qf in this disjunction, the au-
tomaton would not accept this trace, which is an incorrect
behavior. By allowing qf as an option for this transition, we
provide the automaton with the choice to end the trace and
accept it, as it should.

4.3 Building an AA for LTL-RE
LTL- RE augments LDLf with LTL, programming con-
structs, and a final modality, in order to make goal speci-
fication easier. These constructs can all be defined in terms
of native LDLf . The most significant extension of LTL-RE
over LDLf , from the perspective of translation, is the addi-
tion of the occ predicate that enables a goal to reference the
occurrence of a particular ground action.

Let (P,A, I) be a transition system, α be a sequence of
action applicable in I, and σ be the state trace that is induced
by the execution of α in I. Then we define a word β =
b0b1 . . . bn in which bi = si ∪ {ai}, for i ∈ {0, . . . , n− 1},
and bn = sn.

Given an LTL-RE formula ϕ, we first replace all program
constructs (“if-then-else” and “while”), as well as any LTL
constructs by the corresponding LDLf equivalent given by
the semantics defined in the previous section (i.e., we replace
any occurrence of ϕ by [true∗]ϕ, and so forth). Then, as
with LDLf we put the resulting formula in negation normal
form. Let ϕ′ be the resulting formula. The AA for the re-
sulting formula is like Aϕ′ described above for LDLf , but
includes the following additional definition for δ:

δ(occ(a),Π) = occ(a)

where occ(a) is the special fluent from the set Occ, which is
described in a following paragraph. By making occ(a) true,
we ensure that the ground action amust be the next action of
the plan in order for this trace to be accepting. The automa-
ton for ϕ that results from applying these steps is denoted as
Aϕ.

Theorem 4.2. Let Aϕ, σ be a state trace induced by the
execution of action sequence α, and β be defined as above.
Then (σ, α) |= ϕ iff Aϕ accepts β.

4.4 Compiling away LTL-RE goals
Now we describe a method to compile away LTL-RE goals
by representing the AA within a new (output) transition sys-
tem, constructed from the original planning transition sys-
tem. Our method is based on the one proposed in (Torres and
Baier 2015), which in their case compiled away LTL plan-
ning goals expressed as an AA. Although Torres and Baier
only deal with LTL rather than LDL, the main technical dif-
ference between their method and ours is the treatment of

action-centric constraints and in particular the special han-
dling of the occ predicate in order to support REs over ac-
tions.

Given a transition system T = (P,A, I), and an LTL-
RE goal ϕ, our method generates a new transition system
T ′ = (P ′,A′, I ′). A plan for T and goal ϕ can be ob-
tained by finding a sequence of action that reaches a final
state where a distinguished property in t′ holds. Satisfac-
tion of this property corresponds to successful transitioning
through the automaton Aϕ. Thus, the problem of planning
for a temporal goal is reduced to the problem of finding a
classical plan for which this distinguished property holds.
Such a plan can be obtained using optimized off-the-shelf
classical planners.

Following (Torres and Baier 2015), in T ′ there is one
(new) fluent q for each state q of Aϕ. If α = a1a2 . . . an
is applicable in the initial state of T , then there will exist a
corresponding set of action sequences (denoted Aα) of the
form α0a1α1a2α2 . . . anαn, where each αi is a sequence of
so-called “synchronization actions” which did not appear in
P and whose objective is to update the state of Aϕ.

Also in keeping with Torres and Baier, all actions in T
also appear in T ′. Execution in T ′ can be understood as hav-
ing two “modes”. In the so-called world mode, actions from
the original transition system T can be executed. In the so-
called synchronization mode actions that update the state of
the automaton can be executed. The set of propositions P ′
contains additional propositions representing the state of the
AA for ϕ plus additional flags that are used to switch ap-
propriately between modes. Synchronization actions update
the state of the automaton following the definition of the δ
function.
Fluents P ′ has the same fluents as P plus fluents that rep-
resent the states of the automaton (Q), flags for controlling
the different modes (copy, sync, world), and a special
fluent ok, which becomes false if the goal has been falsi-
fied. Finally, it includes the set QS = {qS | q ∈ Q} which
are “copies” of the automata fluents (described in detail be-
low), and Occ which contains a fluent occ(a′) for each a
such that occ(a) is a subformula of the original goal for-
mula ϕ. Formally, the set of fluents F ′ = F ∪ Q ∪ QS ∪
{copy, sync,world,ok} ∪Occ.

The set of planning operators O′ is the union of the sets
Ow and Os for the world-mode and synchronization-mode
actions, as follows.
World Mode Operators The set Ow contains the same
actions in A, but preconditions are modified to allow execu-
tion only in “world mode”. Effects, on the other hand, are
modified to allow the execution of the copy action, which
initiates the synchronization phase, and which is described
below. Formally, Ow = {a′ | a ∈ A}, and for all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world} ∪ notOcc(a′),
eff (a′) = eff (a) ∪ {copy,¬world},

where notOcc(a′) = {¬occ(a) | a 6= a′ and occ(a) ∈
Occ}. I.e., the preconditions for executing a′ are all the orig-
inal preconditions for action a, that the flags indicate the
planner is in world mode and the goal has not been falsified,

27

Sync Action Precondition Effect

tr(qS`) {sync, ok, qS` , `} {¬qS` }
tr(qSF) {sync, ok, qSF } {¬qSF ,¬ok}
tr(qSα∧β) {sync, ok, qSα∧β} {qSα , qSβ ,¬qSα∧β}
tr1(q

S
α∨β) {sync, ok, qSα∨β} {qSα ,¬qSα∨β}

tr2(q
S
α∨β) {sync, ok, qSα∨β} {qSβ ,¬qSα∨β}

tr(qS〈α?〉β) {sync, ok, qS〈α?〉β} {qSα , qSβ ,¬qS〈α?〉β}
tr1(q

S
〈α1+α2〉β) {sync, ok, q

S
〈α1+α2〉β} {q

S
〈α1〉β ,¬q

S
〈α1+α2〉β}

tr2(q
S
〈α1+α2〉β) {sync, ok, q

S
〈α1+α2〉β} {q

S
〈α2〉β¬q

S
〈α1+α2〉β}

tr(qS〈α1;α2〉β) {sync, ok, qS〈α1;α2〉β} {q
S
〈α1〉〈α2〉β¬q

S
〈α1;α2〉β}

α is ”test-only”:

tr(qS〈α∗〉β) {sync, ok, qS〈α∗〉β} {qSβ ,¬qS〈α∗〉β}
α isn’t ”test-only”:

tr1(q
S
〈α∗〉β) {sync, ok, qS〈α∗〉β} {qSβ ,¬qS〈α∗〉β}

tr2(q
S
〈α∗〉β) {sync, ok, qS〈α∗〉β} {qS〈α〉〈α∗〉β ,¬qS〈α∗〉β}

tr(qS〈α〉β) {sync, ok, α, qS〈α〉β} {qβ ,¬qS〈α〉β}
tr(qS〈α〉β) {sync, ok,¬α, qS〈α〉β} {¬qS〈α〉β ,¬ok}
tr1(q

S
[α?]β) {sync, ok, qS[α?]β} {qSnnf(¬α),¬qS[α?]β}

tr2(q
S
[α?]β) {sync, ok, qS[α?]β} {qSβ ,¬qS[α?]β}

tr(qS[α1+α2]β) {sync, ok, qS[α1+α2]β} {qS[α1]β , q
S
[α2]β ,¬qS[α1+α2]β}

tr(qS[α1;α2]β) {sync, ok, qS[α1;α2]β} {qS[α1][α2]β ,¬qS[α1;α2]β}
α is ”test-only”:

tr(qS[α∗]β) {sync, ok, qS[α∗]β} {qSβ ,¬qS[α1;α2]β}
α isn’t ”test-only”:

tr(qS[α∗]β) {sync, ok, qS[α∗]β} {qSβ , qS[α][α∗]β ,¬qS[α1;α2]β}
tr1(q

S
[α]β) {sync, ok, α, qS[α]β} {qβ ,¬qS[α]β}

tr2(q
S
[α]β) {sync, ok, α, qS[α]β} {qF ,¬qS[α]β}

tr(qSocc(a)) {sync, ok, qSocc(a)} {qocc(a),¬qSocc(a)}

Table 1: The synchronization actions generated for the trans-
lation of an LTL- RE goal ϕ in NNF. ` is assumed to be
a literal, and a (used in the last line) is assumed to be a
(ground) world action. The transition tr(qS〈α〉β) applies in
the case where α is propositional (otherwise one of the ear-
lier rules would be used). Similarly for tr(qS[α]β). We say that
α is test-only if it is a finite regular expression whose atoms
are only tests ψ?.

and it’s not the case that any of the other actions mentioned
in the temporal goal ϕ (the set Occ) are occuring now.

Synchronization Mode Operators The set of synchro-
nizing mode operators, Os, contains the actions copy,
world, and all actions defined in Table 1. Collectively these
actions realize the bookkeeping associated with the transi-
tioning of the AA Aϕ as a result of the actions executed in
so-called world mode.

Synchronization mode is divided into three consecutive
parts. In the first part, we execute the copy action which in
the successor states adds a copy qS for each fluent q that
is currently true, deleting q. Intuitively, during synchroniza-
tion, each qS defines the state of the automaton prior to syn-
chronization. In addition, copy removes any propositions of
the form occ(a). The precondition of copy is {copy,ok},

while its effect is defined by:

eff (copy) ={q → qS , q → ¬q | q ∈ Q}∪
{sync,¬copy} ∪Occ

As soon as the sync fluent becomes true, the second phase
of synchronization begins. Here the only executable actions
are those that update the state of the automaton, which are
defined in Table 1. Note that one of the actions deletes the
ok fluent. This can happen, for example while synchroniz-
ing a formula that actually expresses the fact that the action
sequence has to conclude now.

When no more synchronization actions are possible—i.e.,
when there are no fluents of the form qS—, we enter the
third phase of synchronization. Here only action world is
executable; its only objective is to reestablish world mode.
The precondition ofworld is {sync,ok}∪QS , and its effect
is {world,¬sync}.
New Initial State The initial state of the original problem
P intuitively needs to be “processed” by Aϕ before starting
to plan. Therefore, we define I ′ as I ∪ {qϕ, copy,ok}.
New Goal Finally, the goal of the problem is to reach
a state in which no state fluent in Q is true, except
for qf , which may be true. Therefore we define G′ =

{world,ok} ∪Q.

5 Experimental Results
We have implemented the translator for LTL-RE. Three im-
portant questions to assess in an experimental evaluation are:
1) how large are the automata resulting from translation of
the LTL- RE formulae, 2) how fast and space efficient is
the translation, and 3) how effectively do the automata help
guide search for a satisfying plan. Some of these are best
evaluated on realistic benchmarks but such benchmarks ex-
ist only in limited ways and only for the LTL fragment of
LTL- RE. As such, the comparative experimental analysis
reported here is solely for the LTL fragment of LTL-RE.

For the purpose of experimentally evaluating our ap-
proach, we compare the performance of our LTL-RE trans-
lator both to an NFA-based LTL translator initially intro-
duced in (Baier and McIlraith 2006), and to an AA-based
LTL translator (Torres and Baier 2015), similar to ours. The
NFA-based LTL translator is highly optimized to avoid, in
most cases, the exponential blow up in the size of the au-
tomata characteristic of NFA-based representations of LTL.
The AA translator exists in several versions including a
naive version without engineering optimizations, and an op-
timized version. In order to fairly compare against our LTL-
RE translator which currently lacks the implementation of
analogous optimizations, we compared against the similarly
unoptimized AA-based LTL translator. (The work reported
here remains in progress, and optimization of our transla-
tor, analogous to those used in the NFA and AA-based LTL
translators, constitutes ongoing work.) Even this compari-
son is not entirely appropriate. The LTL- RE translator is
designed to translate all of LDLf including regular expres-
sions, LTL, and additional programming language construc-
tors. One might expect that a special-purpose translator that

28

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.051 2 0.00 3 0.108 15 2 0.00 73 0.112 15 2 0.00 48
p02 0.044 3 0.00 4 0.093 22 3 0.00 139 0.110 22 3 0.00 96
p03 0.051 7 0.00 16 0.113 50 7 0.00 719 0.113 53 7 0.00 547
p04 0.058 10 0.00 27 0.112 75 10 0.01 3351 0.115 83 10 0.01 2959
p05 0.049 14 0.00 43 0.115 104 13 0.03 15575 0.139 121 13 0.04 16672
p06 0.303 14 0.00 43 0.117 99 13 0.04 16213 0.135 110 13 0.04 17153
p07 0.077 4 0.00 6 0.095 32 4 0.00 1555 0.115 32 4 0.00 1454
p08 3.568 7 0.00 11 0.116 55 6 0.04 20920 0.125 62 6 0.09 33262
p09 72.556 9 0.02 20 0.113 67 7 0.18 74360 0.133 78 7 0.57 156892
p10 72.614 9 0.02 20 0.119 68 7 0.22 89464 0.144 79 7 1.01 227686

Table 2: Results for domain Blocksworld, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.057 7 0.00 10 0.109 41 7 0.04 14217 0.107 39 7 0.56 126511
p02 0.055 10 0.00 17 0.112 71 10 0.39 147017 0.115 81 10 18.35 1460496
p03 0.061 21 0.00 64 0.114 127 21 8.82 1010542 0.107 0 0 NR NR
p04 0.060 27 0.02 121 0.112 0 0 NR NR 0.123 0 0 NR NR
p05 0.056 0 NR NR 0.116 65 10 0.14 60253 0.124 71 10 3.69 574535
p06 0.062 14 0.00 35 0.114 78 13 0.52 148994 0.136 78 13 35.10 1642692
p07 0.058 21 0.00 61 0.115 113 21 0.83 221874 0.118 42 0 23.31 1006596
p08 0.045 20 0.00 70 0.085 111 20 0.98 226412 0.092 40 7 23.36 1006596
p09 0.058 10 0.00 14 0.118 73 10 10.92 1097329 0.089 106 10 11.57 1045964

Table 3: Results for domain Logistics, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.057 5 0.00 7 0.107 31 5 0.01 5237 0.104 29 5 0.02 4455
p02 0.051 11 0.00 16 0.106 53 9 0.16 57597 0.109 52 9 0.21 61045
p03 0.050 15 0.00 28 0.110 74 13 2.65 436249 0.110 74 13 2.65 436249
p04 0.059 19 0.00 46 0.111 99 17 6.24 770784 0.128 96 17 20.71 1429295
p05 0.059 7 0.00 9 0.116 52 7 0.22 76082 0.118 53 7 0.22 54321
p06 0.051 12 0.00 20 0.123 76 11 2.89 485525 0.126 81 11 2.56 433910
p07 0.056 0 NR NR 0.117 0 0 NR NR 0.127 0 0 NR NR
p08 0.053 5 0.00 9 0.097 39 5 0.01 4015 0.112 59 5 0.01 4702
p09 0.058 8 0.00 14 0.114 68 8 0.05 20804 0.139 120 8 0.21 45778
p10 0.065 0 NR NR 0.120 0 0 NR NR 0.138 0 0 NR NR
p11 0.058 9 0.00 19 0.119 62 9 0.16 52978 0.125 75 9 0.12 27260
p12 0.060 11 0.00 22 0.116 89 11 5.84 747680 0.122 104 11 1.84 263967
p13 0.063 13 0.00 42 0.111 101 13 0.93 227407 0.132 149 13 2.77 334909
p14 0.063 15 0.00 46 0.121 0 0 NR NR 0.139 0 0 NR NR

Table 4: Results for domain ZenoTravel, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

29

is tuned only to LTL would be more efficient than the LTL
portion of a more general LTL-RE translator – at least be-
fore implementation of optimizations.

The experiments were performed on three domains from
the International Planning Competition (IPC): Blocksworld,
Logistics and ZenoTravel. Goals arose from those intro-
duced in IPC 2002. All experiments were run on a 64-bit
machine, with a CPU of 1600 MHz. Each experiment was
limited to 15 minutes runtime and 1GB of memory. The re-
sults are illustrated in Tables 2, 3, and 4.

Tables 2, 3, and 4 illustrate the performance of three re-
formulations: the NFA-based one in the first column, the
AA-based LTL reformulation in the second and our AA-
based LTL- RE reformulation in the third. The headers of
these tables include translation time (TT), plan length (PL),
total planning time (PT), number of planning states that
were evaluated before the goal was reached (PS), and fi-
nally, world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are
responsible for the automaton synchronization.

A merit of an AA-based translation approach relative to
an NFA-based approach is the avoidance of the exponen-
tial blowup in size that theoretically exists with the latter.
Indeed, this was an original impetus for selection of an AA-
based approach. Nevertheless, the NFA-based translator is
so optimized that it did not exhibit this theoretical blow-
up when originally developed and analyzed experimentally
(Baier and McIlraith 2006). Consistent with this, we ob-
serve that the optimized NFA-based translator outperforms
the two AA-based translators in many cases. However, there
are problem instances that the NFA translator does less well
on, marked by the drastic increase in total NFA transla-
tion time seen for example in p07 - p10 of Blocksworld.
These instances correspond to goal formulas of the form
(p1 ∧p2 ∧ ... ∧pn), where n = 3, 5, 6, 7 for the
instances p07 - p10 respectively.

The comparison of the two AA-based translators is par-
ticularly interesting. The two methods generate plans of the
same world plan length for all instances. The computational
cost that is associated with the use of the more general
framework of LTL-RE, however, is reflected in the number
of states expanded before the goal is reached, as well as in
the total planning time, and in the total plan length (which
includes both ”world” actions, and actions to synchronize
the automaton).

The difference in the total length of the translations is ev-
ident in every domain, reflecting that the syntactic rewriting
of LTL formulas using LDL syntax is not always the most
compact way of representing them. The difference in the
number of expanded states and the planning time, on the
other hand, is exhibited most dramatically in the Logistics
domain, shown in Table 3. Instance p06, in particular, exem-
plifies the gap in the planning times of the two last transla-
tors, while almost all instances of this domain showcase the
difference in the number of states that these two translators
generate, in favor of the AA-based LTL translator.

There are, however, instances in which our method out-
performs the AA LTL translator. Some examples of this can
be found in the ZenoTravel domain, in Table 4. In the case of

p12 for example, our translator takes significantly less time
to generate the plan, and expands significantly less states
while doing so.

We plan to further investigate the relationship between
these two reformulations, and run more experiments to shed
light on which formulas are better suited for each one. We
also plan to implement an optimized version of the transla-
tor, in order to be able to fairly compare with more efficient
reformulations of the AA-based LTL translation.

Our experiments did not examine the effectiveness of the
translation of regular expressions and programming con-
structs. We note that Baier, Fritz, and McIlraith (2007; 2008)
developed an automata-based translator for a Golog-like lan-
guage that included regular expressions. Comparison with
this translator would be interesting if suitable benchmarks
could be found or constructed.

6 Discussion and Concluding Remarks
In this paper, we introduce LTL-RE: a high-level language
for goal specification, which is rich enough to capture linear
temporal formulas, as well as regular expressions. LTL-RE
offers a convenient set of syntactic constructors, thus serving
as a compelling vehicle for goal specification. A further con-
tribution of our work is the implementation of a translation
of LTL-RE goals into classical planning domains, making it
feasible to plan for LTL-RE goals using state-of-the-art clas-
sical planners. We experimentally evaluate our approach by
comparing the performance of this translator with an NFA-
based translator and another AA-based translator, both spe-
cific to LTL formulas.

We are currently still running experiments, aiming to en-
hance our understanding of the differences in these refor-
mulations. We also plan to experiment with Golog domains,
to examine our translator’s performance on goals which are
equivalent to regular expressions. Finally, we are interested
in equipping our implementation with optimizations similar
to those in (Torres and Baier 2015).

Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

References
Albarghouthi, A.; Baier, J.; and McIlraith, S. A. 2009. On
the use of planning technology for verification. In Proceed-
ings of the ICAPS09 Workshop on Heuristics for Domain
Independent Planning.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In Pro-
ceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI06), 788–795.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art

30

planners. In Proceedings of the 17th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 26–
33.
Benton, J.; Kambhampati, S.; and Do, M. B. 2006.
YochanPS: PDDL3 simple preferences and partial satisfac-
tion planning. In 5th International Planning Competition
Booklet (IPC-2006), 54–57.
Coles, A., and Coles, A. 2011. LPRPG-P: relaxed plan
heuristics for planning with preferences. In Proceedings of
the 21st International Conference on Automated Planning
and Sched. (ICAPS).
Cresswell, S., and Coddington, A. M. 2004. Compilation of
LTL goal formulas into PDDL. In de Mántaras, R. L., and
Saitta, L., eds., Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI), 985–986. Valencia,
Spain: IOS Press.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI).
De Giacomo, G.; Masellis, R. D.; Grasso, M.; Maggi, F. M.;
and Montali, M. 2014. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In Proceedings
of the 12th International Conference on Business Process
Management BPM, 1–17.
Doherty, P., and Kvarnström, J. 2001. Talplanner: A tempo-
ral logic-based planner. AI Magazine 22(3):95–102.
Edelkamp, S. 2006. Optimal symbolic PDDL3 planning
with MIPS-BDD. In 5th International Planning Competi-
tion Booklet (IPC-2006), 31–33.
Eisner, C., and Fisman, D. 2007. A practical introduction to
PSL. Springer Science & Business Media.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI), vol-
ume 2, 1123–1128.
Fischer, M. J., and Ladner, R. E. 1979. Propositional dy-
namic logic of regular programs. Journal of computer and
system sciences 18(2):194–211.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. ConGolog,
sin Trans: Compiling ConGolog into basic action theories
for planning and beyond. In Proceedings of the 11th In-
ternational Conference on Knowledge Representation and
Reasoning (KR), 600–610.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI), 305–310.
Haslum, P. 2012. Narrative planning: Compilations to clas-
sical planning. Journal of Artificial Intelligence Research
44:383–395.

Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Planning
with a language for extended goals. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAI),
447–454.
McDermott, D. V. 1998. PDDL — The Planning Domain
Definition Language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.
Patrizi, F.; Lipovetzky, N.; De Giacomo, G.; and Geffner, H.
2011. Computing infinite plans for LTL goals using a classi-
cal planner. In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, 2003–2008.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science (FOCS), 46–57.
Razavi, N.; Farzan, A.; and McIlraith, S. A. 2014. Generat-
ing effective tests for concurrent programs via AI automated
planning techniques. International Journal on Software
Tools for Technology Transfer (STTT) (STTT) 16(1):49–65.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed., Proceedings of the
14th European Conference on Artificial Intelligence (ECAI),
526–530. Berlin, Germany: IOS Press.
Shaparau, D.; Pistore, M.; and Traverso, P. 2008. Fusing
procedural and declarative planning goals for nondetermin-
istic domains. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI), 983–990.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis
as planning revisited. In Proceedings of the 12th Interna-
tional Conference on Knowledge Representation and Rea-
soning (KR), 26–36.
Torres, J., and Baier, J. A. 2015. Polynomial-time reformu-
lations of ltl temporally extended goals into final-state goals.
In Proceedings of the Workshop on Model-Checking and Au-
tomated Planning (MOCHAP) at ICAPS-2015.
Uras, T., and Erdem, E. 2010. Genome rearrangement: A
planning approach. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, At-
lanta, Georgia, USA, July 11-15, 2010.
Vardi, M. Y. 2012. The rise and fall of temporal logic.
Keynote, 13th International Conference on Principles of
Knowledge Representation and Reasoning.

31

Commutativity Based Search

Doron A. Peled
Department of Computer Science

Bar Ilan University

Abstract

The problem of state space search is fundamental to both
concurrent system verification and planning. Often, the state
space is huge, so optimizing the search may be crucial. We
consider the problem of visiting all states in a graph where
edges are generated by actions and the (reachable) states are
not known in advance. Some of the actions may commute,
i.e., they result in the same state for every order in which they
are taken. We show different methods in which we use com-
mutativity to achieve full coverage of the states while travers-
ing considerably fewer edges.

32

On Combining Symmetry with Partial Order Reduction

Dragan Bošnački
Eindhoven University of Technology

We present some recent results (Bosnacki and Scheffers
2015) that combine two of the most successful state space
reduction techiques in explicite state model checking: sym-
metry reduction and partial order reduction.

Partial order reduction (Godefroid 1996; Valmari 1996;
Peled 1994) exploits the independence of the checked prop-
erty from the execution order of the system actions. More
specifically, two actions a, b are allowed to be permuted pre-
cisely when, if for all sequences v, w of actions: if vabw
(where juxtaposition denotes concatenation) is an accepted
behavior, then vbaw is an accepted behavior as well. In
a sense, instead of checking all the execution sequences,
the desired property is checked only on representative se-
quences, which results in significant savings in space and
time. Thus, the corner stone of the independence relation is
the confluence condition as given in Fig. 1a. The confluence
requires that from each state s of the state space the permu-
tations of two independent actions a and b will lead to the
same state s′. The actual reduction of the state space is real-
ized during the state space exploration by limiting the search
from a given state s to only a subset of the actions that are
executable in s.

Symmetry reduction (Ip and Dill 1996; Emerson and
Sistla 1996; Clarke et al. 1996) is one of the most success-
ful techniques to tackle the state space explosion problem in
model checking. The technique exploits the inherent sym-
metry of the model which is present in many systems, like
mutual exclusion algorithms, cache coherence protocols, bus
communication protocols, etc. After observing that the sym-
metry in the description of the model results in a symmetric
state space, the key idea is to partition the state space into
equivalence classes of (symmetric) states. Then, the state
space exploration can be performed in the usually smaller
quotient state space that consists only of (representatives of
the) equivalence classes.

The problem of finding canonical, i.e., unique, represen-
tatives of equivalence classes is also known as the orbit
problem. The orbit problem is equivalent to the graph iso-
morphism problem (Clarke et al. 1996), for which no poly-
nomial algorithm is known. As a result, often with sym-
metry reduction the verification time can become critical.
On the other hand, finding multiple (non-canonical) repre-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sentatives usually boils down to sorting algorithms (Emer-
son and Sistla 1996; Bosnacki, Dams, and Holenderski
2000). An obvious drawback of the multiple representa-
tives is that they provide less state space reduction com-
pared to the canonical representatives. However, in practice
it often turns out that, with an acceptable increase of the
state space, the verification time can be improved signifi-
cantly by using multiple representatives (Ip and Dill 1996;
Bosnacki, Dams, and Holenderski 2000).

It turns out that symmetry and partial order reduction are
orthogonal in the sense that they exploit different aspects of
the system for reduction of the state space.

A combination of symmetry based on canonical represen-
tatives with partial order reduction was presented in (Emer-
son, Jha, and Peled 1997). This paper can be seen as a
follow-up of (Emerson, Jha, and Peled 1997) which brings
as an extra contribution the symmetry case with multiple
representatives. Along the lines of (Emerson, Jha, and Peled
1997) we derive our result in the more general setting of
bisimulation preserving reductions. As symmetry reduction
is then considered a special case of a bisimulation preserving
reduction, all results are valid for symmetry too.

The main contribution of this paper is the use of a new
kind of independence, which is weaker than the standard
one. As mentioned above, in the usual definition of inde-
pendence we insist on confluence, i.e., we require that the
two paths obtained by permuting the independent actions a
and bmeet in the same state s′. Instead, in the new definition
we relax the confluence condition by allowing the permuta-
tions to lead to bisimilar states s′1 and s′2, as represented in
Fig. 1b.

It turns out that almost all property preservation results,
like absence of deadlock, safety, and liveness (LTL and
CTL∗ without the next operator), that can be found in the
literature can be reused with a straightforward adaptation.

One can combine symmetry and partial order also in
the model checking of timed systems which use discrete
time (Bosnacki 2002).

References
Bosnacki, D., and Scheffers, M. 2015. Partial order re-
duction and symmetry with multiple representatives. In 7th
NASA Formal Methods Symposium, 27–29 April, Pasadena,
California, Proceedings, (to appear), ?–?

33

(a) (b)

s2

s

s′

s

s1 s2

a

a

b b

≈
s′1 s′2

b

s1

b a

a

Figure 1: Confluence of independent actions.

Bosnacki, D.; Dams, D.; and Holenderski, L. 2000. Sym-
metric spin. In Havelund, K.; Penix, J.; and Visser, W., eds.,
SPIN Model Checking and Software Verification, 7th Inter-
national SPIN Workshop, Stanford, CA, USA, August 30 -
September 1, 2000, Proceedings, volume 1885 of Lecture
Notes in Computer Science, 1–19. Springer.
Bosnacki, D. 2002. Partial order and symmetry reduc-
tions for discrete time. In Workshop on Real-Time Tools,
RT-TOOLS 2002, Proceedings, ?–?
Clarke, E. M.; Jha, S.; Enders, R.; and Filkorn, T. 1996. Ex-
ploiting symmetry in temporal logic model checking. For-
mal Methods in System Design 9(1/2):77–104.
Emerson, E. A., and Sistla, A. P. 1996. Symmetry and model
checking. Formal Methods in System Design 9(1/2):105–
131.
Emerson, E. A.; Jha, S.; and Peled, D. 1997. Combin-
ing partial order and symmetry reductions. In Brinksma,
E., ed., Tools and Algorithms for Construction and Analy-
sis of Systems, Third International Workshop, TACAS ’97,
Enschede, The Netherlands, April 2-4, 1997, Proceedings,
volume 1217 of Lecture Notes in Computer Science, 19–34.
Springer.
Godefroid, P. 1996. Partial-Order Methods for the Verifi-
cation of Concurrent Systems - An Approach to the State-
Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer.
Ip, C. N., and Dill, D. L. 1996. Better verification through
symmetry. Formal Methods in System Design 9(1/2):41–75.
Peled, D. 1994. Combining partial order reductions with on-
the-fly model-checking. In Dill, D. L., ed., Computer Aided
Verification, 6th International Conference, CAV ’94, Stan-
ford, California, USA, June 21-23, 1994, Proceedings, vol-
ume 818 of Lecture Notes in Computer Science, 377–390.
Springer.
Valmari, A. 1996. The state explosion problem. In Reisig,
W., and Rozenberg, G., eds., Lectures on Petri Nets I: Ba-
sic Models, Advances in Petri Nets, the volumes are based
on the Advanced Course on Petri Nets, held in Dagstuhl,
September 1996, volume 1491 of Lecture Notes in Computer
Science, 429–528. Springer.

34

UPMurphi Released: PDDL+ Planning for Hybrid Systems

Giuseppe Della Penna
University of L’Aquila

Italy
giuseppe.dellapenna@univaq.it

Benedetto Intrigila
University of Roma ”Tor Vergata”

Italy
intrigil@mat.uniroma2.it

Daniele Magazzeni
King’s College London

United Kingdom
daniele.magazzeni@kcl.ac.uk

Fabio Mercorio
University of Milan-Bicocca

Italy
fabio.mercorio@unimib.it

Abstract

In this tool paper, we present the release of UPMurphi, a uni-
versal planner for PDDL+ domains. Planning for hybrid do-
mains has found increasing attention in the planning commu-
nity, motivated by the need to address more realistic scenar-
ios. While a number of techniques for planning with a subset
of PDDL+ domains have been proposed, UPMurphi is able
to handle the full range of PDDL+ features, including non-
linear continuous processes, exogenous events, Timed Initial
Literals and numeric Timed Initial Fluents.
This paper describes the UPMurphi framework and presents
its main features, together with a guide for using the tool,
and some examples where UPMurphi has been successfully
applied.

1 Introduction
A hybrid system is one in which there are both continu-
ous control parameters and discrete logical modes of oper-
ation. It represents a powerful model to describe the dy-
namic behaviour of modern engineering artefacts. Hybrid
systems frequently occur in practice, e.g., in robotics or em-
bedded systems. Dealing with hybrid systems is becoming
more and more an important challenge, as many real-world
scenarios feature a mixture of discrete and continuous be-
haviours. Some example applications include coordination
of activities of a planetary lander, oil refinery management,
autonomous vehicles. Such scenarios motivate the need to
reason with mixed discrete-continuous domains.

Planning for hybrid domains has found increasing atten-
tion in the planning community, motivated by the need to
address more realistic scenarios and to interact with robotics
and control frameworks. PDDL+ (Fox and Long 2006) is
the extension of PDDL which allows the modelling of hy-
brid domains through the use of discrete actions, processes
(that model continuous change over time), and exogenous
events (that model changes that are initiated by the environ-
ment).

A number of techniques for PDDL+ planning have been
proposed (Penberthy and Weld 1994; McDermott 2003; Li
and Williams 2008; Coles et al. 2012; Shin and Davis 2005;
Coles and Coles 2014; Molineaux, Klenk, and Aha 2010;
Bryce and Gao 2015; Bogomolov et al. 2014; 2015). How-
ever, despite the recent efforts in proposing new algorithms
and approaches for this domain, UPMurphi is currently the

only available tool able to handle the full range of PDDL+
features.

The purpose of this paper is to accompany the release of
the UPMurphi tool. To this aim, in the rest of the paper we
overview the main features of the planner and we then de-
scribe the main techniques used for dealing with hybrid do-
mains. In Section 3 we describe the general framework and
provide a guide for using the tool. In Section 4 we survey
some applications for which UPMurphi has been success-
fully used. Section 5 concludes the paper.

What UPMurphi Can Do. UPMurphi is a forward-
search planner for PDDL+ domains. It can handle the
whole PDDL+ language, including nonlinear continuous
processes, exogenous events, Timed Initial Literals and nu-
meric Timed Initial Fluents. It can be used either to find
a single plan from the initial state to a goal state or to find
a universal plan, i.e., a policy for handling the state space
generated from the initial state.

2 How UPMurphi Works
UPMurphi is based on the planning-as-model-checking
paradigm (Cimatti et al. 1997), and it is built on top of the
CMurphi model checker (Cached Murphi Web Page 2006).

Planning in hybrid domains is challenging because in ad-
dition to the discrete state explosion problem, the continuous
behaviour causes the reachability problem generally even
to be undecidable. UPMurphi handles the hybrid dynamics
through discretisation of time and continuous variables and
by planning within a finite horizon. In this way, the state
space is finite.

UPMurphi implements theDiscretise and Validateap-
proach (Della Penna et al. 2009) which is sketched in Fig-
ure 1. Here, the continuous dynamics of the system is re-
laxed into a discretised model, where discrete time steps and
corresponding step functions for continuous values are used
in place of the original continuous dynamics. Then, UP-
Murphi performs a forward reachability analysis in the dis-
cretised state space, searching for a path from the initial state
to a state satisfying the goal condition. The discrete solution
is then validated against the continuous model through the
plan validator VAL (Howey, Long, and Fox 2004) to check
whether the solution is valid or not. If it is invalid, the dis-
cretisation is refined and the process iterates. If UPMurphi

35

fails to find a plan at one discretisation the process can be it-
erated at a finer grained discretisation. The validation output
can guide the user in identifying a suitable finer discretisa-
tion.

Figure 1: Graphical representation of the D&V approach

3 How to Use UPMurphi
The overall UPMurphi architecture is sketched in Figure 3.
UPMurphi can be invoked through theupmc command by
passing both the PDDL+ domain and problem as arguments.
This intitiates the following chain of operations.

PDDL+ translation: the PDDL-to-UPmurphi com-
piler, built on top of the VAL PDDL+ parser,
takes as input a PDDL+ model and outputs a se-
mantically equivalent UPMurphi model (up to the
discretisation of time and continuous variables)1

<domain name>.m. This, in turn, is compiled into an
executable<domain name> planner.

PDDL+ Planning: The executable generated in the previ-
ous phase can now be invoked to start the planning/uni-
versal planning tasks. Several options can be specified
to fine-tune this phase, as we describe below. The UP-
Murphi engine applies an explicit algorithm for building
the system dynamics, and searches it through a forward
search.

Plan output: Once the final plan(s) have been generated,
they are written by default as PDDL+ plans, but the user
can choose among a variety of different output formats
(i.e., text, binary, and CSV), even in verbose mode.

Plans VALidation: UPMurphi is designed to automatically
interface with the VAL plan validator, so that the gener-
ated plans are executed and validated. To enable this func-
tionality, the user must install VAL separately.

This process is completely automatic. When running the
planner, the user can specify the discretisation to be used for

1The translation process is fully detailed in (Della Penna, Mag-
azzeni, and Mercorio 2012).

time and continuous variables, although the default settings
can be used.

3.1 UPMurphi Features
In this section we give details of the main UPMurphi fea-
tures.

Disk-based Search. Starting with an initial discretisation
(e.g., the one provided by default), the Discretise and Vali-
date process should be iterated until a valid discretisation is
used. However, the finer the discretisation, the larger the re-
sulting state space, and this may lead to the state explosion
phenomenon too early. To mitigate this issue, in this release
UPMurphi employs the disk during the forward-search for
storing both the state space generated so far and the cur-
rent solution. Specifically, UPMurphi exploits the disk to
store the full state description (i.e., the state values) whereas
only the state signature is stored in memory using 40-bits
for the encoding. This approach is beneficial for continuous
domains as they often present a high number of discretised
real values that grow the state size. Furthermore, it also al-
lows trying several discretisation settings without affecting
the number of states that can be visited during the search.
UPMurphi is able to adapt its algorithm to increase or de-
crease the disk usage with respect to the user specified op-
tions and the size of the system under analysis. Furthermore,
to avoid an excessive time overhead, the disk structures have
been designed and implemented by taking into account their
usage patterns, i.e., how (and how frequently) each structure
is accessed during each phase of the planning process. This
makes it possible to reduce the number of disk seek-and-read
operations, which are the bottleneck of any disk algorithm,
as seeks suffer from a latency time that is much higher than
the actual read/write time. To give an example, UPMurphi
privileges sequential read/writes, at the cost of duplicating
some information and/or requiring more disk space, which
is not a problem as large disks are nowadays very common.

Serialisation. Thanks to the disk-based exploration, UP-
Murphi can store the system graph, and access to it directly
without having to load data into memory. This would allow
one toresumethe analysis by loading a (previously visited)
system graph also on another machines.

State Compression. UPMurphi inherits from CMurphi
a number of techniques to optimise the state representa-
tion (i.e., thebit compressionand hash-compaction), and
adapts them working even with the disk-based exploration
described above.

Exploration Strategy. UPMurphi distinguishes between
two planning modalities, namely (i)Planning in which a
feasible plan is generated to reach a goal and (ii)Univer-
sal Planningthat could be seen as acollectionof plans (aka
a set of policies) able to bring the system to the goal from
anyreachable state for which a plan exists in the given set-
ting. Note that both these modalities support the specifica-
tion of the optimality requirement for minimising the plan
makespan2.

2Here optimality is dependent on the discretisation and the fi-
nite horizon used for planning.

36

(Some) Exploration Settings. UPMurphi provides some
other options that can be set for customising the state space
exploration. They include the specification of the (highest)
amount of memory to be used by the planning process, the
enabling of a deadlock check (here intended as a non-goal
state without any action applicable), and the specificationof
either the maximum number of BFS levels to explore or a
maximum plan length.

Stepwise Exploration. UPMurphi allows the use of a
step-by-step exploration useful for debugging purposes. At
each step the user can specify which action has to be applied
(among the ones applicable in the current state). The values
of each PDDL+ predicate and fluent are shown to the user
and the process iterates.

Discretisation settings. By default, UPMurphi discre-
tises the time to0.1 units while real scale and real fraction
digits are set to8 and2 respectively. Although we found
these values suitable for a number of planning problems, the
user is free to specify different values by passing them as
arguments while invoking the UPMurphi planner.

Supporting the PDDL+ semantics. UPMurphi has been
designed to support the PDDL+ semantics according to
the start-process-stop model introduced by (Fox and Long
2006), that works by transforming a durative-action into a
chain of PDDL+ elements, namely: (i) a pair start/end ac-
tions that apply the discrete effectsat startandat endof the
action respectively; (ii) a process that applies the continu-
ous change over the action execution (iii) and an event that
checks whether all theoveralldurative-action conditions are
satisfied during its execution. This motivated the need to
properly model the processes and events interaction within
UPMurphi to fully support the whole PDDL+ semantics.
Figure 2 shows an example of how UPMurphi represents and
reasons with the PDDL+ elements as a whole over the dis-
cretised time-line. The time is uniformly discretised in clock
ticks (T) and a built-in action time-passing (TP) is respon-
sible for advancing the time accordingly. Then, an action
A1 can activate a processP1 that, after three clock ticks,
triggers eventE3, which in turn activates processP2. UP-
Murphi is able to handle process/events interleaving as well
as Timed Initial Literals and numeric Timed Initial Fluents.
Clearly, a fine enough discretisation must be used in order
to capture the happenings of TIFs and TILs. On the other
hand, the time granularity of TIFs and TILs can be used as a
guidance for choosing the initial time discretisation.

Limitations. The main limitation of UPMurphi is that
currently there is no heuristic to guide the search, and a blind
BFS is performed. UPMurphi also requires the PDDL+ do-
main to be typed for being processed. Finally, the only
metric actually supported by UPMUrphi is:minimize
total-time.

4 UPMurphi’s Track Record
UPMurphi has been applied to several challenging PDDL+
domains. In the following we present some of them.

The Planetary Lander (Fox and Long 2006). A rover
has to perform two observation tasks, that require either to
perform the corresponding preparation tasks or to execute

T T T T T T T T T T

E1 E6

E5

P1 P1 P1 P1

E4

A1

E2

TP TP TP TPTP TPTP

E3

TPTP TP TP

P1P1

A2

T

Time

P
la

n
 a

c
ti
o

n
s
 a

n
d

 h
a

p
p

e
n

in
g

s

Clock ticks

P2 P2 P2P2P2

A3

A4

Figure 2: Processes in the discretised plan timeline

Figure 3: Overview of the UPMurphi architecture

a single cumulative preparation task for both observations.
The goal is to find a solution minimising the plan makespan.
As a challenge, the domain presents a nonlinear system dy-
namics, deriving from the system equations (e.g., the en-
ergy generated by solar panels is influenced by the position
of the sun), concurrence between processes (i.e., the rover
may generate energy while is charging the battery), and pro-
cesses/events interactions that may invalidate the plan due to
tight resources and time constraints. In Figure 4 we show a
log of a UPMurphi execution for the planetary lander. UP-
Murphi here searches for a feasible plan using up to 1Gb
RAM and outputs the resulting plan in PDDL+ format. Fi-
nally, the plan is shown and saved into a file as well. More
details on the use of UPMurphi in this domain can be found
in (Della Penna, Magazzeni, and Mercorio 2012).

The Batch Chemical Plant. A production system is de-
signed to obtain a concentrated saline solution recycling the
remaining part for the next cycle. The system has many
tightly connected components, regulated by a nonlinear dy-
namics (due to the equations modelling temperature and
concentration variations), unknown action durations and a
large set of safety constraints. UPMurphi has been used to
synthesise a set of policies for many different initial produc-
tion configurations. Note that thanks to the efficient use of
the disk during the state space exploration, UPMurphi was
able to generate up to 7 million plans. More details on the
use of UPMurphi for the batch chemical plant can be found
in (Della Penna et al. 2010).

37

cmd: ./planetary_lander_planner -search:f -m1000 -format:pddl

* Source domain: planetary_lander.pddl

* Source problem: planetary_lander_problem.pddl

* Planning Mode: Feasible Plan

* Output format: PDDL+

* Epsilon separation: 0.001

* Output target: "planetary_lander_problem_plan.pddl"

* UPMurphi Model: planetary_lander

* State size 498 bits (rounded to 64 bytes).

* Allocated memory: 1000 Megabytes

** Time Discretisation = 0.1

** Digits for representing the integer part of a real = 8

** Digits for representing the fractional part of a real = 2

=== Analyzing model... ===============================

* Maximum size of the state space: 64726931 states.

with states hash-compressed to 40 bits.

[0:0:2.87] states explored: 100000, actions fired: 101880

BFS level: 63, states queued: 7368, goals found: 0, errors: 0

max plan length: 6.30

34843.21 states/sec, 35498.26 actions/sec, 0.15\% memory used

....

[0:1:30.32] states explored: 3000000, actions fired: 3194058

BFS level: 170, states queued: 7657, goals found: 0, errors: 0

max plan length: 17.00

33215.23 states/sec, 35363.80 actions/sec, 4.63\% memory used

==

Model exploration complete (in 92.76 seconds).

3282884 actions fired

1 start states

3084414 reachable states

1 goals found

=== Building model dynamics... =======================

Transition Graph mode: Memory Image

Model dynamics rebuilding complete (in 97.71 seconds).

3084414 states

3282884 transitions

out degree: min 0 max 10 avg 1.06

=== Finding paths... =========================

* Search Algorithm: Feasible Plan.

=== Collecting plans... ==============================

Plan(s) generation complete (in 98.41 seconds).

1 plans

plan length (actions): min 186 max 186 avg 186.00

plan duration (time): min 0 max 180 avg 180.00

plan weight: min 0 max 180 avg 180.00

=== Writing final results... =========================

* Output format: PDDL+

* Output target: "planetary_lander_problem_plan.pddl".

; --Plan #00001--------------------------

; -- Discretisation: 0.100----------------

; ---------------------------------------

0.000: (fullprepare dum unit1) [3.000]

3.001: (observe2 unit1) [8.000]

11.002: (observe1 unit1) [7.000]

; ---------------------------------------

; --Plan duration: 18.002, weight: 0180----

; ---------------------------------------

Figure 4: Log of a UPMurphi exeuction for thePlanetary
Landerdomain

Planetary Lander Chemical Plant
State Space Size 1024 1029

Reachable States 31, 965, 220 29, 968, 861
Generated Plans 5, 309, 514 7, 154, 464

Table 1: Some statistics for Planetary Lander and Chemical
Plant domains

Nonlinear generator. It is the continuous model of the
well-known generator domain (Howey and Long 2003). A
generator is powered by a fuel tank with a limited capacity
of 60 fuel units and consumes one fuel unit per second. Dur-
ing the generator activity (modelled by the consume durative
action), two fuel tanks of 25 fuel units each can be used to
refuel it (through the refuel durative action). The refuelling
process has a variable duration (i.e., its duration must be de-
cided by the planner) and is described by the Torricelli’s law,
which makes the system dynamics nonlinear. Moreover, the
domain also involves concurrency, since the consume and
refuel actions take place continuously and concurrently, and
are modelled through continuous processes. The goal is to
make the generator run for 100 seconds. Table 2 summarises
the results of the universal planning process after three Dis-
cretise and Validate iterations. We first considered a time
discretisation of5.0 and2.5, both resulting in invalid solu-
tions. We then refined the discretisation to1.0 which proved
to be fine enough for obtaining valid plans.

Time discretisation (sec) 5.0 2.5 1.0

State space size 1015 1016 1018

Reachable states 26, 276 399, 189 29, 119, 047
Generated plans 0 10, 015 126, 553

Total synthesis time 3.7 20.71 1, 430.11
Valid NO NO YES

Table 2: Universal Plan statistics for the generator domain
with time discretisation from5.0 down to1.0 seconds

Other examples were UPMurphi has been applied can
be found in (Della Penna, Magazzeni, and Mercorio 2012),
while works built on top of UPMurphi are described in (Fox,
Long, and Magazzeni 2012; Campion et al. 2013; Boselli et
al. 2014) and (Mezzanzanica et al. 2015).

5 Concluding Remarks
In this paper we presented the release of the PDDL+ plan-
ner UPMurphi, overviewing its main features that allow it
to handle the full range of PDDL+ features, including non-
linear continuous processes, exogenous events, Timed Ini-
tial Literals and numeric Timed Initial Fluents. On a practi-
cal note, UPMurphi has been designed to work natively on
Linux distributions (Ubuntu specifically), but it has been ex-
tensively tested on Windows with Cygwin environment, too.
Finally, a MacOS compilation is also supported. Please refer
to the UPMurphi web page (UPMurphi Web Page 2015) for
download, installation instructions, more details, and news
about UPMurphi development.

38

References
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains.
In Proceedings of the Twenty Eighth Conference on Artificial
Intelligence (AAAI-14). AAAI Press.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ planning with hybrid automata: Foun-
dations of translating must behavior. InProceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS-15). AAAI Press.
Boselli, R.; Cesarini, M.; Mercorio, F.; and Mezzanzanica,
M. 2014. Planning meets data cleansing. InThe 24th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-14), 439–443.
Bryce, D., and Gao, S. 2015. SMT-based nonlinear PDDL+
planning. InProceedings of the Twenty Nineth Conference
on Artificial Intelligence (AAAI-15). AAAI Press.
Cached Murphi Web Page. 2006.http://www.di.
univaq.it/gdellape/murphi/cmurphi.php.
Campion, J.; Dent, C.; Fox, M.; Long, D.; and Magazzeni,
D. 2013. Challenge: Modelling unit commitment as a plan-
ning problem. InProceedings of the Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-13).
Cimatti, A.; Giunchiglia, F.; Giunchiglia, E.; and Traverso,
P. 1997. Planning via model checking: A decision procedure
for AR. In Recent Advances in AI Planning, 4th European
Conference on Planning, (ECP’97), 130–142.
Coles, A. J., and Coles, A. I. 2014. PDDL+ planning with
events and linear processes. InProceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS-14).
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012.
COLIN: Planning with continuous linear numeric change.
Journal of Artificial Intelligence Research (JAIR)44:1–96.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: A tool for universal planning
on PDDL+ problems. InProceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-09). AAAI.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2010. A PDDL+ benchmark problem: The batch chem-
ical plant. InProceedings of the 20th International Confer-
ence on Automated Planning and Scheduling (ICAPS-10),
222–225.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A universal planning system for hybrid domains.Applied
Intelligence36(4):932–959.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning.Journal of Artificial Intel-
ligence Research (JAIR)27:235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based
policies for efficient multiple battery load management.J.
Artif. Intell. Res. (JAIR)44:335–382.
Howey, R., and Long, D. 2003. Vals progress: The auto-
matic validation tool for PDDL2.1 used in the international

planning competition. InProc. of ICAPS Workshop on the
IPC.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 294–301.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. InICAPS, 206–213.
McDermott, D. V. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. InICAPS, 143–
152.
Mezzanzanica, M.; Boselli, R.; Cesarini, M.; and Mercorio,
F. 2015. A model-based evaluation of data quality activities
in KDD. Inf. Process. Manage.51(2):144–166.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Plan-
ning in dynamic environments: Extending htns with nonlin-
ear continuous effects. InProceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. InAAAI, 1010–1015.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner.Artif. Intell. 166(1-2):194–
253.
UPMurphi Web Page. 2015.https://github.com/
gdellapenna/UPMurphi.

39

Hybrid Systems: Guided Search, Abstractions, and Beyond

Sergiy Bogomolov
IST Austria, Austria

sergiy.bogomolov@ist.ac.at

Abstract

Hybrid systems represent an important and powerful formal-
ism for modeling real-world applications such as embedded
systems. A verification tool like SpaceEx is based on the ex-
ploration of a symbolic search space (the region space). As
a verification tool, it is typically optimized towards proving
the absence of errors. In some settings, e.g., when the verifi-
cation tool is employed in a feedback-directed design cycle,
one would like to have the option to call a version that is
optimized towards finding an error path in the region space.
A recent approach in this direction is based on guided search.
Guided search relies on a cost function that indicates which
states are promising to be explored, and preferably explores
more promising states first. In this talk, we present two ap-
proaches to define and compute efficient cost functions. We
develop our approaches on the top of the symbolic hybrid
model checker SpaceEx which uses regions as its basic data
structures.
In the first part of the talk, we introduce a box-based distance
measure which is based on the distance between regions in
the concrete state space. In the second part of the talk, we
discuss an abstraction-based cost function based on pattern
databases for guiding the reachability analysis. For this pur-
pose, a suitable abstraction technique that exploits the flexi-
ble granularity of modern reachability analysis algorithms is
introduced. We illustrate the practical potential of our ap-
proaches in several case studies.

40

