
Reactive Model-based Programming of Micro-UAVs

Eric Timmons and Cheng Fang and Enrique Fernandez and Erez Karpas and Steven J. Levine

Pedro Santana and Andrew Wang and David Wang and Peng Yu and Brian C. Williams
Model-based Embedded and Robotic Systems Group

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Abstract
In this demo, we will show how the Enterprise architecture,
developed at the Model-based Embedded and Robotic Sys-
tems group over the past decades, can be used to control a mi-
cro aerial vehicle, namely a Parrot ARDrone. The ARDrone
is programmed using RMPL, the Reactive Model-based Pro-
gramming Language, which allows a user to control the vehi-
cle with different levels of autonomy.

Introduction
RMPL, the Reactive Model-based Programming Language
(Willams and Gupta 1999; Ingham, Ragno, and Williams
2001; Kim, Williams, and Abramson 2001) was developed
in order to enable users to program autonomous spacecraft
in a familiar way — using Java-like object oriented program-
ming. RMPL combines plant model specification and a con-
trol program within a single program. The Enterprise archi-
tecture consists of a set of algorithms which can reason over
RMPL programs.

During January 2015, the Model-based Embedded and
Robotic Systems group taught an intensive, three week
course to introduce (mostly) first-year students to various
planning and autonomous systems concepts using various
capabilities of the Enterprise architecture to control a mi-
cro UAV — the Parrot ARDrone. The students first learned
to control the ARDrone by writing a command sequence,
consisting of actions allowing them to move the UAV by X
meters in some direction. Then, they were taught about lo-
calization and path planning, given access to a path planner,
and allowed to instead tell the UAV to go from location A to
location B. Finally, they were given access to a task planner,
and were allowed to specify just the goals they wanted the
UAV to achieve. The grand challenge in the course was to
model an alien invasion scenario, and have the task planner
find a solution and execute it.

In this paper, we describe how the Enterprise architecture
is used to control the Parrot ARDrone. However, before we
describe the architecture, we describe Temporal Plan Net-
works, the plan representation which is used by most of its
components.

Temporal Plan Networks
A Temporal Plan Network (TPN, for short) is a tuple tpn =
〈Ev, SV,DV,Ep〉.

• Ev is the set of events. Each event e ∈ Ev is atomic,
and has no other attributes except for its identity (in the
implementation events have an ID and name). Each event
e is also associated with a guard condition guard(e).

• SV is a set of state variables. Each state variable sv ∈
SV is associated with a domain dom(sv).

• DV is a set of decision variables, which is disjoint from
SV . Each decision variable dv ∈ DV is associated with a
finite domain dom(dv), and a guard condition guard(dv).

• Ep is a set of episodes. An episode ep is a tuple
〈fromE, toE, dc, sc, gc〉, where:

– fromE and toE are events (referred to as the from
event and the to event, respectively).

– dc is a constraint on the duration of the episode. For-
mally, dc is a Boolean function from R. We assume
that all duration constraints are simple temporal con-
straints (Dechter, Meiri, and Pearl 1991), of the form
toE − fromE ∈ [lb, ub], for lb, ub ∈ timedom.

– sc is a state constraint. sc describes feasible state tra-
jectories during episode ep. Formally, sc is a Boolean
function from SV × R≥0.
If sc is trivially true, then this episode is called a tempo-
ral constraint. Otherwise, we require that the duration
is non-negative, that is dc(x) is false for all x < 0.

– gc is a guard condition, also referred to as guard(ep),
as described below.

A guard condition, guard, is a Boolean expression com-
posed using arbitrary Boolean combinators (and, or, not) of
expressions of the form dv = v where dv ∈ DV is a deci-
sion variable, and v ∈ dom(dv).

We now turn our attention to defining what a “solution”
for a TPN looks like. A candidate solution for a TPN tpn =
〈Ev, SV,DV,Ep〉 is a pair sol = 〈s, d〉 where:

• s : Ev → R≥0 ∪ {⊥} is a partial schedule, assigning
times to some of the events (where s(e) 6= ⊥) and not
scheduling other events (where s(e) = ⊥), and

• d is a partial assignment to decision variables, assigning
to each dv ∈ DV either some value in dom(dv) or ⊥.

We will denote the set of all possible candidate solutions
(valid or not) by CS.



Another useful notion is that of a state trajectory. For-
mally, a state trajectory st is a function mapping each state
variable to a function assigning it a value at any given time-
point. In other words, st(sv) : R≥0 → dom(sv) is a func-
tion which takes a time point t and returns the value of state
variable sv at time t. We will assume that st(sv) is piece-
wise continuous for all state variables sv ∈ SV .

Finally, a candidate solution sol = 〈s, d〉 admits st iff:

• The partial schedule s assigns a time to all events whose
guards hold, and only those events. That is, for all events
e ∈ Ev, s(e) 6= ⊥ iff guard(e) is true under sol and st.

• The partial assignment d assigns a value to the decision
variables whose guards hold, and only those. That is,
for all decision variables dv ∈ DV , d(dv) 6= ⊥ iff
guard(dv) is true under sol and st.

• For each episode ep = 〈fromE, toE, dc, sc, gc〉 such
that the guard guard(ep) is true under sol and st, the fol-
lowing hold:

– guard(fromE) and guard(toE) are also true under
sol and st

– The duration constraint dc(s(toE)−s(fromE)) holds.
– The state constraint sc holds in st. A state

trajectory st satisfies a state constaint iff for all
state variables, and for all time points t inside
episode ep, the state constraint is satisfied by st,
with time being shifted relative to the starting time
of the episode. Formally, this is expressed as
sc(st(sv)(t), t − min{s(fromE), s(toE)}) holds for
all time points t between min{s(fromE), s(toE)}
and max{s(fromE), s(toE)}, and for all sv ∈ SV .

Enterprise Architecture and Micro UAVs
The Enterprise architecture is a generic one, and has been
used in other applications before, e.g., in the context of col-
laborative human-robot manufacturing (Burke et al. 2014).
We first list the different components used in this demo, and
will then describe how we applied the architecture to the
Parrot ARDrone.

• RMPL Compiler
The RMPL Compiler translates a control program in
RMPL into an equivalent TPN.

• RMPL Preprocessor
The RMPL Preprocessor is responsible for encoding the
known map into RMPL. Each location in the map is en-
coded as a possible value for a finite domain variable.
A simple path planner is used to compute the minimum
traversal time between every pair of locations, and a prim-
itive method corresponding to that traversal is generated.
Finally, this path planner is also invoked when one of
these primitive methods is executed.

• The tBurton Planner (Wang and Williams 2015)
tBurton is a generative planner. Given a TPN with state
constraints, it will generate a fully executable TPN, which
contains primitive actions that achieve the desired state
constraints.

• The Kirk Planner (Kim, Williams, and Abramson 2001)
Kirk is a high-level planner, which can take a TPN with
choices, and find the optimal set of choices which is tem-
porally consistent.

• The Pike Executive (Levine and Williams 2014)
Pike is responsible for making choices for the robots in
the plan, monitoring execution, and dispatching actions at
the appropriate times.

• Activity Dispatcher
The activity dispatcher is responsible for invoking execu-
tion of actions that are dispatched by Pike. It reads the
name of the action to be started (as a string), interprets
that string, and invokes the appropriate command via the
correct ROS interface.
In order to apply Enterprise to the ARDrone, we used

the tum ardone ROS package (Engel, Sturm, and Cremers
2014) for both localization and executing primitive motion
commands. The only other adaptations that had to be made,
other than modeling a micro UAV in RMPL, were encoding
the movement of the ARDrone in RMPL. We used a YAML
file that describes a known map, including names regions,
and built an RMPL Preprocessor to convert from the known
map specification to a finite domain variable, as described
above.

References
Burke, S.; Fernandez, E.; Figueredo, L.; Hofmann, A.; Hof-
mann, C.; Karpas, E.; Levine, S.; Santana, P.; Yu, P.; and
Williams, B. 2014. Intent recognition and temporal re-
laxation in human robot assembly. In Proceedings of the
Twenty-fourth International Conference on Automated Plan-
ning and Scheduling (ICAPS-14).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Engel, J.; Sturm, J.; and Cremers, D. 2014. Scale-aware nav-
igation of a low-cost quadrocopter with a monocular camera.
Robotics and Autonomous Systems 62(11):1646–1656.
Ingham, M.; Ragno, R.; and Williams, B. 2001. A reac-
tive model-based programming language for robotic space
explorers.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-01), 487–493.
Levine, S., and Williams, B. 2014. Concurrent plan recog-
nition and execution for human-robot teams. In Proceedings
of the Twenty-fourth International Conference on Automated
Planning and Scheduling (ICAPS-14).
Wang, D., and Williams, B. 2015. tBurton: A divide and
conquer temporal planner. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI
2015). AAAI Press.
Willams, B., and Gupta, V. 1999. Unifying model-based and
reactive programming in a model-based executive. In Pro-
ceedings of the 10th International Workshop on Principles
of Diagnosis.


