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Abstract

We aim to bridge some of the gap between approaches to
planning and scheduling. Planning has very flexible and pow-
erful formalisms for modeling complex optimisation prob-
lems that are well suited to the ever-changing requirements
of industrial problems, however heuristic search, the defacto
standard approach to solving planning problems, is not al-
ways the best solving strategy for problems on the intersec-
tion of planning and scheduling, such as multi-agent planning
with shared resources. Historically, compilation techniques
from planning problems to a sequence of satisfiability prob-
lems have performed well when makespan optimality was re-
quired, however as action costs have become ubiquitous in
planning benchmarks, SAT’s requirement for a tight bound
on the number of actions performed has limited its applica-
bility. Equivalently this work can be seen as testing the fea-
sibility of planning as a modelling language for constraint-
programming and mixed integer programming solvers. Our
initial work using the Golog action language to specify a
hybrid branch-and-price algorithm has shown very promis-
ing results. The ultimate aim of this thesis is to develop al-
gorithms to allow heterogenous teams of both model-based
and programmatically-specified agents to effectively find and
prove their optimal joint plan in domains with shared re-
sources, using a succinct interface that does not require ex-
plicit knowledge of other agents in the team.

Publications produced
1. Fragment based planning using column generation

(Davies et al. 2014).

2. Optimisation and relaxation in the situation calculus
(Davies et al. 2015b).

3. Sequencing Operator Counts (Davies et al. 2015a).

Introduction
Multi-agent temporal Golog (Kelly and Pearce 2006) and
heuristic optimising Golog (Blom and Pearce 2010) have
been investigated separately. The combination of these fea-
tures have industrial applications in scheduling problems,
and the ability to use domain knowledge to supplement the
search for solutions is attractive, however Golog’s lack of
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powerful search algorithms has limited its applicability. We
attempt to address this shortcoming for a class of plan-
ning/scheduling problems.

One of the key techniques behind our approach is lin-
ear programming, in particular duality theory. Linear pro-
gramming has been used by a number of planning heuristics
(Briel et al. 2007) (Coles et al. 2008) (Bonet 2013). How-
ever these heuristics have exploited only the primal solutions
to the LP, whereas we use both the primal and the dual. Ad-
ditionally we use the information in a way, that cannot be
described as a heuristic in the usual sense.

Preliminaries
The Situation Calculus and Basic Action Theories. The
situation calculus is a logical language specifically designed
for representing and reasoning about dynamically changing
worlds (Reiter 2001). All changes to the world are the result
of actions, which are terms in the language. We denote ac-
tion variables by lower case letters a, and action terms by α,
possibly with subscripts. A possible world history is repre-
sented by a term called a situation. The constant S0 is used
to denote the initial situation where no actions have yet been
performed. Sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor situation
resulting from performing action a in situation s. Predicates
and functions whose value varies from situation to situation
are called fluents, and are denoted by symbols taking a situ-
ation term as their last argument (e.g., Holding(x, s)).

Within the language, one can formulate basic action the-
ories that describe how the world changes as the result of
the available actions (Reiter 2001). These theories, com-
bined with Golog, are more expressive than STRIPS or ADL
(Röger and Nebel 2007). Two special fluents are used to de-
fine a legal execution: Poss(a, s) is used to state that action
a is executable in situation s; and Conflict(as, s) is used to
state that the set of actions as may not be executed concur-
rently.

High-Level Programs. High-level non-deterministic pro-
grams can be used to specify complex goals: the goal of a
Golog program is to find a sequence of actions generated by
some path through the program. We use temporal semantics
from MIndiGolog (Kelly and Pearce 2006) which builds on



ConGolog (Giacomo, Lesperance, and Levesque 2000), and
refer to these extensions simply as Golog. A Golog program
δ is defined in terms of the following structures:
α atomic action
ϕ? test for a condition
δ1; δ2 sequence
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters,
δ is a Golog program, and ϕ a situation-suppressed formula,
that is, a formula in the language with all situation argu-
ments in fluents suppressed. Program δ1|δ2 allows for the
nondeterministic choice between programs δ1 and δ2, while
πx.δ executes program δ for some nondeterministic choice
of a legal binding for variable x. δ∗ performs δ zero or more
times. Program φ? succeeds only if φ holds in the current
situation. Program δ1‖δ2 expresses the concurrent execu-
tion of programs δ1 and δ2. For notational convenience we
add:
π(x ∈ X).δ equivalent to πx.(x ∈ X)?; δ
foreach x in vs do δ equivalent to δ[x/v1]; · · · ; δ[x/vn]

forconc x in vs do δ equivalent to δ[x/v1]|| · · · ||δ[x/vn]

Here δ[x/y] denotes the program δ where each occurrence of
variable x has been replaced with the value y, and vi is the
ith element of the sequence vs.

Linear and Integer Programming. An Integer Program
(IP) consists of a vector of binary decision variables,1 usu-
ally denoted x̃, an objective linear expression and a set of
linear inequalities. We will refer to these inequalities as
“resources” throughout this paper, and each decision repre-
sented by the variable xi can be thought of as using ur,i units
of some resources r ∈ R, each of which has an availability
of ar.

A general form, assuming a set R of inequalities, where
ci, ur,i and ar are constants, is:

Minimize:
∑

ci · xi

Subject To:
∑

ur,i · xi ≤ ar ∀r ∈ R

Finding the optimal solution to an integer program is NP-
hard, however the linear program (LP), constructed by re-
placing the integrality constraints xi ∈ {0, 1} with a contin-
uous equivalent xi ∈ [0, 1], can be optimised in polynomial
time. This LP is known as the linear relaxation of the IP.

A model of this form where some variables are continu-
ous and some are integral is called a Mixed Integer Program
(MIP). To limit confusion, we will denote binary variables
xi and continuous ones vi, we assume all xi ∈ {0, 1} and
vi ∈ [0, 1] throughout this paper.

1In general decision variables can be integer but binary decision
variables suffice for our purposes.

The (M)IP is then solved using a “branch-and-bound”
search strategy where some xi which is fractional in the LP
optimum is selected at each node and two children are en-
queued with additional constraints xi = 1 in one branch and
xi = 0 in the other. Heuristically constructed integer solu-
tions provide an upper bound, and the relaxations provide a
lower bound.

Solving the linear relaxation implicitly also optimises the
so-called dual problem. Intuitively the dual problem is an-
other linear program that seeks to minimize the unit price
of each resource in R, subject to the constraint that it must
under-estimate the optimal objective of the primal. We use
πr to denote this so-called “dual-price” of resource r. An
estimate of the impact of consuming u additional units of
resource r on the current objective can then be computed by
multiplying usage by the dual price: u · πr.

These dual prices allow us to quickly identify bottlenecks
in a system, and give us an upper bound on just how far out
of the way we should consider going to avoid them. This
leads to the important concept of reduced cost: an estimate
of how much a decision can improve an incumbent solution.
Informally, reduced cost is the decision’s intrinsic cost ci,
less the total dual price of the resources required to make
this decision.

Given an incumbent dual solution π̃, a decision variable
xi has a reduced-cost γ(i, π̃), defined as:

γ(i, π̃) = ci −
∑
r∈R

πr · ur,i

This is guaranteed to be a locally optimistic estimate, so that,
in order to improve an incumbent solution, we only need to
consider decisions xi with γ(i, π̃) < 0. Due to the convex-
ity of linear programs, repeatedly improving an incumbent
solution is sufficient to eventually reach the global optimum,
and the non-existence of any xi with negative reduced cost
is sufficient to prove global optimality.

Column Generation and Branch-and-Price. Most real-
world integer programs have a very small number of non-
zero xi. This property, combined with the need only to
consider negative reduced-cost decision variables, allows us
to solve problems with otherwise intractably large decision
vectors using a process known as “column generation” (De-
saulniers, Desrosiers, and Solomon 2005). The name re-
flects the fact that the new decision variable is an additional
column in the matrix representation of the constraints.

Column generation starts with a restricted set of decision
variables obtained by some problem-dependent method to
yield a linear feasible initial solution. With such a solu-
tion we can compute duals for this restricted master problem
(RMP) and use reduced-cost reasoning to prune huge areas
of the column space.

Incomplete and suboptimal methods of constructing inte-
ger feasible solutions are unfortunately referred to in the Op-
erations Research literature simply as “Heuristics”, to avoid
ambiguity we will refer to them as “MIP heuristics”. These
are essential for both finding a feasible initial solution, and



providing a worst bound on the solution during the branch-
and-bound search process. These are analogues to fast but
incomplete search algorithms in planning such as enforced
hill climbing.

Column generation then proceeds by repeatedly solving
one or more “pricing problems” to generate new decision
variables with negative reduced cost and re-solving the RMP
to generate new dual prices. Iterating this process until no
more negative reduced cost columns exist is guaranteed to
reach a fixed point with the same objective value as the
much larger original linear program. We can then use a
similar “branch-and-bound” approach as in integer program-
ming to reach an integer optimum. This process is known as
“branch-and-price”.

Branching rules used in practical branch-and-price
solvers are often more complex than in IP branch-and-
bound and are sometimes problem dependent. The branch
xi = 0 does not often partition the search-space evenly:
there are usually exponentially many ways to use the
resources consumed by xi. Additionally, disallowing the
re-generation of the same specific solution xi by the pricing
problem is not possible with an IP-based pricing-problem
without fundamentally changing the structure of the
pricing-problem.

Consequently, effectiveness of a branching strategy must
be evaluated in terms of how effectively the dual-price of the
branching constraint can be integrated into the pricing prob-
lem. This is another motivation for our hybrid IP/Planning
approach, as using a planning-based pricing problem allows
us to disallow specific solutions and handle non-linear, time-
dependent costs and constraints.

A concrete example of branch-and-price is presented in
the Fragment-Based Planning section.

Big-M Penalty Methods. We noted earlier that to start
column generation an initial (linear) feasible solution is re-
quired. There is no guarantee that finding such a feasible
solution is trivial. Indeed for classical Planning problems,
finding a feasible solution is PSPACE-complete in general.
No work we are aware of determines the complexity of com-
puting a linear relaxation of a plan.

We avoid this problem by transforming our IP into an MIP
where for any constraint having ar < 0 we add a new contin-
uous variable vr ∈ [0, 1], representing the degree to which
the constraint is violated, and replace the constraint with:∑
ur,i ·xi ≤ |ar| ·vr−|ar| and cv =M whereM is a large

number. This guarantees the feasibility of the trivial solution
xi = 0 for all i and all vr = 1.

This represents a relaxation of the original IP with the
property that, given sufficiently large M , the optimal solu-
tion is a feasible solution to the original problem, iff such
a solution exists. This is known as a “penalty method” or
“soft constraint”. The process is similar to the first phase of
the simplex algorithm for finding an initial feasible solution
to a linear program when all decision variables are known in
advance.

Reasoning about optimality One of the key techniques
in proving solution quality used in Operations Research is
relaxation. Formally a relaxation of a problem with a set
of solutions X and cost function C is a new problem with
solutions X ′ and cost function C ′ such that X ⊆ X ′ and for
any solution x ∈ X , the relaxed cost is a lower bound on the
real cost C ′(x) ≤ C(x).

Relaxations should be easier to solve to optimality than
the original problem, and can give us a tractable way to
prove how far from optimal a candidate solution is. Given
a feasible solution to the original problem x and an optimal
solution to the relaxed problem x′∗, the optimality gap ε is
defined as ε = C(x)/C ′(x′∗) − 1. When ε = 0 the so-
lution is optimal. Where multiple relaxations are available,
the tightest can be used to compute ε. This approach is used
with Lagrangian Relaxation.

Lagrangian Relaxation In many optimisation problems it
is easier to optimize a variant of the problem with fewer con-
straints. For example the resource constrained shortest path
problem (Mehlhorn and Ziegelmann 2000) is NP-complete,
whereas there are well-known polynomial-time algorithms,
such as Dijkstra’s, for the classical, unconstrained shortest
path problem.

Lagrangian Relaxation takes advantage of this property
by softening such complicating constraints into the objec-
tive function (Lemaréchal 2001; Fisher 2004). This allows
the effective use of algorithms designed for the easier prob-
lem by penalizing violations of the complicating constraints.
Careful variation of the penalties (Lagrange multipliers) al-
lows the relaxed problem to be guided towards feasible areas
of the original problem.

Traditionally Lagrangian Relaxation is applied to Integer
Programming (IP) models. A significant part of the contri-
bution of my thesis is extending this concept to logic-based
optimization in dynamical systems.

Given a set of inequalities R to relax in an IP model:

Minimize: z(x̃)

Subject To: cr(x̃) ≤ 0 ∀r ∈ R
cn(x̃) ≤ 0 ∀n ∈ N

x̃ ∈ Zn

We transform it into a relaxed problem:

Minimize: z(x̃)+
∑
r∈R

λr · cr(x̃)

Subject To: cn(x̃) ≤ 0 ∀n ∈ N
x̃ ∈ Zn

Note that this increases the objective when constraints are
violated, but decreases it when constraints are strictly satis-
fied. To solve the original problem, the relaxed problem is
optimized and the penalty, λr, for each violated constraint,
r, is increased, the relaxed problem is re-optimized and the
process is iterated. In general, branching is also required to
find solutions to discrete problems.



Fragment-Based Planning
Given the set F of all possible executions of each agents’
programs, all joint executions for the team are a subset of F
where no two fragments use the same resource simultane-
ously

Finding the optimal execution is then equivalent to finding
the optimal solution to the Integer Program:

Minimize:
∑
f∈F

df · xf +
∑
o∈O

M · vo

Subject To:
∑

f∈Fbt

xf ≤ c(b) ∀b ∈ B ,∀t ∈ T

vo +
∑
f∈Fo

xf = 1 ∀o ∈ O

Here xf is 1 iff f should be executed in the joint plan. Fo ⊆
F is the set of fragments that satisfy subgoal o, Fbt ⊆ F is
the set of fragments that consume resource b at time t and
df is the duration of fragment f .

Enumerating F is however prohibitive, and large numbers
of potential fragments are uninteresting, or prohibitively
costly and will never be chosen in any reasonable joint-
execution, nor need to be considered in finding and proving
the optimal joint execution.

To avoid enumerating F , we can use delayed column gen-
eration as described earlier. To use this approach, we need
to re-compute action costs that minimise the reduced cost of
the next fragment generated given an optimal solution to the
restricted LP.

We provide pseudo-code for the FBP algorithm below,
Quine quotes are used around linear expressions such as
[[expression ≤ constant]] to denote constraints given to
the LP solver to distinguish them from logical expressions.

To solve the linear relaxation of the joint planning prob-
lem, we call LINFBP({vo | o ∈ O}, {o : [[vo = 1]] | o ∈
O}, O, δ). Note that the [[expr = a]] form of constraints can
be considered a shorthand for two constraints [[expr ≤ a]]
and [[−expr ≤ −a]].

We assume that the Golog search procedure Do returns
the fragment f with the least reduced cost γ(f, π̃), rather
than just any valid execution. Our implementation uses
uniform-cost search to achieve this.

function LINFBP(Frags, Res, Goals, δ)
LowBound ← 0
UpBound ←M · ‖Goals‖
while (1− ε) · UpBound > LowBound do

θ, x̃, π̃ ← SolveLP(Frags,Res)
F ← Do(π(g ∈ Goals).δ|noop, π̃)
Frags← Frags ∪ {F}
dθ ← ‖Goals‖ · γ(F, π̃)
UpBound ← θ
LowBound ← max(LowBound, θ + dθ)
for all r ∈ F do

[[e ≤ a]]← Res[r]
Res[r]← [[e+ uF,r · xF ≤ a]]

return θ,Frags,Res, x̃

We then use the LINFBP column generation implementa-
tion inside a branch-and-price search. We assume that frag-
ments use redundant resources for the purposes of branch-
ing. In particular we rely on each fragment to use 1 unit of
a resource that uniquely identifies that fragment, so that we
eventually find an integral solution if one exists.

function FBP(Gs, δ)
Fs← {vg | g ∈ Gs}
Rs← {g : [[1 · vg = 1]] | g ∈ Goals}
LowBound ← 0
UpBound ←M · ‖Goals‖
Queue← {∅}
Fs← Fs ∪ initfrags(Gs, δ)
while (1− ε) · UpBound > LowBound do

BranchRs← Pop(Queue)
LRs← Rs ∪ BranchRs
θ,Fs,Rs, x̃← LINFBP(Fs,LRs,Gs, δ)
if any resources have fractional usage then

if soft constraints satisfied i.e. θ < M then
X ← some fractional resource
Branches← branch on dXe and bXc
Queue← Queue ∪ Branches

UpBound ← SolveIP(Fs,LRs)
LowBound ← minimum θ in Queue

This process can be modified to incrementally return each
solution to SolveIP(Fs,Rs) as it is computed, and make this
an effective anytime algorithm.

Initial Results
In the bulk freight rail scheduling problem (BFRSP; De-
scribed in Davies et al. 2014), we observe speed-ups of sev-
eral orders of magnitude versus state-of-the-art planners, as
seen in Table 1 (Davies et al. 2014).

|V | |O| m/p Golog popf2 cpx FBP

6 2 1 0.4 0.3 0.7 1.6
6 4 1 — — 2.3 3.3
6 4 2 — — 1.7 2.0
6 8 2 — — 7.5 7.6
6 16 2 — — 37.9 29.7
6 32 2 — — — 50.3
6 64 2 — — — 150.3
6 128 2 — — — 418.8
6 256 2 — — — 589.7
16 44 11 — — — 315.0
16 88 11 — — — 363.0

Table 1: BFRSP: Time to first solution for increasing track
network vertices, ||V ||, and orders , ||O||, in seconds (1800s
time limit, 4GB memory)
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