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Abstract

This dissertation abstract outlines some of theoretical
frameworks for modeling and simulation of multi-agent
planning problems with rare catastrophic events. In par-
ticular, this abstract will focus on a wildfire surveillance
application using unmanned aircraft. The thesis abstract
presents an initial model and results of a preliminary
study.

Introduction
Optimal planning in problems with multiple agents interact-
ing in an uncertain environment is extremely challenging.
Many problems are computationally intractable because of
its large state and action spaces. In addition, some problems
involve rare catastrophic events that significantly influence
expected utility. The rarity of events can make computing
the optimal policy challenging. The thesis will propose effi-
cient methods for solving problems with multiple agents in-
teracting in the presence of rare catastrophic events, with ap-
plication of wildfire surveillance using unmanned aerial ve-
hicles (UAVs). The thesis abstract briefly explains the wild-
fire surveillance problem, its challenges, and possible ap-
proaches for solving the problem. It shows results of a pre-
liminary study and concludes with future works. Due to the
complexity of modeling the problem and methods to solve
the problem, the thesis abstract introduces a research plan
that includes defining the scenario, applying methods of rare
event simulation, modeling sequential decisions of an agent,
modeling an agent as human, and finally formulating a two-
players game with rare events.

Wildfire Surveillance using UAVs
Motivation
In 2013, the third largest wildfire in California’s history
started in the Sierra Nevada mountain range but soon
reached Yosemite National park. It burned more than
200,000 acres for nine weeks. Because the area of the wild-
fire was geographically distributed, it was hard to monitor
the area without aerial support. The MQ-1 Predator UAV
was introduced for surveilling the area.
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Unmanned aircraft have been occasionally used for
surveilling large wildfires since 2007 to capture infrared im-
ages of Southern California fires. There is tremendous inter-
est in the use of unmanned aircraft for wildfire surveillance
because of their low operational cost, ability to operate in
harsh weather conditions, and reducing risk to pilots and
firefighters. The images taken from unmanned aircraft can
help improve the ability of authorities to predict the evo-
lution of fires and support decision making of an incident
commander about where to allocate suppression resources.

Challenges

Although there are many benefits to using unmanned air-
craft, there are some issues when integrating unmanned air-
craft into current wildfire surveillance operations. One of
the biggest concerns is the risk of collision with manned
aerial supports and other unmanned aircraft. Firefighters in
the field want to launch low cost, hand-held aircraft for ob-
taining surveillance information. The airspace will be shared
by low-altitude unmanned aircraft and manned aerial sup-
ports such as helicopters, spotters, or tankers. It is important
to maximize surveillance but without compromising safety.

An important issue when unmanned aircraft are operated
in the field is communication loss between the aircraft and
its pilots on the ground. More than 400 large U.S. military
drones have crashed around the world since 2001 (Whitlock
2014). Unreliable communication links is one of the primary
reasons for vehicle loss. Unmanned aircraft operated in the
vicinity of wildfires would be under unfavorable conditions
for maintaining reliable radio communication. Communica-
tion loss needs to be considered when planning the actions
of unmanned aircraft.

In addition, plans developed for unmanned aircraft mon-
itoring wildfires should account for the various sources of
uncertainty. Fires propagate stochastically based on envi-
ronmental factors such as weather and topological condi-
tions. Manned aircraft in the vicinity follow might follow
preplanned paths, but but they may change course based on
how the wildfire propagates. Unmanned aircraft should con-
sider the uncertainty of the manned aircraft route to avoid
collision. Adding to the uncertainty of the manned aircraft
route, observation of locations of the unmanned aircraft and
manned aircraft can be noisy and incomplete.



Approach
This section outlines possible approaches for modeling and
simulation of the wildfire surveillance problem.

Rare Event Simulation
Rare event simulation is especially challenging and inher-
ently requires heavy computational effort due to the rareness
of the event. Aircraft collision risk estimation (Kim and
Kochenderfer 2015) is one example of rare event simulation.
Estimates of mid-air collision risk can be obtained through
Monte Carlo simulation of encounters sampled from a prob-
abilistic airspace model (Kochenderfer et al. 2008; 2010).
Due to the rarity of collision events, typically millions of
simulations are required. Techniques known as importance
sampling and the cross-entropy method (De Boer et al. 2005;
Rubinstein and Kroese 2004) have been used in the past to
bias the sampling on trajectories that are likely to result in
collision. Reliable estimates of collision risk can be obtained
with only a fraction of the computational cost required by
crude Monte Carlo simulation.

These techniques can be applied to solving a single-shot
decision problem presented later in the abstract. Since col-
lisions between unmanned aircraft and manned aircraft are
rare events, these techniques can help improve the speed of
simulations.

Direct sampling IfX is a discrete random variable and its
probability mass function is fX(x), the expected value of a
function g of X is shown in Eq 1.

E(g(X)) =
∑
x∈X

g(x)fX(x) (1)

Eq 2 is an unbiased estimator of the expected value. It
takes n samples, (x1, · · · , xn), and computes the mean of
g(x) over the samples.

g̃n(x) =
1

n

n∑
i=1

g(xi) (2)

If we want to estimate the probability of a rare event and
g(x) indicates whether x is a rare event, most of samples are
not useful and the estimator requires a lot of samples to have
a reasonable estimate.

Importance sampling Importance sampling is choosing
a good distribution from which to simulate a random vari-
able X . Samples are drawn from a proposal distribution hX
that generates more rare events instead of sampling from the
original distribution fX, and samples are weighted properly
as shown in Eq 3

g̃n(x) =
1

n

n∑
i=1

g(xi)
fX(xi)

hX(xi)
(3)

With a good proposal distribution, a better estimate can
be computed with fewer samples than direct sampling.

Cross-Entropy method The cross-entropy method pro-
vides a systematic way to find a good proposal distribution
for importance sampling. It is an adaptive algorithm involv-
ing an iterative procedure. Each iteration is broken down into
two phases:

1. Generate random samples from a proposal distribution

2. Update the parameters of the proposal distribution based
on the samples to produce better samples in the next iter-
ation.

Sequential Decision under Uncertainty
There are many uncertainties in this problem. It is uncer-
tain when communication is lost and when it returns. Ob-
servation about the location of manned aircraft is noisy.
The problem will be formulated as a partially observable
Markov decision process (POMDP) (Kochenderfer 2015).
A POMDP is often used to formulate a sequential decision
problem with state uncertainty. It tracks the belief about the
current state. There are few simple offline methods to solve
POMDP problems such as QMDP and Fast Informed Bound
(FIB) (Hauskrecht 2000). Offline approximate POMDP so-
lution algorithms have focused on point-based approxima-
tion techniques, as surveyed by (Shani, Pineau, and Kaplow
2013), such as Point-Based Value Iteration (PBVI) (Pineau,
Gordon, and Thrun 2006), Heuristic Search Value Iteration
(HSVI) (Smith and Simmons 2004), and Successive Ap-
proximations of the Reachable Space under Optimal Poli-
cies (SARSOP) (Kurniawati, Hsu, and Lee 2008). However,
these methods are not feasible if the state and action spaces
are large. Recently, online methods are actively researched
such as Monte Carlo Tree Search(MCTS)(Silver and Veness
2010). MCTS gets popularity once it has been applied to go
game successfully(Coulom 2007; Gelly et al. 2006). MCTS
looks ahead with possible actions and observations by sim-
ulations. The possibility of improving the speed of simula-
tions in MCTS using techniques of rare event simulation will
be studied.

Human Modeling
Since the pilot of the UAV is human, a bounded rational hu-
man model is required to have realistic simulation results.
There are a few methods to model human behavior. These
methods define how to select actions.

ε-greedy method An action of maximum expected utility
is selected with 1− ε probability. Other actions are selected
randomly with ε probability.

Roulette method An action is selected probabilistically
based on the ratio of utilities over all actions as shown in
Eq 4.

P (a) =
U(a)∑
∀a U(a)

(4)

Boltzmann distribution method An action is selected
probabilistically based on the Boltzmann distribution shown
in Eq 5.



P (a) =
exp(U(a)/T )∑
∀a exp(U(a)/T )

(5)

T is a temperature parameter that controls randomness.

Multi-Players Cooperative Game
Finally, the UAV pilot and manned aircraft pilot are modeled
as human. They are collaborating to achieve common goals
of safety and surveillance. They have uncertainty about both
the state of the environment and the choices of the other
agent. Each agent needs to reason about the other and ex-
ecute its own policy. Decentralized-POMDPs (Seuken and
Zilberstein 2005; Oliehoek 2012; Goldman and Zilberstein
2004) provide a framework to model this kind of problems.
This type of problems is usually extremely difficult to solve
but there are several approximate solution methods.

Level-k Model The level-k model (Camerer 2003) pro-
vides a reasoning model about other human players. When
building a decision making system that interacts with hu-
mans, computing the Nash equilibrium is not always helpful.
Humans often do not play a Nash equilibrium strategy due
to cognitive limitations. Level-k models assume that humans
are erroneous and limited in the number of steps of strategic
look-ahead, and it works well in practice. In the model, a
level-k agent assumes the other agents adopt level-1 strate-
gies and select actions according to the logit distribution.

Joint Equilibrium Search for Policies (JESP) JESP
(Nair et al. 2003) finds a Nash equilibria in the cooperative
game represented as the Dec-POMDP. It utilizes alternat-
ing best response. Policies of all but one are fixed and the
remaining agent computes a best response to the fixed poli-
cies. This process is performed for every agent and repeated
until no agents change their policies.

Max-n Monte Carlo Search Max-n Monte Carlo
Search(Samothrakis, Robles, and Lucas 2011) is the method
applying Monte Carlo Tree Search to max-n game tree. This
method has been applied to Pac-Man game successfully.
Max-n game tree is an n-player game tree with nodes rep-
resented as a tuple of utilities of all agents. Agents choose
actions that maximize their own utility. MCTS is applied to
prune the game tree so that the optimal path in the tree can
be computed efficiently.

Preliminary Study
This section introduces a wildfire surveillance scenario. The
scenario has been iterated multiple times with feedback from
firefighters. A stochastic wildfire propagation model has
been used. This preliminary study analyzes how uncertain-
ties and communication loss influence the decision of the
UAV in the scenario.

Scenario and Modeling
Figure 1 shows the scenario visually. The wildfire area is
modeled as a 11 × 11 grid world. There is a wildfire in
the center of the grid and the fire propagates stochastically.

Figure 1: Scenario

There is one UAV (circle) and one manned aircraft (trian-
gle). Both the unmanned aircraft and manned aircraft mon-
itor the area. Communication between the UAV and UAV
pilot is lost due to either hardware failure or radio inference.

The manned aircraft follows a planned path with a cer-
tain noise. The gray dotted line is the planned path and the
blue dotted line is the actual path. The UAV can choose one
of three actions when the communication is lost and the de-
cision does not change until the end of simulations. It is a
single-shot decision problem.

• back to base

• emergency landing

• stay in place

In the figure, the x mark is the location of the base and the
red dotted line is the path. For the emergency landing action,
the unmanned aircraft lands immediately at the current loca-
tion. It can crash when it lands on fire or by a certain chance
even when it does not land on fire. The last option is that the
unmanned aircraft stays in place until the manned aircraft
leaves the area.

Negative rewards are given if the unmanned aircraft
crashes or comes too close to the manned aircraft. The to-
tal utility is the sum of rewards accrued during a simulation.

Extension of Scenario

The first scenario involves determining the best action when
communication is lost. The scenario has been extended to
include simulations after the communication returns. Posi-
tive reward is given when the UAV monitors the area after
the communication returns. In this extended scenario, the
manned aircraft chases the rim of fire and unmanned air-
craft follows a lawn mower pattern for surveillance after the
communication returns. A new action for the UAV is intro-
duced. The UAV can lower its altitude until the manned air-
craft leaves the area.



(a) burning matrix, B (b) fuel matrix, F

Figure 2: Wildfire Model Variables

Figure 3: Transition of burning matrix, B

Wildfire Propagation Model
A simple stochastic wildfire model (Bertsimas et al. 2014)
is chosen for simulations. There two model variables B and
F . For each location x in the grid, B(x) and F (x) indicate
whether the cell is burning or not and how much fuel is re-
maining in the cell. The figure 2 shows an example of B
and F . Fire propagates probabilistically based on p(x, y),
which is the probability that a fire in cell y ignites a fire in
cell x. Transitions of B and F are described in Figure 3 and
Eq 6 7 8.

ρ1 =

{
1−

∏
y(1− P (x, y)Bt(y)) if Ft(x) > 0

0 o.w.
(6)

ρ2 =

{
1 if Ft(x) = 0

0 o.w.
(7)

Ft+1(x) =

{
Ft(x) if B(x) = false or Ft(x) = 0

Ft(x)− 1 o.w.
(8)

Simulation
Expected utilities are calculated at every location for every
action of the unmanned aircraft. For each pair of location
and action, multiple simulations are performed until the av-
erage of expected utility converges. Figure 4 shows a simu-
lation of a UAV initially located at (4, 5) and it chooses back
to base action during the communication loss.

Figure 4: Simulation

Figure 5: Expected Utility Map



Figure 6: Policy Map

(a) small uncertainty (b) large uncertainty

Figure 7: Policy map with manned aircraft path uncertainties

Results
Initial scenario Figure 5 shows a map of expected utilities
for back to base. For example, an unmanned aircraft located
at (4, 8) gets a large negative utility if it chooses the back
to base action when the communication is lost. This large
negative utility is because the unmanned aircraft encounters
the manned aircraft on the way back to the base. There is a
different utility map for each action. For a given location of
unmanned aircraft, the best action is the one that has a max-
imum utility among utilities of all actions at the location.

Figure 6 shows a policy map. For each location, the map
shows which action is best. Blue, green, and red colors rep-
resent back to base, stay in place and emergency landing ac-
tions respectively. As shown in the figure, emergency land-
ing action is the best for locations in the path of manned
aircraft. Otherwise, unmanned aircraft stays in place or is
back to base. Figure 7 shows policy maps as increasing the
uncertainty of manned aircraft path. Red area gets larger be-
cause manned aircraft deviates more from the planned path
as the uncertainty increases.

Extended scenario Figure 8 and Figure 9 show how the
policy map changes as the duration of communication loss
varies and how the uncertainty of communication loss dura-
tion influences the policy. Blue, cyan, red, and yellow col-
ors represent back to base, stay in place, emergency landing
and lower altitude actions, respectively. As shown in the fig-

(a) 5 time steps (b) 10 time steps (c) 15 time steps

Figure 8: Policy map with various durations of communica-
tion loss

(a) std. 1. (b) std. 2. (c) std. 5.

Figure 9: Policy map with various standard deviations of
communication loss duration

ures, the optimal action is greatly impacted by communica-
tion loss duration and its uncertainty.

In the figures, the impact of communication loss has been
studied without considering the surveillance reward after the
communication returns. Figure 10 shows how the surveil-
lance reward impacts the optimal action. Ten time steps is
chosen for the communication loss duration. Thus, Figure 10
(a) is the same as Figure 8 (b) without surveillance reward.
As the surveillance reward increases, lower altitude or stay
in place action is preferred over emergency landing or the
back to base action. This is because unmanned aircraft gets
surveillance reward after the communication comes back,
whereas it does not with emergency landing or back to base
action.

Future Work
Fast-Time Simulation
Since crashes and failed landings are rare, the current sim-
ulation framework requires a lot of time to obtain accurate
simulation results. Techniques such as importance sampling
or cross-entropy method will be investigated to make the
simulation faster.

Sequential Decision of UAV Pilot
The UAV pilot makes a decision once right after the commu-
nication returns in the previous scenario. This scenario can

(a) reward 0. (b) reward 0.5 (c) reward 1.

Figure 10: Policy map with various surveillance rewards



be extended to model multiple communication losses with
stochastic start and end times. The UAV pilot needs to make
decisions to make unmanned aircraft avoid a collision with
manned aircraft base on noisy information about the loca-
tion of manned aircraft. Future work will explore MDP and
POMDP formulations.

Model UAV Pilot as Human
In the preliminary study, the UAV pilot is assumed to com-
mand the unmanned aircraft to follow a lawn mower pat-
tern for surveillance. In reality, the UAV pilot has multiple
choices about the control of the unmanned aircraft. More-
over, since the UAV pilot is human, a bounded rational
model for human is required.

Two-Players Game
The UAV pilot is human, although the pilot is assumed to be
an intelligent robot in the preliminary study. The scenario is
to be a cooperative two-player game between manned air-
craft pilot and unmanned aircraft pilot. A Dec-POMDP or
two-player cooperative game will be studied to formulate
the problem and some techniques such as level-k, JESP, or
max-n Monte Carlo tree search will be applied to this prob-
lem.
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