Replanning in Predictive-reactive Scheduling

Marek VIk and Roman Bartak (supervisor)
Charles University in Prague, Faculty of Mathematics and Physics
Malostranské nam. 25, 118 00 Praha 1, Czech Republic
{vlk, bartak } @ktiml.mff.cuni.cz

Abstract

Achieving optimal results in real-life production sche-
duling is precluded by a number of problems. One such
problem is dynamics of environments with unavailable
resources (such as machine breakdowns and ill wor-
kers) and new demands (e.g. new orders) coming du-
ring the schedule execution. Traditional approach to re-
act to unexpected events occurring on the shop floor is
generating a new schedule from scratch. Complete res-
cheduling, however, may require excessive computation
time. Moreover, the recovered schedule may deviate a
lot from the ongoing schedule. Some work has focused
on tackling these shortcomings, but none of the existing
approaches tries to substitute jobs that cannot be execu-
ted with a set of alternative jobs. This paper reviews
techniques related to predictive-reactive scheduling and
suggests the future goal, which is to propose algorithms
for dealing with unexpected events using the possibility
of alternative processes.

Introduction

Scheduling as a decision-making process, of which the aim
is to allocate limited resources to activities so as to optimize
certain objectives, has been paid a lot of attention. In ma-
nufacturing environment, developing a detailed schedule of
the activities to be performed helps maintain efficiency and
control of operations.

In the real world, however, manufacturing systems face
uncertainty due to unexpected events occurring on the shop
floor. Machines break down, operations take longer than anti-
cipated, personnel do not perform as expected, urgent orders
arrive, others are cancelled, etc. These disturbances render
the ongoing schedule infeasible. In such case, a simple ap-
proach is to collect the data from the shop floor when the di-
sruption occurs and to generate a new schedule from scratch.
Since scheduling problems are usually NP-hard, complete
rescheduling may require excessive computation time, and,
moreover, the recovered schedule may deviate prohibitively
from the ongoing schedule.

For these reasons, reactive scheduling, which may be un-
derstood as the continuous correction of precomputed pre-
dictive schedules, is becoming more and more important.

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

On the one hand, reactive scheduling has certain things in
common with some predictive scheduling approaches, such
as iterative improvement of some initial schedule. On the
other hand, the major difference between reactive and pre-
dictive scheduling is the on-line nature and associated real-
time execution requirements. The schedule update must be
accomplished before the running schedule becomes inva-
lid, and this time window may be very short in a complex
manufacturing environment.

Several novel sophisticated methods attempt to cope with
the shortcomings of complete rescheduling, e.g., by resche-
duling only the activities somehow affected by the distur-
bance. To the best of our knowledge, none of the existing ap-
proaches, however, tries to replace activities, which cannot
be processed or must be reallocated to other resources, by a
set of alternative activities using other (available) resources.
Our goal is to propose, implement and experimentally com-
pare algorithms for modifying a schedule to accommodate
disturbances, such as a resource failure, using the possibility
of alternative processes, i.e., to replan the influenced part of
the schedule.

Terminology

The rescheduling framework, presented in (Vieira, Herr-
mann, and Lin 2003), introduces rescheduling environments,
identifying the sets of jobs to schedule (static vs. dynamic),
rescheduling strategies, describing whether or not schedules
are generated, rescheduling policies, specifying when to res-
chedule (periodic, event-driven, or hybrid), and rescheduling
methods, describing how to generate and update schedules
(complete rescheduling, and schedule repair).

Rescheduling Strategies

There are two basic strategies for controlling production
in dynamic environments with uncertain job arrivals. The
first strategy does not create production schedules, but de-
centralized production control methods dispatch jobs when
necessary, using information available at the moment of
dispatching. Jobs waiting for processing at a resource are
chosen by using a dispatching rule or other heuristics. This
strategy is often referred to as completely reactive schedu-
ling, on-line scheduling, or dynamic scheduling. It is useful
for very dynamic environments, where it is not known in
advance which activities are to be processed. On the other



hand, by this strategy it is obviously hard to obtain a schedule
close to the optimal one (the quality can be guaranteed under
certain conditions, but these conditions are in practise hard
to enforce).

The second strategy is usually called predictive-reactive
scheduling. It has two primary steps. The first one generates
a production schedule; the second one corrects the schedule
in response to disturbances and other changes within the
environment.

According to (Ouelhadj and Petrovic 2009), predictive-
reactive scheduling is based on schedule modifications con-
sidering only shop efficiency. In such case the new sche-
dule may be fundamentally deviated from the original one,
which may cause poor performance owing to affecting other
planning activities based on the original schedule. For these
reasons, the following two strategies (approaches) may be
distinguished.

Robust predictive-reactive scheduling takes a focus on
generating schedules to minimize the impacts of disruptions
on the performance. A usual solution is to consider not only
schedule efficiency, but mainly deviation from the original
schedule (termed stability). Similarity of two schedules may
be formally defined for example as a minimal perturbation
problem (Bartdk, Miiller, and Rudova 2003).

In some cases the disruptions are predictable or even ex-
pected, which may be exploited when computing a predictive
(original) schedule. This is the aim of robust pro-active sche-
duling'. Such methods usually add some temporal slack
among operations of a job in order to absorb some level
of uncertainty without rescheduling.

Related Methods

When dealing with disturbances, reactive scheduling sys-
tems usually attempt to revise only necessary parts of the
ongoing schedule to avoid rescheduling from scratch, be-
cause schedule repair methods have the advantage in terms
of computation time and stability. Such methods are reviewed
in this section, based on the classification in (Ouelhadj and
Petrovic 2009) and (Raheja and Subramaniam 2002).

The predictive schedules are usually based on optimisation
principles. It is obvious that any correction will cause a de-
viation from the predictive schedule and thus performance
measures will no longer be optimal. Therefore, the focus has
been to find a technique that handles the schedule recovery
without deterioration in the quality.

On the other hand, the schedule must be recovered and
ready to replace the ongoing schedule while it is still active,
i.e., before it becomes infeasible or obsolete. Otherwise the
manufacturing process fails. For these reasons, the time span
needed by the algorithm to react to unexpected events must
also be considered when evaluating the schedule repair per-
formance.

!'To make matters more confusing, robust pro-active scheduling
is also referred to as robust predictive-reactive scheduling and then
robust predictive-reactive scheduling amalgamates with predictive-
reactive scheduling.

Heuristics

Heuristic-based approaches do not guarantee to find an opti-
mal solution, but respond in a short time. The simplest sche-
dule repair technique is the right shift rescheduling (Abumai-
zar and Svestka 1997). This algorithm shifts the operations
globally to the right on the time axis in order to cope with
disruptions. When it arises from machine breakdown, the
method introduces gaps in the schedule, during which the
machines are idle. It is obvious that this approach results in
schedules of bad quality, and can be used only for environ-
ments involving minor disruptions.

The shortcomings of total rescheduling and right shift re-
scheduling gave rise to another approach: affected operation
rescheduling (Smith 1995), also referred to as partial sche-
dule repair. The idea of this algorithm is to reschedule only
the operations directly and indirectly affected by the disrup-
tion in order to minimize the deviation from the initial sche-
dule.

The Prec-rep algorithm proposed in (Bartdk and Skalicky
2009) is worth mentioning although it is designed not for
the recovery of schedules being executed, but for repairing
violated precedence and resource constraints in manually
altered schedules. The algorithm sweeps over the violated
constraints and repairs them in such a way that the activity
that is to precede another one is shifted to the left and the
succeeding one to the right. This gives significantly better
results when compared to right shift rescheduling.

Meta-heuristics

Meta-heuristics such as simulated annealing or genetic algo-
rithms are high level heuristics guiding local search methods
to escape from local optima. Local search methods are based
on probing into neighbourhoods, i.e., the algorithms start
from some given solution and iteratively improve it using
move operators. Thus, when such algorithm reaches a solu-
tion that cannot be directly improved, which means that the
algorithm gets stuck in a local optimum, it terminates. Meta-
heuristics help these techniques to jump from local optima
by (occasional) accepting worse solutions or by generating
better initial solutions for local probing in some sophisticated
way.

Since the local search heuristics may be trapped in a
poor local optimum, using meta-heuristics is a good way
to their enhancement. On the other hand, meta-heuristics
require higher computational effort, which holds especially
for genetic algorithms with increasing size of a problem.

An example of integrating local search and heuristic pro-
cedures is the iterative flattening search (Cesta, Oddi, and
Smith 2000), which has been designed for finding predictive
schedules minimizing makespan. The algorithm iterates two
steps. First, in the relaxation step, some precedence constra-
ints, which have been added into the model so as to resolve
resource restrictions, are retracted. Second, in the flattening
step, some precedence constraints are added into the model
in order to make the schedule feasible again. The iterative
flattening search is reported to have been enhanced by tabu
search meta-heuristic technique to achieve fine-grained ex-
ploration, and by introducing partial order schedules aimed



at increasing temporal flexibility in the temporary solutions
(Oddi et al. 2007).

Artificial Intelligence Approaches

Some techniques from the field of artificial intelligence and
knowledge-based systems are also applied in rescheduling.
Case-based reasoning (Cunningham and Smyth 1997) is
applicable to domain specific problems and allows conti-
nuous learning from past cases, but requires an extensive
experience database, which involves time-consuming search
through. Fuzzy logic (Ramkumar, Tamilarasi, and Devi 2011)
requires the knowledge of the domain to be built into the al-
gorithm and learning of the algorithm is impossible. Neural
networks (Jain and Meeran 1998) provide very fast responses
and predict the repair strategy according to past experience,
which, however, may require excessive re-training time.

Another approach, which is rather an independent branch,
is multi-agent based architectures (Zhang et al. 2011). In
multi-agent systems independent agents cooperate in order
to achieve a common goal. Albeit this is one of the most pro-
mising approaches to building complex, robust, and effective
scheduling systems owing to their distributed, autonomous
and dynamic nature, but the coordination among the agents
is hard to achieve.

Predictive-reactive Targeted

Some works focused directly on predictive-reactive schedu-
ling. A predictive-reactive approach for the single machine
problem with minimization of both makespan and total wei-
ghted tardiness was proposed in (Aloulou, Portmann, and
Vignier 2002). In predictive phase, a set of schedules with
partially ordered activities is constructed, and every time
a decision should be taken, a decision-maker can pick the
most suitable solution from a set of alternatives following
from the temporal and job sequencing flexibility. In order
to construct flexible predictive schedules, a Multi-Objective
Genetic Algorithm (MOGA) is used.

Next, (Asudegi and Haghani 2013) introduced the pro-
blem of construction equipment scheduling for a company
with several ongoing projects in different regions, which is
modelled as linear optimization problem and experimentally
evaluated by Xpress-IVE 7.0 solver.

Further, (Dulai, Werner- Stark, and Hangos 2013) presen-
ted a model and an algorithm generating a predictive sche-
dule of production workflows that is (proactively) robust
with regard to so called immediate events, which include
breakdown of a workstation and faulty termination of a work-
flow execution. The robustness is attained by suitably shif-
ting activities (introducing or enlarging gaps on resources)
based on the probabilities of resource failures, which are es-
timated according to previous experiences. One of the main
shortcomings of the algorithm is the assumption that every
resource failure is only temporary, and the time for how long
the resource is unavailable in case of its failure is known in
advance. The recent state of the work of the authors, aimed
at database that supports data mining from logged executi-
ons for improving the schedule, is presented in (Dulai and
Werner- Stark 2015).

New automated approach for the Aircraft Assignment Pro-
blem and the Aircraft Recovering Problem with responsive-
ness to unforeseen events is proposed in (Sousa et al. 2015).
The algorithm employs Ant Colony Optimization and is de-
signed to schedule and reschedule flights dynamically by
using a sliding window.

Current Work

Most of the aforementioned literature suggests generally use-
able technique regardless of the particular scheduling model.
Nevertheless, it is not always possible to straightforwardly
use the presented methods for a selected class of scheduling
problems, hence it requires significant adjustments to make
it applicable. In addition, if it is desired to achieve better re-
sults in terms of the speed of procedures and the modification
distance of a schedule, it is suitable to tailor an algorithm for
the particular class of problems.

This motivated our recent work that was presented in (Bar-
tdk and V1k 2015). The paper proposes two methods to han-
dle a resource failure occurring on the shop floor during the
schedule execution. The first method, Right Shift Affected,
takes the activities that were to be processed on a broken ma-
chine, reallocates them, and then it keeps repairing violated
constraints until it gets a feasible schedule. This approach is
suitable when it is desired to move as few activities as possi-
ble; however, the question whether the algorithm always
ends is still open.

The second method, which is aimed at shifting activities
by a short time distance regardless of the number of moved
activities, is called STN-Recovery. The routine deallocates a
subset of activities and then it allocates the activities again
through integrating techniques from the field of Constraint
Programming (Brailsford, Potts, and Smith 1999), namely
Conflict-Directed Backjumping with Backmarking (Kondrak
and Van Beek 1997). Before the allocation process, the
search space is suitably pruned based on the values from the
original schedule, which is another thing that seems to be
neglected in the mentioned literature.

We have been working with the scheduling model taken
from the FlowOpt system (Bartdk et al. 2012), which is based
on Nested Temporal Networks with Alternatives (Bartdk
and Cepek 2007) and involves simple temporal constraints.
Hence, our main inspiration came from the Repair-DTP algo-
rithm proposed in (Skalicky 2011). We also employed Sim-
ple Temporal Networks (Dechter, Meiri, and Pearl 1991) and
the Incremental Full Path Consistency algorithm (Planken
2008), which incrementally maintains the All Pairs Shortest
Path property.

Future Plans

Our current plan is to continue working with the FlowOpt
model, where, in response to unexpected events, the intention
will be not only to modify the allocation of already schedu-
led activities, but to replace some activities in the original
schedule by a set of other (not yet scheduled) activities by
searching through alternative branches, i.e., to replan some
(ideally the smallest necessary) subset of the schedule.



In further future, the target will be to enhance the model
of Nested Temporal Networks with Alternatives by recur-
sion and to suggest algorithms for this model. The recursion
will bring the full power of planning, i.e., the possibility to
generate activities according to a given target.

Acknowledgments

This research is partially supported by SVV project number
260 224 and by the Czech Science Foundation under the
project P103-15-19877S.

References

Abumaizar, R. J., and Svestka, J. A. 1997. Rescheduling
job shops under random disruptions. International Journal
of Production Research 35(7):2065-2082.

Aloulou, M. A.; Portmann, M.-C.; and Vignier, A. 2002.
Predictive-reactive scheduling for the single machine pro-
blem. In 8th Workshop on Project Management and Sche-
duling, Valencia, 3-5.

Asudegi, M., and Haghani, A. 2013. A predictive-reactive
dynamic scheduling under projects’ resource constraints for
construction equipment. In Proceedings of the International

Conference on Operations Research and Enterprise Systems,
334-337. SciTePress.

Bartak, R., and éepek, 0. 2007. Nested temporal networks
with alternatives. In AAAI Workshop on Spatial and Tem-
poral Reasoning, Technical Report WS-07-12, AAAI Press,
1-8.

Bartdk, R., and Skalicky, T. 2009. A local approach to
automated correction of violated precedence and resource
constraints in manually altered schedules. In Proceedings of
MISTA 2009: Fourth Multidisciplinary International Sche-
duling Conference: Theory and Applications, 507-517.

Bartdk, R., and Vlk, M. 2015. Reactive recovery from
machine breakdown in production scheduling with temporal
distance and resource constraints. In Proceedings of the In-
ternational Conference on Agents and Artificial Intelligence,
119-130. SciTePress.

Bartédk, R.; Jaska, M.; Novék, L.; Rovensky, V.; Skalicky, T.;
Cully, M.; Sheahan, C.; and Thanh-Tung, D. 2012. Flowopt:
Bridging the gap between optimization technology and ma-
nufacturing planners. In Luc De Raedt et al. (Eds.): Procee-
dings of 20th European Conference on Artificial Intelligence
(ECAI 2012), 1003-1004. IOS Press.

Bartdk, R.; Miiller, T.; and Rudova, H. 2003. Minimal
perturbation problem — a formal view. Neural Network World
13(5):501-511.

Brailsford, S. C.; Potts, C. N.; and Smith, B. M. 1999. Con-
straint satisfaction problems: Algorithms and applications.
European Journal of Operational Research 119(3):557-581.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative flatte-
ning: A scalable method for solving multi-capacity schedu-
ling problems. In AAAI/IAAIL 742-747.

Cunningham, P., and Smyth, B. 1997. Case-based reasoning

in scheduling: reusing solution components. International
Journal of Production Research 35(11):2947-2962.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial intelligence 49(1):61-95.

Dulai, T., and Werner-Stark, A. 2015. A database-oriented
workflow scheduler with historical data and resource sub-
stitution possibilities. In Proceedings of the International

Conference on Operations Research and Enterprise Systems,
325-330. SciTePress.

Dulai, T.; Werner-Stark, A.; and Hangos, K. M. 2013. Imme-
diate event-aware model and algorithm of a general schedu-
ler. Hungarian Journal of Industry and Chemistry 41(1):27—
34,

Jain, A. S., and Meeran, S. 1998. Job-shop scheduling
using neural networks. International Journal of Production
Research 36(5):1249-1272.

Kondrak, G., and Van Beek, P. 1997. A theoretical evaluation
of selected backtracking algorithms. Artificial Intelligence
89(1):365-387.

Oddi, A.; Policella, N.; Cesta, A.; and Smith, S. F. 2007.
Boosting the performance of iterative flattening search. In
AI* IA 2007: Artificial Intelligence and Human-Oriented
Computing, LNCS 4733. Springer Verlag. 447-458.

Ouelhadj, D., and Petrovic, S. 2009. A survey of dynamic
scheduling in manufacturing systems. Journal of Scheduling
12(4):417-431.

Planken, L. R. 2008. New algorithms for the simple temporal
problem. Ph.D. Dissertation, TU Delft, Delft University of
Technology.

Raheja, A. S., and Subramaniam, V. 2002. Reactive recovery
of job shop schedules — a review. International Journal of
Advanced Manufacturing Technology 19:756-763.

Ramkumar, R.; Tamilarasi, A.; and Devi, T. 2011. Multi cri-
teria job shop schedule using fuzzy logic control for multiple
machines multiple jobs. International Journal of Computer
Theory and Engineering 3(2):282-286.

Skalicky, T. 2011. Interactive scheduling and visualisation.
Master’s thesis, Charles University in Prague.

Smith, S. F. 1995. Reactive scheduling systems. In D.
Brown and W. Scherer (eds.), Intelligent scheduling systems,
155-192. Springer US.

Sousa, H.; Teixeira, R.; Lopes, H. C.; and Oliveira, E. 2015.
Airline disruption management - dynamic aircraft scheduling
with ant colony optimization. In Proceedings of the Inter-
national Conference on Agents and Artificial Intelligence,

398-405. SciTePress.

Vieira, G.; Herrmann, J.; and Lin, E. 2003. Rescheduling
manufacturing systems: a framework of strategies, policies,
and methods. Journal of Scheduling 6:39—62.

Zhang, L.; Wong, T.; Zhang, S.; and Wan, S. 2011. A multi-
agent system architecture for integrated process planning
and scheduling with meta-heuristics. In Proceedings of the
41st International Conference on Computers & Industrial
Engineering.



