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Background

Rapid "urbanization” - more than 50% of world$ popula-
tion now resides in cities - coupled with the natural lack
of coordination in usage of common resources (ex: shared
bikes, ambulances, taxis, attractions in tourism and leisure
industry, rescue team in disaster response, sensors, meet-
ing rooms) has worsen a wide variety of quality of life
metrics such as satisfaction in issuing shared cars, waiting
times in queues, response time for emergency needs, num-
ber of traffic accidents etc., in cities of today. Thus, I am
broadly interested in solving large-scale multi-agent plan-
ning problems to provide decision support in urban envi-
ronments, by optimizing the quality of life metrics, using
well-known techniques from Operation Research and Ar-
tificial Intelligence machinery. More specifically, I am in-
tended to dynamically match supply of resources to the de-
mand (that is both stochastic and dynamic) for resources
in urban environments. According to behavior of the prob-
lem, we can classify this domain into two sections (a) Dy-
namic Matching in urban systems with cooperative agents
(ex: shared transportation systems (Ghosh et al. 2015a;
Shu et al. 2013), emergency medical services (Saisubrama-
nian, Varakantham, and Chuin 2015; Yue, Marla, and Kr-
ishnan 2012), personal rapid transports (Lees-Miller, Ham-
mersley, and Wilson 2010)), where all the entities belong
to a centralized authority and their goal is to optimize a sin-
gle global objective (b) Dynamic Matching in urban systems
with competitive agents (ex: taxi fleet optimization (Seuken,
Cavallo, and Parkes 2008; Varakantham et al. 2012), cus-
tomer route guidance in theme park, stadium, landmarks
(Varakantham et al. 2015)), where individual agents are
mainly interested to optimize their own objective.

At a high level, cooperative problems can be solved using
optimization techniques such as Linear Programming (LP)
or Mixed Integer programming (MIP), while in competitive
settings, we need intelligent techniques from game-theory
and behavioral economics.

Dynamic Matching in Cooperative Settings

A perfect example of large-scale multiagent planning prob-
lem in cooperative settings is shared transportation systems
(ex: bike sharing, car sharing). vehicle sharing systems are
widely adopted in major cities of the world due to the con-
cerns of extensive usage of private vehicles that led to in-

creased traffic congestion, carbon emissions, and usage of
non- renewable resources. In vehicle-sharing systems, base
stations (ex: docking stations for bikes) are strategically
placed throughout a city and each of the base stations con-
tain a pre-determined number of vehicles at the beginning
of each day. Due to the stochastic and individualistic move-
ment of customers, there is typically either congestion (more
than required) or starvation (fewer than required) of vehi-
cles at certain base stations. For example, in the worse case,
there are about 750 cases of empty stations and 330 cases of
full stations per day, in a major bikesharing company (Cap-
italBikeshare) in USA. We propose to dynamically match
the customer demands to number of bikes in source station
by redeploying idle vehicles using carriers so as to min-
imize lost demand or alternatively maximize revenue for
the vehicle sharing company. Minimizing the lost demand
can result in a significant cost due to carrier vehicles. Thus,
we contribute an mixed integer linear programming (MILP)
formulation to jointly address the redeployment (of vehi-
cles) and routing (of carriers) problems(Ghosh et al. 2015a;
2015Db).

Scalability: Due to the complex structure of the optimiza-
tion model, it poorly scales with number of stations and thus
a black-box solver like CPLEX cannot solve more than 20
stations problem. Therefore, we provide two approaches that
rely on decomposability and abstraction of problem domains
to reduce the computation time significantly. We have em-
ployed dual decomposition approach that computes strate-
gies for the decomposed parts and combine the strategies to
obtain a joint strategy. The joint problem of minimizing lost
demand decomposes into redeploying of bikes and routing
of carriers. To further improve the scalability, we propose
an abstraction mechanism, where base stations that are lo-
cated nearby, are clustered into one abstract station. Lastly,
we retrieve the base station level redeployment and routing
strategy from the abstract solutions.

Key Results:We validated the utility of our approach on
real-world dataset of two bikesharing companies (i) Capi-
talBikeshare (ii) Hubway. Few of the key results obtained
through the use of intelligent systems for dynamic matching
of demand and supply of resources in STS are as follows:

e Revenue increased by 3% while lost demand reduced by
20% on CapitalBikeshare data.



e Revenue increased by 4% while lost demand reduced by
40% on Hubway data.

e Duality gap was less than 0.5% for Dual Decomposition.

e Outperforms current practice even with small variation in
mean demand

Dynamic Matching under Uncertainty

Robustness is a key aspect in any real-life multi-agent plan-
ning problem because of the uncertainty in the problem do-
main. In the case of bike-sharing the uncertainty arises be-
cause the exact probability distribution of the customer de-
mands is unknown. Instead, we can characterize the uncer-
tainty sets for the demands based on historical data. Thus,
we are interested to improve the worst case scenario (max-
imize the minimum reward), while respecting the bounds
on the demands. We propose a fictitious play based ap-
proach between two players (decision maker and nature),
each solving a mixed-integer programming model(Ghosh et
al. 2015c¢). The decision maker selects the routes of the car-
riers and his initial intention of redeployment (i.e., the num-
ber of bikes picked up and dropped off at the stations). Then,
nature generates a demand scenario that results in the low-
est bike usage given that the trucks are routed as proposed.
The demand scenarios generated by nature at each iteration
are added incrementally to the decision makers problem to
ensure the convergence of the algorithm. Given the growing
complexity of the decision makers model, Lagrangian Re-
laxation is applied to solve this problem efficiently.

Dynamic Matching in Distributed Environment

Distributed constraint optimization (DCOP) is an important
and widely adopted framework for coordinated multiagent
decision making. We address a practically useful variant
of DCOP, called resource-constrained DCOP (RC-DCOP),
which takes into account agents consumption of shared lim-
ited resources. In RCDCOP, we need to match the sup-
ply/capacity of resources to the agents requirement/demand
for resources in a distributed fashion. RCDCOP has been
utilized in applications such as distributed management of
smart grids(Kumar, Faltings, and Petcu 2009), distributed
meeting scheduling (Bowring et al. 2009). In several real
world applications, agents consume multiple shared re-
sources with limited capacity. For e.g., in distributed meet-
ing scheduling, agents schedule is constrained by their travel
budget; in sensor networks, sensors may have limited bat-
tery. The coordination problem is now to optimize the global
objective, while also respecting the resource limit for each
resource. We present a promising new class of algorithm for
RCDCOPs by translating the underlying coordination prob-
lem to probabilistic inference(Ghosh, Kumar, and Varakan-
tham 2015). Using inference techniques such as expectation-
maximization (EM) and convex optimization machinery,
we develop a novel convergent message-passing algorithm
for RCDCOPs. However, addressing resource constraints
within the EM framework proves challenging as EM for RC-
DCOP does not admit closed form solutions. Therefore, we
combine several tools from convex optimization machinery

(such as dual optimization, block coordinate descent) and al-
gebra (polynomial root finding) in a novel way to derive the
EM algorithm for RC-DCOPs. EM is easily implementable
using local message-passing among agents, and is highly
scalable. Unlike traditional and practically best DCOP algo-
rithm like Max-Sum (MS), EM is guaranteed to converge.
Empirically, we show that EM provides significantly better
quality than MS, has low failure rate even under tight re-
source constraints and proves highly competitive to an effi-
cient centralized constraint solver.

Key Results: We evaluated the utility of our approach
on multiple synthetic and standard benchmark (distributed
graph coloring) problems. We compare our approaches with
two state-of-the-art DCOP solvers (a) Best approximate
DCOP solver called Max-Sum (b) An efficient central-
ized solver called toulbar2. Few of the key results obtained
through the use of intelligent systems for matching of de-
mand and supply of resources in a distributed environment
are as follows:

e EM almost always provide better solution quality than
MS. EM was able to achieve a near-optimal solution
which was very close to toulbar2. Indeed, for harder in-
stance with higher edge density (ex: density=0.9) EM pro-
vided better quality than toulbar2.

e EM has less than 10% failure rate for random graph col-
oring problems, while failure frequency of MS is almost
90%.

e While toulbar2 cannot optimally solve the hard problem
instances within 1 hour, EM converges to a near-optimal
solution within 180 seconds only.

Dynamic Matching in Competitive Settings

My future plan is to work on dynamic matching problem in
the presence of competitive agents. A few related applica-
tion domains in urban environments that can be modeled as
dynamic matching problem are:

e Customer route guidance (matching of customers to at-
tractions) in theme park, landmarks to maximize the cus-
tomer satisfaction by minimizing the waiting time in
queue.

o Taxi fleet optimization (matching of customer demands to
resources/taxis) to reduce the waiting time for customers
as well as individual taxis.

In recent past, a wide range of research papers have ad-
dressed these problems to find a Nash equilibrium (Varakan-
tham et al. 2012; Ahmed, Varakantham, and Cheng 2012) or
by incentivizing customers using a novel dynamic mecha-
nism design approach (Seuken, Cavallo, and Parkes 2008).
However, (Aumann 1974) has shown that a Nash equilib-
rium can be arbitrarily bad in terms of global/social objec-
tive as optimizing individual goal can lead to an unsatisfac-
tory joint strategy. For example, taxi drivers are always in-
tended to visit crowded place like airport or shopping malls,
which can lead to a congestion of taxis in busy areas and
starvation of taxis in remote areas. A promising direction is
to find a Correlated equilibrium (CE), where we find a prob-
ability distribution over all the joint strategies that optimize



the global objective as well as ensure that individual objec-
tive is optimized. Unfortunately, as the joint strategy space
grows exponentially with the number of agents, solution ap-
proach for CE suffers with a poor scalability issue. There-
fore, I am interested to develop techniques for large-scale
planning problems by exploiting the following key charac-
teristics of the problem

e Anonymity in interaction: Typically, in urban environ-
ments, interactions between agents are anonymous. That
is to say, outcome (reward or transition) of an interaction
is dependent on how many agents and not on which spe-
cific agents are interacting. Thus, we can reduce the strat-
egy space by partitioning the strategy space into a group
of equivalent strategies.

o Exploiting homogeneity of agents: While there are large
numbers of agents in urban environments, there are typ-
ically only a few types, where all agents of a type have
similar decision models. We can compute the same mixed
strategy for all agents of a type in order to exploit homo-
geneity without resulting in congestion.

o Generate strategies incrementally: Specifically in prob-
lems where mixed strategies are the outcomes, we can
incrementally add relevant pure strategies. Although this
kind of column generation approach does not provide any
quality guarantee, it proves to be very effective in real-life
problems with large action space.

Conclusion

Given the ever increasing urbanization rate, lack of avail-
able resources for cities and the above mentioned real world
challenges, dynamic matching of supply and demand is an
extremely important and challenging problem area that re-
quires rapid development of next generation models, so-
lution concepts and techniques to develop efficient smart-
cities of tomorrow. Therefore, I believe that dynamic match-
ing problem is a rich and high impact application area for
dynamic decision making under uncertainty. The inherently
high interdisciplinary nature of this field excites me and mo-
tivates me to cut across multiple areas of Artificial Intelli-
gence, Operation Research and Machine Learning.

References

Ahmed, A.; Varakantham, P.; and Cheng, S.-F. 2012. Uncertain
congestion games with assorted human agent populations. arXiv
preprint arXiv:1210.4848.

Aumann, R. J. 1974. Subjectivity and correlation in randomized
strategies. Journal of mathematical Economics 1(1):67-96.

Bowring, E.; Yin, Z.; Zinkov, R.; and Tambe, M. 2009. Sensitivity
analysis for distributed optimization with resource constraints. In
Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 1, 633-640. International
Foundation for Autonomous Agents and Multiagent Systems.

Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P. 2015a.
Dynamic redeployment to counter congestion or starvation in ve-
hicle sharing systems. In ICAPS.

Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P. 2015b.
Dynamic redeployment to reduce lost demand in vehicle sharing
systems. Under submmission, European Journal of Operation Re-
search.

Ghosh, S.; Varakantham, P.; Dominik Jena, S.; and Jaillet, P. 2015c.
A two player game approach for robust redeployment in bike shar-
ing systems. Under submmission, 4th Informs TSL Society Work-
shop.

Ghosh, S.; Kumar, A.; and Varakantham, P. 2015. Probabilistic
inference based message-passing for resource constrained dcops.
Under submmission, IJCAI.

Kumar, A.; Faltings, B.; and Petcu, A. 2009. Distributed constraint
optimization with structured resource constraints. In Proceedings
of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, 923-930. International Foundation
for Autonomous Agents and Multiagent Systems.

Lees-Miller, J. D.; Hammersley, J. C.; and Wilson, R. E. 2010.
Theoretical maximum capacity as benchmark for empty vehi-
cle redistribution in personal rapid transit. Transportation Re-
search Record: Journal of the Transportation Research Board
2146(1):76-83.

Saisubramanian, S.; Varakantham, P.; and Chuin, L. H. 2015. Risk
based optimization for improving emergency medical systems. In
AAAL

Seuken, S.; Cavallo, R.; and Parkes, D. C. 2008. Partially synchro-
nized dec-mdps in dynamic mechanism design. In AAAL volume 8§,
162-169.

Shu, J.; Chou, M. C.; Liu, Q.; Teo, C.-P.; and Wang, L.-L.
2013. Models for effective deployment and redistribution of bicy-
cles within public bicycle-sharing systems. Operations Research
61(6):1346-1359.

Varakantham, P.; Cheng, S.-F.; Gordon, G. J.; and Ahmed, A. 2012.
Decision support for agent populations in uncertain and congested
environments. In AAAL

Varakantham, P.; Mostafa, H.; Na, F.; and Chuin, L. H. 2015. Di-
rect: A scalable approach for route guidance in selfish orienteering
problems. In AAMAS.

Yue, Y.; Marla, L.; and Krishnan, R. 2012. An efficient simulation-
based approach to ambulance fleet allocation and dynamic rede-
ployment. In AAAL



