
Logic-based Methods for Reasoning About Search in Classical Planning

Salomé Simon
University of Basel
Basel, Switzerland

salome.simon@unibas.ch

Overview
I am currently roughly 9 months into my PhD studies, and
the final topic of my PhD thesis is not yet fully settled. My
current idea is to focus on general logic-based methods for
reasoning about heuristics and other kinds of knowledge ex-
ploited by today’s classical planning systems.

Planning research in the last two decades has led to
the development of powerful methods for deriving heuris-
tic distance information for classical planning, based on
concepts such as delete relaxation (Hoffmann and Nebel
2001), critical paths (Haslum and Geffner 2000), abstraction
(Edelkamp 2001), landmarks (Richter, Helmert, and West-
phal 2008) and network flows (van den Briel et al. 2007).

A limitation of much of the current work on such distance
heuristics is that they are “black boxes” to the planning sys-
tem that conducts the overall search for a solution: a search
algorithm can feed a state to a heuristic estimator and re-
ceive a distance estimate from it, but the search algorithm
does not have access to information how the given estimate
was derived.

For example, if a distance estimator returns an infinite
heuristic estimate, telling us that a solution does not exist
from a given state, it might be useful to know what it is about
the current state that leads to this judgment. Perhaps this in-
formation can be generalized and usefully applied to other
states later encountered during a search (similar to clause
learning in SAT solving algorithms). Perhaps we can under-
stand the power and limitations of distance heuristics better
if they could give us “explanations” of how they come up
with our heuristic estimates. Perhaps we could trust the im-
plementation of an optimal heuristic search algorithm more
if we had a way of independently verifying that the heuristic
estimates it returns are really admissible, similar to the way
that many SAT solvers can emit resolution proofs showing
that input formulas claimed to be unsolvable are indeed un-
solvable.

I want to investigate questions of this kind by making
planning heuristics and other sources of knowledge about
planning tasks, such as landmarks, more transparent by
representing them as logical formulas that can be used in
generic logical reasoning engines. The hope is that this will
lead to a better understanding of current search heuristics,
generic methods for combining and generalizing heuristic
information, new ways of leveraging existing SAT solving

technology within planning, and in the building of bridges
between current state-space search planners and SAT-based
planners (Kautz and Selman 1992; Rintanen 2010)

In the following I describe two concrete ideas that exem-
plify this general research direction. The first, “A General
Framework for Deriving and Exploiting Information in Clas-
sical Planning”, describes ongoing and mostly completed
work which is based on my MSc thesis, “A General LTL
Framework for Describing Control Knowledge in Classical
Planning” (Simon 2014). The second, “A Reachability Proof
System”, describes a research idea that I intend to develop
further in the next months.

A General Framework for Deriving and
Exploiting Information in Classical Planning

The goal of my Masters Thesis was to develop a unified for-
malism to derive and exploit information gathered during
the search. Currently heuristics derive information in a for-
malism specific to the heuristic. This makes combining in-
formation gathered from different heuristics difficult. With
a unified way of describing derived information we could
combine it easily and thus create more powerful heuristics.
Additionally, we could split up the task of deriving and ex-
ploiting information. When developing a new heuristic, we
currently need to take care of both deriving information and
exploiting it in a correct way. With a unified framework, a
researcher that finds a new way of deriving information does
not need to additionally show how to exploit it correctly, and
similarly if a new way of exploiting information is found,
one can just use the already existing techniques for deriving
information.

Current State
Our approach for developing this unified formalism utilizes
a form of temporal logic called Linear Temporal Logic (LTL)
(Pnueli 1977). Temporal Logics have already been used ex-
tensively in the area of classical planning. Some approaches
specify the entire planning task in a temporal logic language
and generate plans by theorem proving (Koehler and Treinen
1995) or model construction (Cerrito and Mayer 1998).
Other systems encode domain-specific control knowledge in
a temporal logic formula, which allows them to prune paths
that cannot satisfy the formula (Bacchus and Kabanza 2000;

Doherty and Kvarnström 2001). Another approach gener-
ates task-specific LTL formulas in a fully automated fash-
ion from landmark orderings and uses it to enhance the FF
heuristic by making the constraint from the formulas visible
to the heuristic (Wang, Baier, and McIlraith 2009).

LTL extends propositional logic by temporal operators.
The two essential operators are X (Next) and U (Until). We
also use three additional operators F (Finally), G (Globally)
and R (Release), which can be expressed by using X and U,
but make formulas easier to read. LTL formulas are inter-
preted over an (infinite) sequence of worlds, where a world
is a truth assignment. This sequence of worlds describes
how truth assignments change over time. Checking whether
the beginning of a sequence can be extended to satisfy an
LTL formula can be done incrementally by applying a pro-
gression step, which transforms the formula in the following
way: The progression ϕ′ = progress(ϕ,w0) of a formula ϕ
is satisfied by a sequence of worlds 〈w1, . . . 〉 iff ϕ is satis-
fied by the sequence 〈w0, w1, . . . 〉.

Our goal is to encode information about (optimal) plans
in LTL, and later on exploit the information contained in
these formulas. We interpret LTL formulas in the follow-
ing way: The variables of the LTL formula consist of the
STRIPS variables of the planning task, and we also intro-
duce an additional proposition for each action. A world de-
scribes a node in the search space, where the variable as-
signment consists of the STRIPS variable assignment from
the state belonging to the node, and assigning true to the
action variable denoting the action which reached the node
(and false to all others). A sequence of worlds is thus now
a path in the search space. We use nodes (instead of states)
and action variables in order to be able to incorporate path-
dependent information into the LTL formula.

Within this framework, we define two types of useful LTL
formulas: globally feasible and locally feasible. A globally
feasible formula must be satisfied by any optimal plan. A
locally feasible formula is associated to a node in the search
space and must be satisfied by any path from a successor to
a goal node (excluding the current node) which results in an
optimal plan. We showed that a globally feasible formula is
locally feasible for the initial node after progressing it with
the initial state and an empty action ano-op. From there on
we can thus further create locally feasible formulas for the
successor nodes by progressing the formula with the corre-
sponding node. We also showed that the framework allows
to add additional information gathered during the search in
the form of locally feasible formulas. Furthermore, we de-
fined and proved the correctness of the following rules on
how one can merge formulas from different nodes denoting
the same state when eliminating duplicates:

• If the g costs of the nodes are different, we can use the
formula of the node with the lower g cost.

• If the g costs are equal, we can combine the two formulas
by logical conjunction.

As a proof of concept for our framework, we showed
on two examples how inferred information can be trans-
lated into feasible LTL formulas, and derived a heuristic
which bases its goal distance estimate solely on these for-

mulas. The first example creates a single globally feasible
LTL formula from landmarks and their orderings (Richter,
Helmert, and Westphal 2008), which is progressed through
the entire explored search space. In contrast, the second ex-
ample of unjustified actions (Karpas and Domshlak 2011;
2012) is encoded by deriving locally feasible formulas for
each search node. The heuristic we derived basically flattens
the node-associated LTL formula in a sense that it extracts
all propositions which are currently not true but need to be
true at some future point and estimates a lower bound on
the cost of any path satisfying the formula by applying op-
timal cost partitioning to the actions that could make those
propositions true.

Future Work
Our current heuristic uses only a small amount of the in-
formation contained in the locally feasible LTL formula.
Specifically, it ignores all temporal order. We are currently
studying different approaches on how to derive more accu-
rate heuristic estimates which also consider temporal order-
ings in the formula. In the future we would also like to de-
scribe other kinds of inferred information as feasible LTL
formulas, in order to strengthen heuristics which use those
formulas as a base of their estimate.

A Reachability Proof System
Most state-of-the-art heuristics have mechanisms to detect
dead ends during search. But when a dead end is detected,
the heuristic does not give any reason as to how it came to
that conclusion. This means we can neither verify that the
state is actually a dead end, nor can we learn the reason why
it is a dead end. One goal of my doctorate is to develop a
proof system which can, independently from any heuristic,
prove or refute that a state is a dead end. This is beneficial
both in theoretical and practical aspects:

On the theoretical side, we could compare the ability to
detect dead ends of different heuristics with the help of such
a proof system by showing that some heuristics only use cer-
tain parts of the proof system. The idea is inspired by the
resolution proof system in SAT: with its help, it was possi-
ble to show that clause learning can provide exponentially
shorter proofs than many proper refinements of general res-
olution like regular and Davis-Putnam resolution (Beame,
Kautz, and Sabharwal 2004). Similarly with a proof system
for reachability it might be possible to show that different
heuristics utilize different information and that some heuris-
tics are strictly more powerful in detecting dead ends than
others.

On the practical side we could analyze the reachability
proof and extract which properties of the dead end state were
actually used for the proof. From this we can conclude that
any state which has the same properties is also a dead end.
If we now later in the search encounter a state which has the
same property we can mark it as a dead end immediately,
without needing to calculate the heuristic.

The thoughts and ideas of this section are closely re-
lated to the planning as satisfiability approach (Kautz and
Selman 1992). In this area of research, a planning prob-
lem is defined as a symbolic transition system (STS) S =

(Σ, I, G, T), where Σ is a signature, I is the initial for-
mula, G is the goal formula and T is the transition for-
mula over Σ ∪ Σ′. A plan of length n exists if the formula
I ∧ T ∧ T ′ ∧ · · · ∧ T (n−1) ∧G(n) is satisfiable.

Preliminary Work and Ideas
To prove that a state is a dead end, we need to show that there
exists no action sequence (including the empty sequence)
which can be applied to the state in question and result in
a state satisfying all goal conditions. Since the empty se-
quence is also included, this also implies that the state is not
a goal state. For certain types of dead ends, it is easy to find
a proof:

1. A state s with no successors and which does not satisfy
the goal condition is a dead end, since no action sequence
except the empty one is applicable and applying the empty
action sequence results in s which does not satisfy all goal
conditions.

2. A state s which only has dead ends as successors is a
dead end. Since all successors are not goal states, we
know that any action sequence a = 〈a0, . . . , an〉 reach-
ing a goal from s must have at least length 2. This se-
quence can be divided into the first applied action a0,
which leads to the successor state ssucc, and an action se-
quence a+ = 〈a1, . . . , an〉 which leads from ssucc to the
goal state. Since all ssucc are dead ends, there is no such
sequence a+ and thus there can also be no such action
sequence a.

When only using those two mechanisms, we can detect
dead ends recursively by first marking the states that have
no successor as dead ends, and then successively marking all
states that only have marked states as successors. However,
this dead end detection is very limited. It basically simply
checks all applicable action sequences, which must all be of
finite length, and detects that the last state reached through
the sequence is not a goal state. But as soon as we have
applicable action sequences of infinite length – which is the
case as soon as action sequences with cycles are applicable –
the reasoning of the proof lacks its “anchor” (in the form of a
state with no successor). For example, in a package delivery
problem where the destination of a package is not reachable
but at least one truck can move back and forth on the same
road indefinitely, we have no state which has no successors.

A more general way of proving that a state is a dead end is
to enumerate all reachable states and show that no state ful-
fills the goal condition an no new state can be reached from
any of the states in the enumeration. Assume we have a
formula ϕ describing (at least) all states reachable from the
potential dead end s, the transition system of the planning
task is T and the goal description G. Proving that the fol-
lowing two formulas are unsatisfiable is sufficient to prove
that s is a dead end:

1. ϕ ∧ T ∧ ¬ϕ′

2. ϕ ∧G

Formula 2 merely checks if any of the reachable states sat-
isfies the goal condition. If formula 1 is unsatisfiable, this

means that by applying an action (which is equal to one step
of the transition system), we cannot reach a state which is
not already covered in ϕ. This also means that even with an
infinite amount of action applications we will never reach a
state that does not satisfy ϕ, and together with the refutation
of formula 1 which shows that ϕ cannot satisfy the goal con-
dition, we can conclude that we will never reach a state that
does satisfy G.

Currently I see two important open questions with this
approach:

1. How do we find ϕ?
2. What can we learn from the refutation proofs?

During my research I found two techniques from the
model-checking community which could be helpful in an-
swering these questions: Property Directed Reachability
and Interpolants.

Property Directed Reachability (Suda 2014), originally
known as IC3 (Bradley 2011), is a hybrid between explicit
and symbolic search which proves the nonexistence of plans
of length 0, 1, To this purpose it builds up layers Lk de-
scribing an overapproximation of states that reach the goal
in k steps. This overapproximation is refined incrementally.
If the algorithm reaches a point where a layer Li is equal to
Li+1, it can conclude that no plan of any length can exist.

McMillan (2003) described a technique for model check-
ing which is based on the notion of interpolants. Given
an unsatisfiable formula ϕ = ϕ1 ∧ ϕ2, an interpolant P
is an implication of ϕ1 such that P ∧ ϕ2 is unsatisfiable
(it is practically speaking the part of ϕ1 responsible for ϕ
not being satisfiable). The algorithm presented in the pa-
per can prove for a given k that a plan of length k ex-
ists or (if k is large enough) that no plan of any length
can exist. To this end it iteratively evaluates a formula
Φ = R∧T∧T ′∧· · ·∧T (k−1)∧G(k), where R is initially I . If
the formula is satisfiable in the first iteration (where R = I),
a plan of length k has been found. If the formula is unsat-
isfiable, an interpolant P is calculated, with the following
partition of Φ: ϕ1 = R∧T , ϕ2 = T ′ ∧ · · · ∧T (k−1) ∧G(k).
This interpolant P represents an overapproximation of the
states reachable from R in one step, and is (in an unprimed
version) added to R. Thus, R represents an ever growing
overapproximation of the states reachable from I . If for a
later iteration, Φ is satisfied, the algorithm aborts (since R
is an overapproximation, it cannot be sure that a plan actu-
ally exists) and we need to start it with a bigger k. If at some
point, the derived interpolant P implies R, the algorithm can
conclude that no plan of any length can exist.

Both approaches build some sort of overapproximation of
reachable states and can conclude that no plan can exist if
at some point this overapproximation does not change any-
more. This makes them related to my suggestion, since they
basically prove in some form that ϕ∧T implies ϕ′, which is
only the case if ϕ ∧ T ∧ ¬ϕ′ is unsatisfiable. Thus it should
be possible to transfer some of the knowledge and ideas of
these two techniques into the setting described above. It also
shows that the formula describing the reachable states does
not need to be exact in the sense that it describes only these
states, it can also be an (appropriate) overapproximation.

Acknowledgements
I would like to thank Prof. Malte Helmert and Dr. Gabriele
Röger for their guidance during my Masters Thesis and dur-
ing my subsequent work in Prof. Helmert’s research group.
Furthermore I would like to thank Prof. Fahiem Bacchus for
his input and ideas which inspired parts of the subsection
“Preliminary Work and Ideas” form the section “A Reacha-
bility Proof System”.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1–2):123–191.
Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Towards un-
derstanding and harnessing the potential of clause learning.
Journal of Artificial Intelligence Research 22:319–351.
Bradley, A. R. 2011. SAT-based model checking without
unrolling. In Jhala, R., and Schmidt, D., eds., Proceedings
of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2011), vol-
ume 6538 of Lecture Notes in Computer Science, 70–87.
Springer-Verlag.
Cerrito, S., and Mayer, M. C. 1998. Using linear temporal
logic to model and solve planning problems. In Giunchiglia,
F., ed., Artificial Intelligence: Methodology, Systems, and
Applications (AIMSA 98), volume 1480 of Lecture Notes in
Computer Science, 141–152. Springer-Verlag.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A tem-
poral logic based planner. AI Magazine 22(3):95–102.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Karpas, E., and Domshlak, C. 2011. Living on the edge:
Safe search with unsafe heuristics. In ICAPS 2011 Workshop
on Heuristics for Domain-Independent Planning, 53–58.
Karpas, E., and Domshlak, C. 2012. Optimal search with
inadmissible heuristics. In McCluskey, L.; Williams, B.;
Silva, J. R.; and Bonet, B., eds., Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling (ICAPS 2012), 92–100. AAAI Press.
Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Neumann, B., ed., Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI 1992), 359–363.
John Wiley and Sons.
Koehler, J., and Treinen, R. 1995. Constraint deduction in an
interval-based temporal logic. In Fisher, M., and Owens, R.,
eds., Executable Modal and Temporal Logics, volume 897

of Lecture Notes in Computer Science, 103–117. Springer-
Verlag.
McMillan, K. L. 2003. Interpolation and SAT-based model
checking. In Jr., W. A. H., and Somenzi, F., eds., Pro-
ceedings of the 15th International Conference on Computer
Aided Verification (CAV 2003), volume 2725 of Lecture
Notes in Computer Science, 1–13. Springer-Verlag.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th Annual Symposium on Foundations of
Computer Science (FOCS 1977), 46–57.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI 2008), 975–982.
AAAI Press.
Rintanen, J. 2010. Heuristics for planning with SAT. In
Cohen, D., ed., Proceedings of the 16th International Con-
ference on Principles and Practice of Constraint Program-
ming, 414–428. Springer-Verlag.
Simon, S. 2014. A general LTL framework for describ-
ing control knowledge in classical planning. Master’s thesis,
University of Basel.
Suda, M. 2014. Property directed reachability for auto-
mated planning. Journal of Artificial Intelligence Research
50:265–319.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.
Wang, L.; Baier, J.; and McIlraith, S. 2009. Viewing land-
marks as temporally extended goals. In ICAPS 2009 Work-
shop on Heuristics for Domain-Independent Planning, 49–
56.

