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Introduction
In recent years, the successful demonstrations of production-
quality mobile robots, autonomous UAVs, and self-driving
cars fueled excitement about the future opportunities offered
by autonomous multi-vehicle systems both for transporta-
tion of goods and people. However, the efficiency and safety
of such systems will depend on the existence of guaranteed
methods for reliable collision avoidance between the indi-
vidual vehicles. Unfortunately, the general formulation of
multi-vehicle coordination problem has been shown to be
PSPACE-hard (Hopcroft, Schwartz, and Sharir 1984) and
thus the existing complete algorithms suffer from exponen-
tial worst-case time complexity in the number of coordi-
nated robots. Thus, for a practical solution one has to re-
sort to some heuristic method such as prioritized planning,
which however may fail to provide a collision-free solu-
tion for some problem instances. Within our work, we pro-
pose a variation of the classical prioritized planning scheme
called “Revised Prioritized Planning” and a characterize the
class of instances that are provably solvable by the newly
proposed algorithm. Further, we show that the algorithm
can be adapted and executed in an asynchronous decentral-
ized manner, such that each robot computes its own trajec-
tory and individual robots arrive to a solution by exchang-
ing messages. The idea can be also extended to a dynamic
variant of the problem where the individual robots may be
ordered to travel to particular destination at any time-point
during the operation of the system.

Related Work
As an example autonomous multi-vehicle system, consider
a future factory where intermediate products are moved be-
tween workplaces by autonomous robots. The worker at a
particular workplace calls a robot, puts an object to a basket
mounted on the robot and orders the robot to autonomously
deliver the object to another workspace where the object will
be retrieved by a different worker. Clearly, an important re-
quirement on such a system is that each robot must be able
to avoid collisions with other robots autonomously operat-
ing in the shared space. The problem of avoiding collisions
between individual robots can be approached either from a

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

control engineering perspective by employing reactive col-
lision avoidance or from AI perspective by planning coordi-
nated trajectories for the robots.

In the reactive approach, the robot follows the short-
est path to its current destination and attempts to resolve
collision situations as they appear. Each robot periodi-
cally observes positions and velocities of other robots in its
neighborhood. If there is a potential future collision, the
robot attempts to avert the collision by adjusting its im-
mediate heading and velocity. A number of methods have
been proposed (Van den Berg, Lin, and Manocha 2008;
Guy et al. 2009; Lalish and Morgansen 2012) that prescribe
how to compute such collision-avoiding velocity in a recip-
rocal multi-robot setting, with the most prominent one be-
ing ORCA (Van Den Berg et al. 2011). These approaches
are widely used in practice thanks to their computational ef-
ficiency – a collision-avoiding velocity for a robot can be
computed in a fraction of a millisecond (Van Den Berg et al.
2011). However, these approaches resolve collisions only
locally and thus they cannot guarantee that the resulting mo-
tion will be deadlock-free and that the robot will always
reach its destination.

With a planning approach, the system first searches for
a set of globally coordinated collision-free trajectories from
the start position to the destination of each robot. After the
planning has finished, the robots start following their respec-
tive trajectories. If robots are executing the resulting joint
plan precisely (or within some predefined tolerance), it is
guaranteed that the robots will reach their destination while
avoiding collisions with other robots. It is however known
that the problem of finding coordinated trajectories for a
number of mobile objects from the given start configurations
to the given goal configurations is intractable. More pre-
cisely, the coordination of disks amidst polygonal obstacles
is NP-hard (Spirakis and Yap 1984) and the coordination of
rectangles in a bounded room is PSPACE-hard (Hopcroft,
Schwartz, and Sharir 1984).

Even though the problem is relatively straightforward to
formulate as a planning problem in the Cartesian product of
the state spaces of the individual robots, the solutions can
be very difficult to find using standard heuristic search tech-
niques as the joint state-space grows exponentially with in-
creasing number of robots. The complexity can be partly
mitigated using techniques such as ID (Standley 2010) or



M* (Wagner and Choset 2015) that solve independent sub-
conflicts separately, but each such sub-conflict can still be
prohibitively large to solve because the time complexity of
the planning is still exponential in the number of robots in-
volved in the sub-conflict.

Instead, heuristic approaches are often used in practice,
such as prioritized planning (Erdmann and Lozano-Pérez
1987), where the robots are ordered into a sequence and plan
one-by-one such that each robot avoids collisions with the
higher-priority robots. This greedy approach tends to per-
form well in uncluttered environments, but it is in general
incomplete and often fails in complex environments.

When the geometric constraints are ignored, com-
plete polynomial algorithms can be designed such as
Push&Rotate (de Wilde, ter Mors, and Witteveen 2013) or
Bibox (Surynek 2009). These algorithms solve so-called
“Pebble motion” problem, in which pebbles(robots) move
on a given graph such that each pebble occupies exactly one
vertex and no two pebbles can occupy the same vertex or
travel on the same edge during one timestep. Although this
model can be useful for coordination of identical robots on
coarse graphs1, it is not applicable for trajectory coordina-
tion of robots with fine-grained or otherwise rich motion
models.

Based on the previous discussion, we may see that when
we are facing a problem of choosing a suitable method for
coordinating the trajectories of individual robots in the sys-
tem, we are forced to sacrifice either the tractability, com-
pleteness or the ability to model the collisions geometrically.

Problem Statement
Consider n circular robots operating in a 2-d workspace
W ⊆ R2. The maximum speed the robot i can move at
is denoted as vi. Each robot is assumed to be assigned a task
that involves moving from its start position si to some goal
position gi and stay there. We assume that the start and goal
positions of all robots are mutually disjunct, i.e. the bodies
of robots do not overlap when the robots are on their start
positions and when they are on their goal positions. The tra-
jectories πi, πj of two robots i, j are said to be conflict-free
if the bodies of the robots i, j never intersect when they fol-
low the trajectories πi and πj . Then, we are interested in
solving the following problem:
Problem. Given a workspace W and tasks
〈s1, g1〉 , . . . , 〈sn, gn〉 for robots 1, . . . , n, find trajec-
tories π1, . . . , πn such that each trajectory πi reaches the
robot’s destination gi and trajectories πi, πj of every two
different robots i, j are mutually conflict-free.

Also, in practical deployment scenarios, it is often advan-
tageous if a) the algorithm can be run in a decentralized man-
ner and b) if the algorithm can be used to coordinate trajec-
tories in a running system, i.e. a new task for a robot may
appear when other robots are on their way to their previously
assigned destinations.

1The graph must be coarse enough so that the bodies of two
robots “sitting” on two different vertices will never overlap. The
same has to hold for two robots traveling on different edges of the
graph.

Revised Prioritized Planning
A pragmatic approach that is often useful even for large
multi-robot teams is prioritized planning. The idea has been
first articulated by Erdman and Lozano-Pérez in (Erdmann
and Lozano-Pérez 1987). Other works such as (van den Berg
and Overmars 2005; Bennewitz, Burgard, and Thrun 2002)
investigate techniques for choosing a good prioritization for
the robots. In prioritized planning each robot is assigned a
unique priority. The trajectories for individual robots are
then planned sequentially from the highest priority robot
to the lowest priority one. For each robot a trajectory is
planned that avoids both the static obstacles in the environ-
ment and the higher-priority robots moving along the trajec-
tories planned in the previous iterations. Prioritized planning
is in general incomplete, consider the counter-example (Sil-
ver 2005) depicted in Figure 1:

s2s1 g1g2

v1=1 v2=1

Figure 1: The picture shows two robots desiring to move
from s1 to g1 (s2 to g2 resp.) in a corridor that is only slightly
wider than a body of a single robot. The scenario assumes
that both robots have identical maximum speeds. Observe
that irrespective of which robot starts planning first, its tra-
jectory will be in conflict with all satisfying trajectories of
the robot that plans second.

Let us now analyze when is prioritized planning bound to
fail. The algorithm fails to find a trajectory for robot i if 1)
no satisfying path exists for robot i, i.e. the robot cannot
reach its destination even if there are no other robots in the
workspace; 2) every trajectory of robot i is in conflict with
some higher-priority robot. There are two types of conflicts
that can occur between a trajectory π of robot i and a higher-
priority robot:

Type A: Occurs if trajectory π is in conflict with a higher-
priority robot who has reached and is “sitting” at its destina-
tion, i.e. it is blocked by a static higher-priority robot.

Type B: Occurs if trajectory π of robot i is in conflict
with a higher-priority robot who is moving towards its des-
tination, i.e. it is “run over” by a moving higher-priority
robot.

A question that naturally arises is whether it would be
possible to restrict the class of solvable instances or to al-
ter the prioritized planning algorithm such that there will al-
ways be at least one trajectory without neither Type A nor
Type B conflict for each robot.

One way to ensure that there will be a satisfying trajectory
without Type A conflict for every robot is to only consider
instances, where each robot has a path to its goal that avoids
goal regions of all higher-priority robots. When each robot
follows such a path, then they cannot be engaged in a Type



A conflict, because a Type A conflict can only occur at the
goal region of one of the higher-priority robots.

Unfortunately, the existence of a trajectory without Type
B conflict is difficult to guarantee in classical prioritized
planning, since higher-priority robots completely ignore in-
teractions with lower-priority robots when planning their
trajectories. To ensure that each robot will have a satis-
fying trajectory without Type B conflict, all higher-priority
robots would have to plan their trajectories so that the lower-
priority robots are always left with some alternative trajec-
tory that can be used to avoid the potential conflicts of this
type.

One way to ensure that there will be a satisfying trajectory
without Type B conflict for every robot is to consider only
instances where each robot has an option to follow a path
to its goal that avoids start region of lower-priority robots
and enforce that the trajectory of each robot will avoid start
regions of all lower-priority robots. When this is ensured,
then any robot will always have a fall-back option to wait at
its start position (since no higher-priority robot can run over
its start region) until its desired path is clear of all higher-
priority robots. Thus it can always avoid Type B conflicts.
Moreover, if the robot continues by following a path that
avoids goal regions of higher-priority robots, then the result-
ing trajectory is also guaranteed to avoid the Type A con-
flicts.

We propose a Revised version of Prioritized Planning
(RPP) (Čáp et al. 2014) that uses the insights from the pre-
ceding discussion and plans the trajectory of each robot
so that both a) start position of all lower-priority robots
are avoided and b) collisions with higher-priority robots
are avoided. It can be shown that for trajectory coordina-
tion problems occurring in appropriately designed environ-
ments called well-formed infrastructures, the RPP algorithm
is guaranteed to provide a solution (Čáp et al. 2014).

Well-formed Infrastructures
To model systems such as factories, rail roads, road net-
works etc., we introduce a notion of infrastructure. An in-
frastructure is a pair (W, E), whereW is a workspace (de-
scribed by a set of obstacle-free coordinatesW ⊆ R2) and
a set of points E ⊂ W represents distinguished locations in
the environment called endpoints (modeling e.g. workplaces
in a factory, parking places, road stops, etc.). Vehicles op-
erating in such an infrastructure can be assigned relocation
tasks denoted s → g requesting the chosen robot to move
from its current position s ∈ E to the given goal endpoint
g ∈ E, i.e. the vehicles moves only between the endpoints
of the infrastructure.

A well-formed infrastructure has its endpoints distributed
in such a way that any robot standing on an endpoint can-
not completely prevent other robots from moving between
any other two endpoints. In a well-formed infrastructure,
a robot is always able to find a collision-free trajectory to
any other unoccupied endpoint by waiting for other robots
to reach their destination endpoint, and then by following
a path around the occupied endpoints, which is in a well-
formed infrastructure guaranteed to exist.

(a) Well-formed in-
frastructure: The
workspace W and
endpoints {e1, e2, e3, e4}
for robots having radius
r form a well-formed
infrastructure.

(b) Ill-formed Infrastructure:
The workspace W and end-
points {e1, e2, e3} do not
form a well-formed infras-
tructure because there is no
path from e1 to e2 with 2r-
clearance to e3 for a robot
having radius r.

Figure 2: Well-formed and ill-formed infrastructure

In the following, we will describe the idea more formally.
First, let us introduce the necessary notation. Let D(x, r) be
a closed disk centered at x with radius r. Then, intrX :=
{x : D(x, r) ⊆ X} is an r-interior of a set X ⊆ R2 and
extrX := ∪

x∈X
D(x, r) is an r-exterior of a set X ∈ R2.

Definition 1. An infrastructure (W, E) is called well-
formed for circular robots having body radii r1, . . . , rn if
any two endpoints a, b ∈ E can be connected by a path

in workspace intr

(
W \ ∪

e∈E\{a,b}
D(e, r)

)
, where r =

max{r1, . . . , rn}.
In other words, there must exists a path between any two

endpoints with at least r-clearance with respect to the static
obstacles and at least 2r-clearance to any other endpoint.
Figure 2 illustrates the concept of a well-formed infrastruc-
ture.

The notion of well-formed infrastructures follows the
structure typically witnessed in man-made environments
that are intuitively designed to allow efficient transit of mul-
tiple people or vehicles. In such environments, the endpoint
locations where people or vehicles are stopping for longer
time are separated from the transit area that is reserved for
travel between these locations.

If we take the road network as an example, the endpoints
would be the parking places and the system of roads is built
in such a way that any two parking places are reachable with-
out crossing any other parking place. Similar structure can
be witnessed in offices and factories. The endpoints would
be all locations, where people may need to spend longer pe-
riods of time, e.g. surroundings of the work desks or ma-
chines. As we know from our every day experience, work
desks and machines are typically given enough free room
around them so that a person working at a desk or a machine
does not obstruct people moving between other desks or ma-
chines. We can see that real-world environments are indeed
often designed as well-formed infrastructures and in such
environments RPP can be used to find coordinated collision-
free trajectories for the robots’ relocation tasks in a guaran-



teed manner.

Asynchronous Decentralized Prioritized
Planning

Consider a multi-robot system consisting of a large number
of heterogeneous autonomous robots. In such a scenario, a
decentralized implementation of (revised) prioritized plan-
ning may be more desirable than a centralized one. In a
decentralized implementation, each robot runs its own in-
stance of the algorithm and exchanges messages with the
other robots according to a prescribed communication pro-
tocol. If an inconsistency is detected by a robot, then it re-
computes the best trajectory for itself using its own on-board
computation resources. The process should eventually con-
verge to a state where all robots hold mutually conflict-free
trajectories.

An advantage of such an approach is that several robots
often end up computing their trajectories in parallel and
thus a conflict-free solution is often computed faster. An-
other advantage for multi-robot systems with heterogeneous
robots is that the kinematic and other potentially implicit
constraints on the trajectory of a particular robot stay lo-
cal to that robot and do not need to be formalized nor com-
municated, which simplifies the design of the communica-
tion protocol and allows each robot to use a custom robot-
specific planner for planning its trajectory. We propose an
asynchronous decentralized version of (revised) prioritized
planning (ADPP/ADRPP) that works as follows:

When the computation is started, each robot computes an
individually optimal trajectory to its desired destination and
broadcasts the computed trajectory to all other robots. Each
robot in the systems listens for those trajectory update mes-
sages and stores them locally to maintain an overview of
the other robots’ intended trajectories. Every time a new
trajectory update is received a robot checks whether its cur-
rent trajectory is collision-free with the intended trajecto-
ries of higher-priority robots and if needed replans to find a
new collision-free trajectory that avoids collisions with the
higher-priority robots. The new trajectory is again commu-
nicated to all other robots.

We show (Čáp et al. 2014) that such a decentralized ap-
proach inherits properties of both classical prioritized plan-
ning and revised prioritized planning – in particular it is
guaranteed to terminate in finite time and the revised vari-
ant is guaranteed to always terminate with collision-free tra-
jectories if presented with a coordinating problem in a well-
formed infrastructure. Moreover, the decentralized approach
often leads to a significant speed-up of the computation com-
pared to the centralized approach – in our experiments, the
algorithm achieved average 4x speed-up on instances with
20 robots.

Continuous Best-Response
The above-discussed algorithms (PP, RPP, ADPP and
ADRPP) address the static formulation of the trajectory co-
ordination problem, where the destinations of all robots are
known apriori and the joint solution is computed and exe-
cuted at once by all robots. However, this may be impracti-

cal in systems where the relocation tasks are assigned to the
individual robots on-line (i.e. at any time-point) during the
operation of the multi-robot system. Using one of the static
algorithms in such a scenario would require to interrupt exe-
cution of the previously planned trajectories each time a new
task is assigned, include the new task into the coordination
problem and replan all trajectories in the system. However,
when the execution of coordinated trajectories is interrupted
half-way, the robots’ current position will be in general out-
side of an endpoint and in such situations RPP/ADRPP algo-
rithm is not guaranteed to provide a collision-free solution.

We propose a variation of the prioritized planning ap-
proach called continuous best-response approach (CO-
BRA) (Čáp, Vokřínek, and Kleiner 2015) that addresses
this problem. The newly proposed algorithm COBRA is a
decentralized approach that employs a data token (Ghosh
2010) passed between the robots to synchronize computa-
tion and ensure that each robot works with up-to-date infor-
mation about the trajectories of other robots. We identify a
token Φ with a set {(ai, πi)} that contains at most one tu-
ple for each robot a = 1 . . . , n. Each such tuple represents
the fact that robot a is intending to move along trajectory π.
At any given time the token can be held by only one of the
robots and only this robot can read and change its content.
Then, the algorithm works as follows:

A robot newly added to the system tries to obtain the to-
ken and to register itself with a trajectory that stays at its
initial position forever. After all the robots have been added
to the system, the user can start with assigning relocation
tasks to individual robots:

When a new relocation task is received by a robot, the
robot requests the token Φ. When the token is obtained, the
robot runs a trajectory planner to find a new “best-response”
trajectory to fulfill the relocation task. Such a trajectory is
required a) to start at the robot’s current position p at time
tnow + tplanning (at the end of the planning window), b) to
reach the goal position g as soon as possible and remain at
g and c) to avoid collisions with all other robots follow-
ing trajectories specified in the token. If such a trajectory
is successfully found, the token is updated with the newly
generated trajectory and released so that other robots can
acquire it. Then, the robot starts following the found trajec-
tory. Once the robot successfully reaches the destination, it
can accept new relocation tasks.

In (Čáp, Vokřínek, and Kleiner 2015), we show that if the
relocation tasks assigned to the robots are between endpoints
of a well-formed infrastructure, the trajectory planning of
each robot is guaranteed to succeed and return a valid tra-
jectory for the robot and task. Moreover, assuming that the
trajectory planning is done on a discretized space-time lat-
tice, the worst-case asymptotic time-complexity of finding
a best-response trajectory is only quadratic in the number of
robots operating in the system, contrasting exponential com-
plexity of the complete algorithms for general formulation
of the problem.



Conclusion
Reliably and tractable methods for trajectory coordination
are important enablers for future autonomous multi-vehicle
systems. However, the complete algorithms solving the gen-
eral formulation of the problem have worst-case asymptotic
time complexity that is exponential in the number of robots
in the system. We have presented a family of algorithms
for finding coordinate trajectories in multi-robot systems
and characterized a class of problem instances (the coor-
dination problems occurring in well-formed infrastructures)
that are provably solvable by these algorithms in polynomial
(more precisely quadratic) time. Different varaints of the ap-
proach were devised, suiting centralized, decentralized and
on-line/dynamic multi-robot systems.
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