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Abstract

Coverage is a fundamental problem in robotics, where
one or more robots are required to visit each point in a
target area at least once. While all previous work con-
centrated on finding a solution that completes the cov-
erage as quickly as possible, in this thesis I consider a
new and more general version of the problem: adversar-
ial coverage. Here, the robot operates in an environment
that contains threats that might stop the robot. The ob-
jective is to cover the target area as quickly as possible,
while minimizing the probability that the robot will be
stopped before completing the coverage. The adversar-
ial coverage problem has many real-world applications,
from performing coverage missions in hazardous envi-
ronments such as nuclear power plants or the surface
of Mars, to surveillance of enemy forces in the battle
field and field demining. In my thesis I intend to for-
mally define the adversarial coverage problem, analyze
its complexity, suggest different algorithms for solving
it and evaluate their effectiveness both in simulation and
on real robots.

Introduction
Area coverage is an important task for mobile robots, with
many real-world applications in various domains, from auto-
matic floor cleaning (Colegrave and Branch 1994) and coat-
ing in supermarkets (Endres, Feiten, and Lawitzky 1998)
and train stations (Yaguchi 1996), to humanitarian missions
such as search and rescue and field demining (Nicoud and
Habib 1995). In these, a robot is given a bounded work-area,
possibly containing obstacles, and is required to visit every
part of it as efficiently as possible.

While all previous studies of the coverage problem con-
centrated on finding a solution that completes the coverage
as quickly as possible, in this thesis I consider a new version
of the problem: adversarial coverage. Here, the robot oper-
ates in an environment that contains threats that might stop
the robot. Each point in the area is associated with a proba-
bility of the robot being stopped at that point and the proba-
bilities can vary from one point to another. The objective of
the robot is to complete the given mission—to cover the en-
tire target area—as quickly as possible while minimizing the
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probability that the robot will be stopped before completing
the coverage.

The adversarial coverage problem has an intrinsic com-
plexity that is not present in the general coverage problem,
since it presents a delicate tradeoff between minimizing the
accumulated risk and minimizing the total coverage time.
Trying to minimize the risk involved in the coverage path
could mean making some redundant steps, which in turn can
make the coverage path longer, and thus increase the risk in-
volved, as well as increase the coverage time.

The adversarial coverage problem has many different
variants:

• Offline vs. Online. In the offline version of the problem,
the map of threats is given in advance, therefore the cover-
age path of the robot can be determined prior to its move-
ment. Conversely, in the online version of the problem,
the robot has no map or a priori information about the en-
vironment.

• Approximate vs. Exact cellular decomposition. In exact
decomposition, the free space is decomposed into a set of
regions, whose union fills the entire area exactly, while
in approximate cellular decomposition the free space is
approximately covered by a grid of equally-shaped cells.

• Single-Robot vs. Multi-Robot. In the single-robot version
of the problem, only one robot is used to cover the en-
tire target area. If it is stopped by a threat, the coverage
mission cannot be completed. In the multi-robot version
of the problem, a team of robots is used to cover the tar-
get area. Even if one robot is totally damaged, others may
take over its coverage subtask.

• Static vs. Dynamic environments. In dynamic environ-
ments, the environment itself can change during the cov-
erage process. In our case, this means that the locations
of the threats and/or the obstacles can change over time.
In static environments only the states of the robots can
change with the passage of time.

• Delaying vs. Stopping threats. The threats may inflict dif-
ferent effects on the robot covering the area. For example,
they may delay its movement for a certain amount of time
or they can stop it completely.

• Arbitrary vs. Planned threats. We can assume that the
threats are arbitrarily placed on the map, or that they are
placed by an adversary who strives to inflict the maxi-
mum damage on the robot and ultimately prevent it from



completing its coverage mission. This adversary can have
different levels of knowledge on the robot’s coverage plan
(from zero-knowledge to full-knowledge).

Related Work
The problem of robot coverage has been extensively dis-
cussed in the literature (see (Galceran and Carreras 2013)
for a recent exhaustive survey). Grid-based coverage meth-
ods, such as we utilize here, use a representation of the envi-
ronment decomposed into a collection of uniform grid cells,
e.g., (Gabriely and Rimon 2003), (Luo et al. 2002).

The coverage problem is analogous to the traveling sales-
man problem, which is NP-complete even on simple graphs
such as grid graphs (Papadimitriou 1977). However, it is
possible to find solutions to the coverage problem that
are close to optimal in polynomial or even linear time
through heuristics and abstractions (e.g., (Arkin, Fekete, and
Mitchell 2000), (Gabriely and Rimon 2003), (Grigni, Kout-
soupias, and Papadimitriou 1995), (Xu, Viriyasuthee, and
Rekleitis 2011)).

Papers in the robotic literature that take into account
the presence of an adversary such as (Bortoff 2000),
(Likhachev and Stentz 2007), (Zabarankin, Uryasev, and
Pardalos 2002), present algorithms and methods for risk
avoidance. These works examine the path planning problem
of a single robot, in order to bypass and avoid the adver-
sary’s threats. In the patrol problem (Elmaliach, Agmon, and
Kaminka 2009), a multi-robot team needs to patrol around
a closed area with the existence of an adversary attempting
to penetrate into the area. The patrol problem resembles the
coverage problem in the sense that both require the robot or
group of robots to visit all points in the given terrain. How-
ever, while coverage seeks to minimize the number of visits
to each point (ideally, visiting it only once), patrolling often
seeks to maximize it (while still visiting all points).

Other optimization problems related to adversarial cov-
erage include the Canadian Traveller Problem (CTP) (Pa-
padimitriou and Yannakakis 1989), in which the objective is
to find the expected shortest path between two nodes in a
partially-observable graph, where some edges may be non-
traversable. In contrast, here the graph is fully-observable
and the agent must visit every node in the graph (some of
them may stop the robot).

Adversarial Coverage Problem Definition
We are given a map of a target area T , which contains obsta-
cles and also points with threats, which may stop the robot.
We assume that T can be decomposed into a regular square
grid with n cells, whose size equals the size of the robot.
Some cells in T contain threat points. Each threat point i
is associated with a threat probability pi, which measures
the likelihood that the threat will stop the robot. The robot’s
task is to plan a path through T such that every accessible
free cell in T is visited by the robot at least once.

Figure 1 shows an example map of the world. Obstacles
are represented by black cells, safe cells are colored white
and dangerous cells are represented by 5 different shades of

purple. Darker shades represent higher values of pi (more
dangerous areas).

Figure 1: An example map of the world. Obstacles are col-
ored black and dangerous cells are colored gray. Darker pur-
ple cells represent more dangerous areas.

We consider two different objectives in regard to the
robot’s survivability:
1. Minimize the total accumulated risk along the coverage

path (i.e., maximize the probability of covering the whole
target area).

2. Maximize the coverage percentage of the target area be-
fore the robot is first hit (i.e., maximize the expected cov-
erage percentage).
Let us now formally define these objective functions.

First, we denote the coverage path followed by the robot by
A = (a1, a2, ..., am). Note that m ≥ n, i.e., the number of
cells in the coverage path might be greater than the number
of cells in the target area, since the robot is allowed to repeat
its steps. We define the event SA as the event that the robot
is not stopped when it follows the path A. The probability
that the robot is able to complete this path is:

P (SA) =
∏

i∈(a1,...,am)

(1− pi) (1)

Thus, the first objective is to find a coverage path A that
maximizes the probability P (SA). Note that in this objec-
tive, the order of visits of the cells is not important, as long
as the number of visits of threat points along the coverage
path is minimized (ideally, visiting each threat point only
once).

For the second objective, we denote the sequence of newly
discovered cells along the coverage path A by (b1, ..., bn).
Note that bi ̸= bj for each i ̸= j, and the number of cells in
this sequence is exactly the number of cells in the grid (n).
For each cell in the sequence bi, we will denote the sub-path
in A that leads from the origin cell a1 to it by gi. Let the
number of the new cells discovered by the robot until it is
stopped be CA. Then, under the threat probability function
p, the expected number of new cells that the robot visits until
it is stopped can be expressed as:

E(CA) =
∑

i∈(b1,...,bn)

∏
j∈gi

(1− pj) (2)



i.e., E(CA) is the sum of the probabilities to reach all the
newly discovered cells along the coverage path.

Thus, the second objective is to find a coverage path A
that maximizes the expected coverage E(CA). Note that in
this objective, the visit order of the cells is crucial, since the
robot is trying to cover as much as possible before getting hit
by a threat (ideally, covering all the safe cells before visiting
a single threat point).

To illustrate these definitions, let us consider the follow-
ing simple grid, which is composed of 4 cells: a11, a12, a21
and a22, with the probabilities for danger pij specified in
each cell.

0 0.1
0.2 0.5

Assume that the initial location of the robot is in cell a11.
Since there are no obstacles in this grid, there are cover-
age paths that visit each cell exactly once. These paths have
both minimum length and maximum probability to com-
plete. In our example there are two such coverage paths:
A1 = (a11, a12, a22, a21) and A2 = (a11, a21, a22, a12).
Their probability to complete is the same and equals to:

P (SA1) = P (SA2) = 1 · 0.9 · 0.8 · 0.5 = 0.36

However, these paths don’t have the maximum possible
expected coverage. The expected coverage of A1 is:

E(CA1
) = 1 + 1 · 0.9 + 1 · 0.9 · 0.5 + 1 · 0.9 · 0.5 · 0.8

= 1 + 0.9 + 0.45 + 0.36 = 2.71

A similar computation shows that the expected coverage
of A2 is: E(CA1) = 2.56.

However, the path with the maximum expected coverage
is A3 = (a11, a12, a11, a21, a22). To compute its expected
coverage, we first note that the sequence of new cells dis-
covered along this path is (a11, a12, a21, a22). Thus, the ex-
pected coverage of A3 is:

E(CA3) = 1 + 1 · 0.9 + 1 · 0.9 · 1 · 0.8
+1 · 0.9 · 1 · 0.8 · 0.5
= 1 + 0.9 + 0.72 + 0.36 = 2.98

Therefore, by making one additional step, the robot is
able to raise its expected number of covered cells from 2.71
to 2.98.

The robot’s task is to plan a path through T such that ev-
ery accessible free cell in T (including the threat points) is
visited by the robot at least once. In particular, given T , three
questions may be asked:

1. What is the minimum coverage time for T , and at what
survivability?

2. What is the maximum survivability for T , and at what
coverage time?

3. Given required levels of survivability and coverage time,
what is the optimal coverage path?

In order to help us answer these questions, we will define
the following weighted cost function that takes both the sur-
vivability and the coverage time factors into consideration.
For a given coverage path A, define

f(A) = −α · S(A) + β · |A| (3)

where α, β ≥ 0 are given up front, according to the re-
quired balance between the risk and the time factors. S(A) is
the survivability of the robot, which can be measured in two
different ways as explained earlier, and |A| is the number
of the steps the robot needs to take in order to complete the
coverage path. Thus, the problem is to find a coverage path
A that minimizes the cost function f(A), i.e., f(A) ≤ f(B)
for all possible coverage paths B.

When α = 0, objective (3) translates to finding a min-
imum time coverage path, regardless of the risk involved.
Achieving this objective will provide an answer to our first
question, which is equivalent to finding a solution to the gen-
eral coverage problem. This means that the coverage prob-
lem becomes a special case of the adversarial coverage prob-
lem. When β = 0, the objective translates to finding a cov-
erage path with a minimal risk, without a limit on the path
length. Achieving this objective will provide an answer to
our second question. Lastly, setting fixed levels for α and
β will provide an answer to our third question. In the last
case, the ratio α/β will determine how strongly the objec-
tive prefers safer coverage paths over shorter ones.

Main Results
In (Yehoshua, Agmon, and Kaminka 2013) we have for-
mally defined the offline adversarial coverage problem for
a single robot. We have proposed an initial heuristic algo-
rithm that generates a coverage path which tries to minimize
a cost function, that takes into account both the survivabil-
ity of the robot and the coverage path length. However, the
heuristic algorithm worked only for obstacle-free areas, and
without any guarantees.

In (Yehoshua, Agmon, and Kaminka 2014) we have ad-
dressed a specific version of the adversarial coverage prob-
lem, namely, finding the safest coverage path. We have
shown that the problem is NP-Complete, and thus we have
suggested two heuristic algorithms for solving the safest
path problem: STAC and GSAC. STAC (Spanning-Tree Ad-
versarial Coverage) splits the target area into connected ar-
eas of safe and dangerous cells, and then it covers the safe
areas before moving to the dangerous ones. On the other
hand, GSAC (Greedy Safest Adversarial Coverage) follows
a greedy approach, which leads the robot from its current
location to the nearest safest location which has not been
covered yet. We have provided optimality bounds on both
algorithms, and proven that these algorithms produce close
to optimal solutions in polynomial time. Experimental re-
sults have shown that while STAC tends to achieve higher
expected coverage, GSAC produces shorter coverage paths
with lower accumulated risk (see Figure 2).

In (Yehoshua, Agmon, and Kaminka 2015 to appear) we
have shown how to model the adversarial coverage problem
as a Markov Decision Process (MDP), and proven that find-
ing an optimal policy of the MDP also provides an optimal
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Figure 2: Expected coverage percentage, number of threats
visits and coverage path length for different threat ratios in
environments with randomly scattered threat points and ob-
stacles.

solution to this problem. The states in the MDP represent
all the possible configurations of the environment’s coverage
status and the robot’s location. A coverage status of the envi-
ronment is represented by a boolean matrix that indicates for
each cell in the grid if it has already been visited by the robot
or not. The state captures all relevant information from the
history of the robot’s movements, thus it satisfies the Marko-
vian property. The actions in the model are the four actions
the robot can perform - go up, down, left or right. The tran-
sition function describes the probability that the robot will
be able to move from its current location to the next location
on its coverage path.

To demonstrate the model, let us consider the following
simple grid (cells are numbered 1 to 2 from top to bottom
and left to right, the numbers in the cells indicate the threat
probabilities pi):

0 0
0.4 0.2

Assume that the robot starts the coverage at cell (1, 1) and
then moves right to cell (1, 2). Let us denote the current state
of the environment and the robot by s1. Figure 3 shows the
graph describing the possible transitions from s1. Circular
nodes of the graph represent states of the MDP and the rect-
angular nodes represent actions. Inside each state node there
is a description of the coverage status of the environment
and the robot’s position (marked by ’R’). Edges from ac-
tions to states are annotated with transition probabilities and
costs. See (Yehoshua, Agmon, and Kaminka 2015 to appear)
for more details on how the transition probabilities and costs

are defined.

1 1 R
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Figure 3: An example for a state in the MDP and its outgoing
transitions. Edges from actions to states are annotated with
transition probabilities and costs.

Since the state space of the MDP is exponential in the
size of the target area’s map, we have used real-time dy-
namic programming (RTDP), a well-known heuristic search
algorithm for solving MDPs with large state spaces. Al-
though RTDP achieves faster convergence than value itera-
tion on this problem, practically it cannot handle maps with
sizes larger than 7 × 7. Hence, we have introduced the use
of frontiers, states that separate the covered regions in the
search space from those uncovered, into RTDP. Frontier-
Based RTDP (FBRTDP) avoids fruitless cyclic returns in the
search graph, by maintaining a list of frontier states. Each
time a new state is encountered by an FBRTDP trial, it goes
over all its possible successors, and adds to the frontier list
all the unvisited successors that are not already in this list.
At each step of the trial, FBRTDP examines all the possible
paths from the current state to one of the frontier states, and
chooses the path to a frontier with the minimum expected
cost according to the current value function.

We have shown that Frontier-Based RTDP (FBRTDP)
converges orders of magnitude faster than RTDP, and ob-
tains significant improvement over the greedy algorithm
(GAC). Figure 4 displays the evolution of the expected cost
to the goal as a function of time for the different algorithms.
FBRTDP shows the best profile, converging to the optimal
policy in only 2.83 seconds, while RTDP, LRTDP (Labeled
RTDP) (Bonet and Geffner 2003) and VI (Value Iteration)
converge to the optimal policy in 541, 530, and 803 seconds,
respectively.

In (Yehoshua and Agmon 2015 to appear) we have built
a more sophisticated model of the adversary, in which it can
choose the best locations of the threat points, such that the
probability of stopping the covering robot is maximized. In
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Figure 4: Expected cost to the goal vs. time for VI, RTDP,
LRTDP and FBRTDP. The time axis is plotted on a logarith-
mic scale.

other words, we have examined the problem of finding the
best strategy to defend a given area from being covered by
an agent, using k given guards. We have examined the im-
pact of the adversarial knowledge of the coverage path on
the choice of the guards’ locations, and provided solutions
for adversaries having no knowledge and full knowledge of
the coverage path. We have shown that for a full-knowledge
adversary there is a simple algorithm that provides the opti-
mal strategy, whereas finding an optimal strategy for a zero-
knowledge adversary is, in general, NP-Hard. However, for
some values of k such an optimal strategy can be found in
polynomial time, and for others we have suggested heuris-
tics that can significantly improve the random baseline strat-
egy. We have also discussed some cases in which the adver-
sary has partial knowledge of the coverage path (for exam-
ple, when it only knows where the coverage begins). Fig-
ure 5 shows the probability that the robot will be stopped
along its coverage path for different numbers of guards. It
compares between different levels of adversarial strategies,
where strategy level 0 is the random baseline strategy. See
(Yehoshua and Agmon 2015 to appear) for more details
about the definition of the different strategies.

Future Work

There are several areas we plan to pursue in future work.
First, we are interested in finding algorithms for the online
version of the adversarial coverage problem, in which the
coverage has to be completed without the use of a map or
any a-priori knowledge of the target area. Second, we would
like to consider non-stationary environments, where the lo-
cations of the threat points can change over time. Finally,
we would like to extend the suggested algorithms for multi-
robot systems. Using multiple robots for coverage has the
potential for more efficient coverage and greater robustness;
even if one robot is totally damaged, others may take over
its coverage subtask.
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Figure 5: The probability of stopping the covering robot for
different numbers of guards.
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